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Abstract

This paper introduces a tree generating system called Lexicalized Context-Free Grammar (LCFG)
and describes a cubic-time parser for it. LCFG embeds the elegance of the analyses found in lex-
icalized tree-adjoining grammar without allowing for context-sensitive languages and therefore
without requiring more computational resources than context-free grammars.
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Lexicalized tree-adjoining grammar (LTAG) [1, 8, 4] is an interesting frame-
work for natural language processing mainly because of its extended domain
of locality and also because of its lexicalized property. These characteristics
allow for localizing most of the syntactic and semantic dependencies (such as
�ller-gap and predicate-argument relationships). An LTAG lexicon consists
of a set of trees each one associated with one or more lexical items. These
elementary trees can be viewed as elementary clauses (or phrases) in which
the word(s) associated with them participate. Some samples trees that can
be found in a LTAG for English are shown in Figure 1.
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Figure 1: Sample trees.

The trees in an LTAG can be combined with two operations, substitution
and adjunction. Substitution (Figure 2) in LTAG is the equivalent for trees
to the string substitution operation used in context-free grammars.

Adjunction (Figure 3) inserts an auxiliary tree into the middle of an-
other tree. This operation in e�ect encodes string wrapping and is therefore
more powerful than concatenation. Adjunction generates languages and trees
which cannot be obtained with the use of substitution (or equivalently with
context-free grammars). Although the ability to generate context-sensitive
features may be of interest for some natural languages, the extended domain
of locality and the lexicalized property of LTAG are its primary features. Fur-
thermore, in the current LTAG for English no context-sensitive phenomena
are required.
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Figure 2: Substitution operation.
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Figure 3: Adjunction.

The attractive aspects of LTAGs come at some cost. LTAGs require more
processing power than context-free grammars: in the worst case O(n6)-time
for LTAGs [12, 7, 6] v.s. O(n3)-time for CFGs [5, 3].

Another interesting aspect of LTAG is its ability to lexicalize CFGs. One
can rewrite a CFG into a lexicalized TAG which preserves the original trees
[4]. Until now, the existence of a less powerful formalism for lexicalizing CFG
remained open.

This paper presents a context-free formalism called lexicalized context-
free grammar (LCFG) which enables one to lexicalize context-free grammars.
LCFG combines the elegance of LTAG and the e�ciency of CFG. Similarly to
LTAG, LCFG is a tree-rewriting system, it is lexicalized and it allows one for
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an extended domain of locality compared to CFG. LCFG uses two combining
operations, substitution and a restricted form of adjunction. The restricted
form of adjunction still allows to insert a tree into another one, however it
disallows any non-concatenative operation at the string level. Consequently,
the set of languages generated by LCFG corresponds exactly to the set of
context-free languages, but the set of trees it generates is a strict superset
of the set of trees generated by CFG. It is this additional capability that
enables LCFG to lexicalize CFG [10].

This paper describes LCFG and compares it with CFG and LTAG. Then,
the computational e�ciency of LCFG is illustrated by the description of a
O(n3)-time left to right parser for LCFG.

Lexicalized context-free grammar is a restricted form of lexicalized tree-
adjoining grammars. Informally speaking, the grammar consists of two sets
of trees, the set of initial trees I and the set of auxiliary trees A. At least
one terminal symbol (the anchor) must appear at the frontier of all initial or
auxiliary trees.
As in LTAG, the set of initial trees, I, is characterized as follows:

(i) interior nodes are labeled by non-terminal symbols;
(ii) the nodes on the frontier of initial trees are labeled by terminals or

non-terminals; non-terminal symbols on the frontier of the trees in
I are marked for substitution; by convention, we annotate nodes to
be substituted with a down arrow (#);

The set of auxiliary trees, A, is characterized as follows:

(i) interior nodes are labeled by non-terminal symbols;
(ii) the nodes on the frontier of auxiliary trees are labeled by terminal

symbols or non-terminal symbols. Non-terminal symbol on the fron-
tier of the trees in A are marked for substitution except for one node,
called the foot node; by convention, we annotate the foot node with
an asterisk (�); the label of the foot node must be identical to the
label of the root node.

(iii) the foot node is only allowed to appear to the leftmost or rightmost
position on the frontier.
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The auxiliary trees are characterized as in LTAG except for the third
point which restricts their shape. Auxiliary trees whose foot node is to the
rightmost (resp. leftmost) position are called left (resp. right) auxiliary trees
since they introduce structure to the left (resp. right) of the foot node.

The trees can be combined with substitution (Figure 2), and by two
restricted types of adjoining operations: left adjoining and right adjoining.
The left adjoining operation adjoins a left auxiliary tree (Figure 4) and the
right adjoining operation adjoins a right auxiliary tree (Figure 5).
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Figure 4: Left Adjunction.
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Figure 5: Right Adjunction.

In addition, LCFG impose that no left (resp. right) auxiliary can be
adjoined on any node on the spine (the path from the root node to the foot
node) of a right (resp. left) auxiliary tree. This restriction on the interaction
of left and right auxiliary trees guarantees that no string wrapping can be
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indirectly achieved and therefore that only concatenation of strings can be
performed.

2.1 LCFG and CFG

One can show that any LCFG generates only context free languages. How-
ever, the set of trees generated by LCFGs strictly includes the recognizable
sets i.e. the sets of trees obtained by CFG as de�ned in [11].

Furthermore, Schabes and Waters [10] have shown that for any �nitely
ambiguous context-free language not generating the empty string there is
a LCFG which generates the same trees (and therefore the same strings).
This result is new, since until now only a construction requiring the full
(context-sensitive) power of adjunction was known [4]. This result shows
that any context-free grammar can be lexicalized by LCFG. The resulting
normal form may be regarded as a stronger version of the Greibach Normal
Form for CFGs, in the sense that the structures are preserved and not just
the string sets.

2.2 LCFG and LTAG

The set of tree-adjoining languages is obviously a strict superset of the set
of lexicalized context-free languages. However, it is of practical interest to
see how much of the current LTAG grammar for English [1] falls into LCFG.
Most of the English grammar falls into LCFG.

LCFG imposes two conditions: (1) only left or right types of auxiliary
trees; (2) no interaction on the spine between the two types of auxiliary trees.
In the current English LTAG, all auxiliary trees except for the ones associated
with some verbs taking more than one sentential complement satisfy the �rst
condition. For example, the verb deduce is associated with the following
auxiliary tree:

NP0↓

deduce

V S1*

from

P S2↓

PP

VP

S
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The �rst sentential complement is required to be a foot node if one keeps
the standard LTAG wh-analyses in which there exists an initial tree where
�ller and gap are local. This tree accounts for sentences like:

(1) John deduces that Mary invited Bob from smelling smoke.
(2) Who does John deduce that Mary invited from smelling smoke?

Since the tree contains a foot node in the center of its frontier, it is not
part of an LCFG. Other analyses (other than the traditional LTAG's) of wh
questions may not require this tree to be an auxiliary tree.

Most interactions between the two types of trees in the current LTAG
follow the second condition. There are however cases where this condition is
violated. For example, in the sentence:

(3) John said Bill left yesterday.

the attachment of yesterday is ambiguous. The LTAG derivations are
shown in (Figure 6).

S
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VP
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yesterday

Figure 6: Ambiguous LTAG derivations for John said Bill left yesterday.

In LCFG, the high attachment of yesterday is forbidden since a right
auxiliary tree (corresponding to yesterday) adjoins on the spines of a left
auxiliary tree (corresponding to John said). However, one could design a
mechanism to recover the high attachment reading from the low one.

Besides those two cases, the current LTAG for English falls into LCFG.
This agrees with the intuition that most English analyses do not require a
context-sensitive operation.
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Since LCFG is a restricted case of tree-adjoining grammar, standard TAG
parsers (such as [6, 7, 12]) can be used for parsing LCFG. However, these
parsers do not take full advantage of the context-freeness of LCFG. Although
they require O(n6)-time for TAG parsing, they can be made very easily to
require at most O(n4)-time for LCFG. This bound is still too high since
we know that LCFGs generate only context-free languages. This section
describes a left to right parsing algorithm for LCFG which requires O(n3)
time in the worst case for LCFG. The algorithm is an extension of Earley's
algorithm [3] to LCFG.

3.1 Preliminary Concepts

The following concepts are used in the description of the parsing algorithm.
In the following a1 � � � an is the input string given to the parser and the

LCFG being used is G = (�; NT; I;A;S) where � is the �nite set of terminal
symbols, NT is the set of non-terminal symbols (�\NT = ;), I is the set of
initial trees, A is the set of auxiliary trees and S 2 NT is the start symbol.

A tree � will be considered to be a function from tree addresses to symbols
of the grammar (terminal and non-terminal symbols): if x is a valid address
in �, then �(x) is the label of the node at address x in the tree �.1

Ladj(�; ad) (resp. Radj(�; ad)) is de�ned to be the set of left (resp.
right) auxiliary trees that can be adjoined at the node at address ad in the
tree �. For LCFGs with no constraints on adjunction, this set is the set of
elementary auxiliary trees whose root node is labeled by �(ad).

For sake of simplicity, it is assumed that there are no constraint on adjoin-
ing. The derivation is relaxed from its standard TAG de�nition to allow one
left auxiliary tree and one right auxiliary both adjoined at the same node.
The algorithm can be easily extended to handle constraints on adjunction
and to handle the alternative de�nition of TAG derivation found in [9].

Similarly, Subst(�; ad) is de�ned to be the set of initial trees that can be
substituted at the node at address ad in the tree �.

1Addresses of nodes in a tree are encoded by Gorn-positions de�ned as follows: 0 is

the address of the root node, k (k 2 N ) is the address of the k
th child of the root node,

x � y (x is an address; y 2 N ) is the address of the yth child of the node at address x.
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A(�) is de�ned as the set of addresses of all interior non-terminals (in-
cluding the root node) of the elementary tree � including the foot node when
the tree is an auxiliary tree. A(�) is the set of addresses of the nodes on
which adjunction can occur.

S(�) is de�ned as the set of addresses of all non-terminal nodes of � on
the frontier of the elementary tree � excluding the foot node when � is an
auxiliary tree. S(�) is the set of addresses of the nodes on which substitution
can occur.

foot(�) is de�ned to be the address of the foot node of the auxiliary tree
�.

A dotted tree is de�ned as a tree associated with a dot above or below and
either to the left or to the right of a given node. The four positions of the
dot are annotated by la; lb; ra; rb (resp. left above, left below, right above,
right below): la

lbA
ra
rb . We write < �; dot; pos > for a dotted tree in which the

dot is at address dot and at position pos in the tree �.
The left to right tree traversal used for parsing LCFGs consists of moving

a dot in an elementary tree in a manner consistent with the left to right
scanning of the fruntier while still being able to recognize adjunctions on
interior nodes of the tree. The tree traversal starts with the dot above and
to the left of the root node and ends with the dot above and to the right of
the root node. At any time, there is only one dot in the dotted tree. An
example of tree traversal is shown in Figure 7.

Start End

C

A

B D

E F G H I

C

A

B D

E F G H I

Figure 7: Left, left to right tree traversal; right, equivalent dot positions.

Two successive (according to the tree traversal) dot positions that do
not cross a node in the tree are treated as equivalent (see Figure 7). For
example the following equivalences hold for the tree � pictured in Figure 7:
< �; 0; lb >�< �; 1; la >;< �; 1; ra >�< �; 2; la >;
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< �; 2; lb >�< �; 2 � 1; la >; � � �.
A dotted tree separates a tree into two parts (see Figure 8): a left context

consisting of nodes that have been already traversed and a right context that
still needs to be traversed.

Right context
to be traversed.

Left context,
already traversed

A

Figure 8: Left and right contexts of a dotted tree.

The algorithm uses the left context of a dotted tree to �lter out the
possibilities by only considering left contexts consistent with the pre�x of
the input string seen so far.

3.2 Data Structures

The algorithm collects states into a set called the chart C. A state s is a
5-tuple, [�; dot; pos; i; j], where:

� � is an elementary tree, initial or auxiliary tree: � 2 I [A.

� dot is the address of the dot in the tree �.

� pos is the position of the dot: to the left and above, or to the left and
below, or to the right and below, or to the right and above; pos 2 fla,lb,
rb,rag.

� i; j are integers ranging over positions in the input string [0; n].

The components �; dot; pos of a state de�ne a dotted tree. Similarly to
a dotted rule for context-free grammars de�ned by Earley [2], a dotted tree
splits a tree into two contexts: a left context that has been traversed and a
right context that needs to be recognized. The additional indices i; j record
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the portion of the input string that the left context of the dotted tree covers.
The fact that the auxiliary trees are either right or left auxiliary trees and
that no other type of auxiliary trees can be derived guarantees that only two
indices will be required.

In the following, each of two equivalent dot positions for the dotted tree
are used interchangeably. For example, if the dot at address dot and at
position pos in the tree � is equivalent to the dot at address dot0 at position
pos0 in �, then s = [�; dot; pos; i; j] and s0 = [�; dot0; pos0; i; j] refer to the
same state. In this case, s or s0 will be used interchangeably.

3.3 The Recognizer

The algorithm is a bottom-up parser that uses top-down prediction. It is a
general recognizer for LCFGs and it requires no condition on the grammar.

The algorithm collects states in the chart C. Initially, the chart C consists
of all states of the form [�; 0; la; 0; 0], with � an initial tree rooted in S:

C = f[�; 0; la; 0; 0]j � 2 I rooted in Sg

These initial states (see Figure 9) correspond to dotted initial trees with
the dot above and to the left of the root node (at address 0). They encode
the fact that any valid derivation must start from an S-type initial tree.

S
•

[0,0]

Figure 9: Initialization.

Depending on the existing states in the chart C, new states are added
to the chart by ten steps until no more states can be added to the chart.
The steps of the algorithm are stated as inference rules: the state under the
horizontal line of the inference rule is added to the chart if the states above
the line are in the chart and if the side conditions are satis�ed.

The recognizer for LCFGs follows:
program recognizer

begin
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C = f[�; 0; la; 0; 0]j � 2 I rooted in S g

Apply one of the following steps (1-10) on each state in the chart

C until no more states can be added to the chart C:

� Scanner

[�; dot; la; i; j]

[�; dot; ra; i; j + 1]
�(dot) = aj+1(1)

[�; dot; la; i; j]

[�; dot; ra; i; j]
�(dot) = �(2)

� Left Predictor

[�; dot; la; i; j]

[�; 0; la; j; j]
dot 2 A(�); � 2 Ladj(�; dot)(3)

[�; dot; la; i; j]

[�; dot; lb; i; j]
dot 2 A(�)(4)

� Right Predictor

[�; dot; rb; i; j]

[�; foot(�); rb; j; j]
dot 2 A(�); � 2 Radj(�; dot)(5)

[�; dot; rb; i; j]

[�; dot; ra; i; j]
dot 2 A(�)(6)

� Left Completor

[�; dot; la; i; j] [�; foot(�); lb; j;k]

[�; dot; lb; i; k]
dot 2 A(�); � 2 Ladj(�; dot)(7)

� Right Completor

[�; dot; rb; i; j] [�; 0; ra; j; k]

[�; dot; ra; i; k]
dot 2 A(�); � 2 Radj(�; dot)(8)
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� Substitution Predictor

[�; dot; la; i; j]

[�; 0; la; j; j]
dot 2 S(�); � 2 Subst(�; dot)(9)

� Substitution Completor

[�; dot; la; i; j] [�; 0; ra; j; k]

[�; dot; ra; i; k]
dot 2 S(�); � 2 Subst(�; dot)(10)

If there is a state of the form [�; 0; ra; 0; n] in C with � 2 I rooted

in S then return acceptance otherwise return rejection.

end

The input is recognized if in the �nal chart there is a state corresponding
to an S-type initial tree completely recognized (with the dot to the right and
above the root node) which spans the input form position 0 to n , i.e. if there
is in the chart a state of the form [�; 0; ra; 0; n] where � is rooted in S.

The steps of the algorithm are pictorially explained in Figure 10.
The Scanner, Substitution Predictor and the Substitution Completor

steps recognize substitutions of trees and are similar to the steps found in
Earley's parser for CFGs [3]. The Left Predictor Right Predictor, Left Com-
pletor and Right Completor steps recognize left or right auxiliary trees that
are combined. These steps are stated and explained below.

The predictor steps (3, 6, 5, 6) predict top down adjunctions of left and
right auxiliary trees or trees to be substituted. The completor steps (7,
8) are bottom-up components which complete combining (by adjunction or
substitution) of elementary trees. These steps are further explained below.

The scanner step scans the input string. It applies when the dot is to
the left and above a terminal symbol. It consists of two cases: one when the
terminal is not the empty string, and the other when it is.

The left predictor steps predict in a top-down fashion left recursive aux-
iliary trees. They predict new states accordingly to the left context that has
been read. They consist of two steps that can be applicable simultaneously.
The �rst step (3') predicts a left adjunction on the dotted node and the sec-
ond step (4') considers the possibility that no left adjunction occurs on that
node.
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Figure 10: Pictorial explanation of each step

Similarly, the right predictor steps predict in a top-down fashion right
recursive auxiliary trees. They consist of two steps that can be applicable
simultaneously. The �rst step (5') predicts a right adjunction on the dotted
node and the second step (6') considers the possibility that no right adjunc-
tion occurs on that node.

The left completor step completes the adjunction of a left recursive tree.
It is a bottom-up step that concatenates the boundaries of a left auxiliary
tree fully recognized and the ones of a partially recognized tree.

The right completor step completes the adjunction of a right recursive
tree. It is a bottom-up step which concatenates the boundaries of a right
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auxiliary tree fully recognized and the ones of a partially recognized tree.
The substitution predictor step predicts in a top-down fashion initial trees

to be substituted. It predicts new states accordingly to the left context that
has been read.

The substitution completor step completes the substitution of an initial
tree. It is a bottom-up step that concatenates the boundaries of a left aux-
iliary tree fully recognized and the ones of a partially recognized tree.

3.4 Complexity

The algorithm takes in the worst case O(n3) time and O(n2) space. The worst
case complexity comes from the left and right completor steps. An intuition
of the validity of this result can be obtained by observing that these steps
may be applied at most n3 times since there are at most n3 instances of states
(corresponding the possible ranges of the indices i; j; k).

3.5 The Parser

The algorithm that we described in section 3.3 is a recognizer. However, if
one includes pointers from a state to the other states (to a pair of states for
the completor steps or to a state for the scanner and the predictor steps)
that caused it to be placed in the chart, the recognizer can be modi�ed to
record all parse trees of the input string. The representation is similar to a
shared forest.

Although the ability of LTAGs to generate context-sensitive languages may
be of interest for some natural languages, the extended domain of locality
and the lexicalized property of LTAG are its primary features.

This paper described a restricted form of LTAG, called Lexicalized Context-
Free Grammar (LCFG), which embeds the elegance of most analyses found
in LTAG without allowing for context-sensitive languages and without re-
quiring more computational resources than context-free grammars. Most of
the current LTAG for English falls into LCFG. This agrees with the intuition
that most English analyses do not require a context-sensitive operation.
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Since standard parsers for LTAG behave in O(n4)-time when applied to
LCFG, a new algorithm needed to be design in order to take fully advantage
of the context-freeness of LCFGs. The paper described the design of a left to
right parser for LCFG that requires in the worst case O(n3)-time to process
a sentence of length n.

Since the attractive aspects of LTAGs come at some computational cost,
LCFG provides an e�cient alternative which does not sacri�ce the elegance
of the LTAG analyses and which may be useful in di�erent areas of compu-
tational linguistics.
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