
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Dynamically Reconfigurable Architecture
for a Class of Real-Time Applications

TakaHide Ohkami

TR92-03 December 1992

Abstract

This report (thesis) presents an architectural design methodology for computing systems suitable
for a class of real-time applications, characterized by a large volume of periodic real-time data
input at a high rate and vector operations on the real-time data. The proposed methodology
incorporates into the architectural design the notion of resource sharing as well as techniques
for satisfying timing requirements. The proposed design methodology is based upon a new
computing system architecture called Dynamically Reconfigurable Architecture or DRA, which
is suitable for the target class of real-time applications. Its most distinguished feature is in the
dynamically reconfigurable computation network, which consists of arithmetic-operation-level
functional modules interconnected through a switching network or multiple data buses that can
be logically reorganized for pipelined vector computations for real-time data. The computation
network is logically configured to form one or more arithmetic pipelines before vector operations
are initiated and remains unchanged during the vector operations.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1992
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Mitsubishi Electric Research Laboratories

Technical Report 92-03 January 1992

by

TakaHide Ohkami

Abstract

This report (thesis) presents an architectural design methodology for computing systems suitable
for a class of real-time applications, characterized by a large volume of periodic real-time data
input at a high rate and vector operations on the real-time data. The proposed methodology
incorporates into the architectural design the notion of resource sharing as well as techniques for
satisfying timing requirements.

The proposed design methodology is based upon a new computing system architecture called
Dynamically Recon�gurable Architecture or DRA, which is suitable for the target class of real-
time applications. Its most distinguished feature is in the dynamically recon�gurable computation

network, which consists of arithmetic-operation-level functional modules interconnected through
a switching network or multiple data buses that can be logically reorganized for pipelined vector
computations for real-time data. The computation network is logically con�gured to form one or
more arithmetic pipelines before vector operations are initiated and remains unchanged during the
vector operations.

Submitted in partial ful�llment of the requirement for the degree of Doctor of Philosophy
at the University of Tokyo.

201 Broadway
Cambridge Massachusetts 02139

Publication History:-

1. First printing, TR 92-03, January 1992

Copyright c Mitsubishi Electric Research Laboratories, 1992

201 Broadway; Cambridge Massachusetts 02139

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted for
nonpro�t educational and research purposes provided that all such whole or partial
copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories of Cambridge, Massachusetts; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the
copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories.
All rights reserved.

1 Introduction 1

2 Real-Time Computing 7

2.1 Characteristics of Real-Time Computing : 7
2.2 Architectural Design Problems : 9
2.3 The Target Class of Real-Time Applications : : : : : : : : : : : : : : : : : : 12

3 Review of Computer Architectures 16

3.1 Dedicated Architecture : 16
3.2 Pipeline Architecture : 18
3.3 Parallel Architecture : 20
3.4 Massively Parallel Architecture : 23
3.5 Systolic Architecture : 25
3.6 VLIW Architecture : 26
3.7 Hypercube Architecture : 27
3.8 Data-Flow Architecture : 28
3.9 RISC Architecture : 29
3.10 Superscalar Architecture : 30

4 DRA Design Concepts 32

4.1 Design Philosophy : 32
4.2 Performance Models : 34
4.3 Execution Model : 47

5 DRA System Architecture 69

5.1 Overall System Structure : 69
5.2 Scalar Processor Unit (SPU) : 71
5.3 Vector Processor Unit (VPU) : 73
5.4 Global Memory Unit (GMU) : 75
5.5 Input/Output Units (IOUs) : 76

iii

5.6 Computation Network : 77
5.7 DRA Programming : 86
5.8 Implementation Considerations : 90

6 DRA Example Implementation 93

6.1 MSP Structure : 93
6.2 CPU Structure : 95
6.3 APU Structure : 98
6.4 Filtering : 105
6.5 FFT Processing : 108
6.6 MSP Programming : 114

7 Discussions 118

7.1 Evaluation of the Example Implementation : : : : : : : : : : : : : : : : : : : 118
7.2 Design Methodology : 123
7.3 Related Work : 125

8 Concluding Remarks 126

Acknowledgements 129

Bibliographic Notes 130

Bibliography 135

iv

This chapter is an introduction, giving the background and motivation of the research work.
It also presents the organization of this thesis, which reects the way a real-time computing
system should be designed.

Real-Time Computing

Today, real-time applications are ubiquitous in our society. These applications include fac-
tory automation, process control, ight control, undersea exploration, space exploration,
robotics, medical image processing, transaction processing, telecommunications, �re control,
missile guidance, and so on. They are di�erent from other applications in that timing re-
quirements are a major factor in their tasks, since real-time tasks depend not only on value
but also on time. In other words, real-time tasks are required to produce correct results
in a timely manner. Some applications may cause serious damage if the required timing
constraints are missed. Timing requirements vary greatly depending on applications, while
some applications may specify the precise execution timing for each task, others may specify
only the average execution timing for a collection of tasks.

Signal processing is one of the large real-time application areas. It includes applications
in such �elds as speech, image, sonar, radar, robotics, and telecommunications, to name
a few. In a typical real-time signal processing application, real-time signals are collected
periodically and processed, probably through a variety of transformations (e.g., Fast Fourier
Transform or FFT). Some useful information is extracted from the original input signals and
then used to drive the other parts of the application system.

Transaction processing is another large area of real-time applications. It is quite di�erent
in nature from signal processing and very popular in business environments, where business
data processing systems have been used on-line for more than two decades. Airline reserva-
tion systems and banking systems are well-known examples. Such systems have a database,

1

centralized or distributed, and perform update and retrieval operations on the database upon
request of users. In transaction processing applications, the average processing time, which
is what a user observes directly, is a major factor of design.

Although real-time applications have been prevailing in our society, real-time computing
itself has not been recognized as a scienti�c �eld. No �rm scienti�c base has been established
yet to handle timing requirements in a systematic manner in real-time computing. Because
of this lack of the scienti�c base, many real-time systems have been constructed in an ad hoc
manner, and most of them have been tailored to speci�c applications, showing inexibility
for the other type of applications. This design tradition has not contributed much to the
accumulation of scienti�c knowledge on real-time computing, but has produced many mis-
conceptions about it, which in turn reect the current status of the �eld. J. A. Stankovic
has pointed out some of the prevalent misconceptions in [170], [171]:

(1) There is no science in real-time system design.
(2) Advances in supercomputer hardware will take care of real-time re-

quirements.
(3) Real-time computing is equivalent to fast computing.
(4) Real-time programming is assembly coding, priority interrupt program-

ming, and writing device drivers.
(5) Real-time systems research is performance engineering.
(6) The problems in real-time system design have all been solved in other

areas of computer science or operations research.
(7) It is not meaningful to talk about guaranteeing real-time performance

because we cannot guarantee that the hardware will not fail and the
software is bug-free or that the actual operating conditions will not
violate the speci�ed design limits.

(8) Real-time systems function in a static environment.

Stankovic argues against these widespread misconceptions and identi�es research issues
to establish a scienti�c base in the area of real-time computing in his papers [170], [171].

Advances in VLSI and Computing Technologies

Since the �rst integrated circuits appeared three decades ago, the circuit density (the number
of transistors fabricated on a unit area) has been dramatically increased on semiconductor
chips. J. D. Meindl expects the progress of the semiconductor technologies to continue in the
1990s, leading to the Giga-Scale Integration or GSI, which contains one billion transistors
on a chip [125]. Improvements have been, are, and will be, made in switching speed as well
as in circuit density, especially on silicon chips.

2

Advances in VLSI technologies have been a major thrust for research and development of
advanced computing systems. Computing technologies have been improved to exploit the im-
provements in semiconductor technologies. The increase in switching speed of semiconductor
devices has contributed directly to the design of high-performance computing systems, which
in turn has made feasible many time-consuming computing tasks like large-scale simulations.
The increase in circuit density of semiconductor devices has dramatically reduced the size of
computing systems. The miniaturization of electronic components has reduced the cost of
computing systems to a great extent, turning computers into intellectual commodities. A.
Peled predicts that computers will become an intellectual utility, widely available, ultimately
as ubiquitous as the telephone set [150]. The decrease in the cost of computing systems has
made it possible to design a large high-performance computing system that uses a large
number of identical smaller computing elements.

Conventional computing systems have been designed to perform operations in sequence,
that is, one operation at a time. With the increasing availability of cheap computing ele-
ments, such as microprocessors, it has become feasible to design a computing system that
contains a number of small computing elements, each having a capability of performing op-
erations in sequence. Parallel computing is potentially much more powerful and much faster
than sequential computing. Since the computing speed of a single processor is bounded by
the speed of electricity, which is in turn bounded by the speed of light (c = 2:99792 � 108

m/sec in a vacuum), the fastest speed at which signals can travel, we resort to multiple
processors if we go beyond that speed.

As discussed by G. C. Fox and P. C. Messina in [63], parallel computing machines come
in various avors with respect to computing style, processor connection, memory access, etc.
However, no single parallel architecture can cover all technical problems. We will review
some of them in Chapter 3. In order to use as much computing power as possible for
solving a problem, we need to �nd the best match between the parallel architecture and
the problem to solve. One of the most important engineering problems is the design of the
parallel architecture that best �ts the class of problems to solve. There is no well-known
general guiding principle for such a design problem; however, we have accumulated some
knowledge of the matching pairs of architecture and problems. For example, it is well-known
that the architecture with mesh-connected processor elements matches easily the problem of
image processing.

Parallel hardware produces the raw (parallel) computing power to be used for solving
a problem, which is coded as an application program. Between the hardware and the ap-
plication program lies the parallel system software (operating systems, run-time libraries,
compilers, etc.) which tries to exploit the full capabilities of the hardware and make them
available to application programs with as little computing power as possible. This process
must be e�cient, since the computing power consumed by it is observed as a system over-
head when an application program executes. In general, however, it is not an easy task

3

to design e�cient system software. Many di�cult problems arise in parallel programming,
particularly in the areas of coordinating interrelated subtasks, constituting a single task,
which are performed on di�erent processors running in parallel. D. Gelernter discusses these
topics in [69].

For the other aspects of computing technologies, see [98] for storage technologies, [59] for
user-computer interface technologies, and [91] for computer networking technologies.

Research Overview

Computing technologies have been advancing along with VLSI technologies; however, real-
time computing has not reaped large bene�ts from the advances in computing and VLSI
technologies. This is partly because the scienti�c base in the �eld is too weak to absorb the
advances of the other �elds.

Given an opportunity for research and development of a large-scale real-time comput-
ing system for radar signal processing, we were well motivated to contribute to building a
scienti�c base for that �eld by developing a design methodology for real-time computing
systems.

A review of conventional real-time computing systems for signal processing reveals the
ad hoc design in their architecture; design features are dedicated to particular aspects of
the applications. These design features are individual and not always coordinated from the
viewpoint of system design. The notion of resource sharing is missing in the system design.
This notion is important not only for design e�ciency but also for design exibility. Resource
sharing is a fundamental concept that has been incorporated into the general computing
system architecture. However, many conventional real-time computing systems, particularly
for signal processing, have been designed in an ad hoc manner as a collection of features,
missing the resource sharing concept.

With the increasing availability of inexpensive microprocessors, many microprocessor-
based systems have been developed for small- and medium-scale signal processing applica-
tions that do not require high performance. These systems are more exibile than previous
systems without a microprocessor, since exibility is obtained by programming a micro-
processor. While resource sharing is realized around the microprocessor to some extent,
ad hoc design techniques are still used for large-scale signal processing applications. We
were interested in incorporating the notion of resource sharing into the system design for
high-performance large-scale real-time signal processing applications.

A review of well-known computer architectures reveals that the current computer ar-
chitectures are not quite suitable for real-time signal processing applications that handle a
large quantity of periodic signals. The results of this review will be presented in Chapter 3.

4

Through an exploration of the new architecture that best �ts the applications while main-
taining the architectural generality and exibility. several key features from the well-known
computer architectures can be combined and incorporated into a new architecture, and used
as a base architecture for a class of real-time applications. This will be fully discussed in
Chapter 4.

The major feature of the proposed architecture is a computation network that can be
dynamically recon�gured for di�erent pipelined vector computations by changing logical in-
terconnections of arithmetic-operation-level functional modules. The computation network
dynamically forms one or more arithmetic pipelines for vector processing. It allows computa-
tional resources to be shared among di�erent vector computations. The timing requirements
are easily satis�ed by forming the arithmetic pipelines in the computation network, since
pipeline processing is exact and predictable in terms of timing. Another feature is the system
structure for system-level pipeline processing that enables a large amount of real-time data
to ow through the system to satisfy periodic timing requirements.

Thesis Organization

The chapters of this thesis can be grouped into the following parts:

� Part 1: The Scope of Work (Chapters 1{3)
� Part 2: The Proposed Architecture (Chapters 4{6)
� Part 3: Discussions and Conclusions (Chapters 7{8)

Part 1 (The Scope of Work) presents the scope of the research work. This part �rst
overviews general trends in real-time computing, VLSI technologies, and computing tech-
nologies. It will describe the characteristics of real-time applications, identify the problems
in architectural design of real-time systems, and de�ne the target class of applications for
which a new architecture is proposed. A review of the existing computer architectures and
their viability for the target class of applications is also contained in this part.

Part 2 (The Proposed Architecture) proposes a new computing system architecture for
the target class of real-time applications, since none of the existing architectures are suit-
able for the target class of real-time applications. This part will �rst present the design
concepts of the real-time system architecture required for the target class of real-time ap-
plications, and will present theoretical models for performance and execution. A proposal
of new computing system architecture, called the Dynamically Recon�gurable Architecture

or DRA, is presented, along with its architectural features and the programming techniques
for the proposed architecture. It also describes an example implementation of the proposed
architecture, developed for real-time signal processing.

Part 3 (Discussions and Conclusions) gives discussions and concluding remarks.

5

The rest of this thesis is organized as follows.

Chapter 2 �rst identi�es the characteristics of real-time applications, and goes on to
describe the target class of real-time applications, at which the proposed architecture is
targeted. Chapter 3 reviews the major existing computing system architectures (dedicated,
pipeline, parallel, massively parallel, systolic array, VLIW, and other architectures) and
examines their advantages and disadvantages for the target class of real-time applications.

Chapter 4 describes the design concepts for the design of a real-time computing system
architecture for the target class of real-time applications. It also presents two theoreti-
cal models of performance and execution. The performance models include the vector and
pipeline performance models. The execution model is based on a logical machine model
and pipelined vector operations. Chapter 5 describes the general system structure of the
proposed architecture and its major components with emphasis on the architectural fea-
tures for real-time computing. It also describes the computation network, which consists of
functional modules interconnected via a routing network, and the mechanisms to reorganize
the computation network. Programming techniques for the proposed architecture are also
covered. Chapter 6 gives an example implementation of the proposed architecture, which
was designed primarily for high-speed real-time signal processing applications that handle a
large volume of periodic radar signals.

Chapter 7 presents discussions, and Chapter 8 gives concluding remarks.

Bibliographic Notes gives brief notes on the referenced literature, and Bibliography lists
all the references.

6

This chapter identi�es the characteristics of real-time computing and the technical issues to
be addressed. It also characterizes the class of real-time computing at which the proposed
architecture is targeted.

Real-time computing systems have been designed and used in many application areas as
mentioned in the previous chapter. They di�er from other computing systems in that timing
requirements are a major factor of design. Timing faults of a real-time system may cause
catastrophic consequences in some applications. The design of a real-time computing system
must be not only logically correct, but also meet the imposed timing constraints. The
correctness of the design is required for any type of computing systems; the timing constraints
for the design are unique for real-time computing systems.

S.-C. Cheng, J. A. Stankovic, and K. Ramamritham classi�ed real-time systems into two
types in [37]: soft and hard real-time systems. According to their de�nition, in soft real-time
systems tasks are performed by the system as fast as possible, but they are not constrained
to �nish by speci�c times; in hard real-time systems tasks have to be performed in a timely
fashion. When we schedule real-time tasks, we need to �nd a schedule such that the total
execution time of the tasks is minimum for a soft real-time system; we need to �nd a schedule
such that each task meets its deadline and the total execution time is minimum for hard
real-time systems. Scheduling algorithms for hard real-time tasks are surveyed in [37].

There are a large variety of timing requirements. However, they are either periodic

or aperiodic. Periodic timing requirements arise typically from the periodic nature of the
physical environment. For example, a system with a number of sensors that sample data
at certain intervals imposes periodic timing requirements. Aperiodic timing requirements
involve the deadline by which tasks start and/or �nish. For instance, a system that reacts to

7

the increase of the temperature beyond a certain level by starting a task within the speci�ed
time imposes aperiodic timing requirements.

From another point of view, timing requirements can be classi�ed into precise and statisti-

cal categories. Precise timing requirements are imposed on individual tasks, while statistical
timing requirements on a collection of tasks. In applications with precise requirements, each
task must satisfy the speci�ed timing requirements, which may be periodic or aperiodic. On
the other hand, in the applications with statistical requirements, each task need not satisfy
the speci�ed timing requirements, but the collection of tasks must meet the requirements
statistically. An application, for example, may require that 90% of tasks should be performed
within, say, �ve seconds.

Transaction processing applications impose statistical timing requirements, and their
design is based upon the statistical requirements. Since a typical transaction processing
system involves many components with probabilistic behavior, such as disk I/O operations,
multiprogramming, virtual memory, caching, network communications, etc., the behavior of
the applications running on it is a�ected by the probabilistic system components. Moreover,
transaction processing systems have to maintain the transaction properties for a collection of
transactions, which make the systems more statistical. The processing time of each transac-
tion can vary, but the collection of transactions is expected to meet the timing requirements.
The response time is a typical measure to evaluate an on-line transaction processing system,
which takes a request from a user, accesses to the database, and returns a message to the
user. A. Le� and C. Pu discussed the problems in building a transaction processing sys-
tem and tried to classify transaction processing systems based on the abstracted transaction
properties in [116]. Performance modeling of transaction processing systems is described by
W. H. Highleyman in [76]. T. Matsuzawa, N. Ogawa, T. Ohkami, and T. Noji presented a
tool, called SMART, to predict the OLTP (On-Line Transaction Processing) performance
[123], which was built based on the results from the performance analysis of OLTP systems
done by N. Ogawa, Y. Yamanaga, T. Matsuzawa, T. Ohkami, and T. Noji [132].

Human interface can be also considered to be a real-time system. It doesn't impose the
timing requirements that are speci�ed numerically, but it imposes the fuzzy psychological
timing requirements. It should make the user feel comfortable with its reactions to the user's
requests. While the experienced user wants a quick reaction to his/her request, a novice may
not want such a quick reaction. Some human interface may be required to process the user's
request in the time within the speci�ed range. For example, the human interface of some
on-line tutorial may be required to change pages on screen in, say, no more than 10 seconds
and no less than 6 seconds.

Reliability issues are closely related to real-time computing applications. Many real-time
systems are required to continue to operate in the presence of minor system faults, since they
are unattended or inaccessible after their installation, or critical to the entire system like

8

a life support system, a nuclear power plant, or a spaceship. Although various techniques
have been developed in the area of fault-tolerant computing, real-time computing has raised
new problems. A fault-tolerant scheduling problem is one of such problems. The problem
is to �nd an e�cient way to schedule tasks to meet the timing constraints in the presence
of a failure. This problem has been addressed, for instance, by A. L. Liestman and R. H.
Campbell in [120] and C. M. Krishna and K. G. Shin in [97]. A. L. Liestman and R. H.
Campbell proposed a deadline mechanism that guarantees that a primary algorithm meets
a deadline in the presence of no failure and an alternative algorithm of less precision meets
it in the presence of failure [120]. C. M. Krishna and K. G. Shin presented a dynamic
programming algorithm that embeds backup (or contingency) schedules within the primary
schedule to ensure that deadlines can be met in case of up to a certain number of processor
failures [97]. Note that transaction processing systems have been developed with transaction
recovery techniques from their beginning.

The major problem in the conventional real-time system architectures is the ad hockery in
design. Many of them are based on the hardware and software dedicated to the particular
aspects of the application that runs on them. This is in part due to the fact that no widely
accepted general system design methodology for real-time computing systems is available,
and in part due to the fact that once the requirements from the application are identi�ed,
complexity is less in the design of the architecture dedicated to the application than in the
design with a more general architecture, since its major work is to collect the feature modules,
which may be hardware, software, or both, each dedicated to a particular aspect of the
applications, without considering much about the interactions between the feature modules.
The design ad hockery of the existing real-time system architectures can be considered to
reduce the design complexity by identifying the application requirements, grouping them
into the aspects independent of each other, building the feature modules, each dedicated to
an aspect, and connecting them together to form a single system.

The conventional design style is thus based on the collection of the feature modules, which
are independent of each other. We mean by \independent" that an operation associated with
an aspect of the application is performed in one and only one feature module. Although the
feature modules are independent of each other, they are not necessarily prime to each other,
that is, they may have many functions in common. This is illustrated in Figure 2.1, where
the application X consists of the four aspects fA1, A2, A3, A4g, each consisting of operations
in fa, b, c, d, e, f , g, hg, and the architecture Y consists of the feature modules fF1, F2, F3,
F4g, each Fi corresponding to Ai and consisting of functions in fa, b, c, d, e, f , g, hg. Each
Fi is independent of each other, since it corresponds to Ai and it is the one and only one
feature module used when Ai is executed. However, as seen in Figure 2.1, some functions

9

Application X Architecture Y

A1 = (a; b; c; d)

A2 = (a; c; e)

A3 = (a; c; f; g)

A4 = (a; b; e; h)

F4

F3

F2

F1

a b
c d

a

e

c

a

f

c
g

a

e
b

h

Ai: Application Aspect i
Fj: Architectural Feature j

Figure 2.1: Architecture with Non-Prime Feature Modules.

10

u

u

u

u

Application X Architecture Z

A1 = (a; b; c; d)

A2 = (a; c; e)

A3 = (a; c; f; g)

A4 = (a; b; e; h)

F 0

4

F 0

3

F 0

2

F 0

1

a b
c

e

h

f
g

d

Ai: Application Aspect i
F 0

j: Architectural Feature j

Figure 2.2: Architecture with Prime Feature Modules.

like a and b are included in more than one feature module. This redundancy of functions is
not intended for fault tolerance, but just comes directly from the aspects of the application.
As long as the total volume of the architecture is reasonable, this redundancy does not limit
the design. But it becomes a problem when the total volume of the architecture exceeds a
certain level.

When we construct a large-scale real-time computing system, this redundancy limits
the reasonable implementation of the system. Consider, for example, a function with f(n)
components for the number of inputs n. When we scale up the function for the number
of inputs k � n, the required components for it is f(kn). The total number of components
required for all the duplicated functions to implement the scaled-up system becomes f(kn)��,
where � is the number of duplications. For instance, if f(n) = n2, then the total number of
components required for the scaled-up system is � � k2n2. Since the number of components
in a function with n inputs is equal to or greater than O(n) in many cases, the scaling up of

11

the system causes the super-linear increase of the component count, implying that the larger
the system becomes the harder its implementation becomes with respect to volume.

Thus we need to incorporate the notion of resource sharing into the design of a real-time
computing system. It is a very simple concept and not a new concept at all in computing
technologies. It has been a common practice to use a single system component repeatedly as
many times as possible. The ideal architecture for the application shown in Figure 2.1 is the
architecture Z shown in Figure 2.2, where no two feature modules include the same function,
that is, the feature modules are prime to each other. We call it the prime-feature architecture,
while we call the previous type of architecture the non-prime-feature architecture. We call
the design process of the prime-feature architecture architectural prime factoring, since it is
analogous to prime factoring in mathematics.

The architectural prime factoring consists of identifying the functions that perform the
operations required for each aspect of an application and grouping them into prime feature
modules. The notion of resource sharing can be automatically incorporated into the design in
the process of architectural prime factoring. This is conceptually simple, but not necessarily
simple in practice.

There is a timing problem in architectural prime factoring for the design of a real-time
computing system architecture. In the non-prime-feature architecture, when an aspect of the
application is executed, the function associated with the aspect performs all the operations
required for the aspect. Therefore, the timings of the aspect can be checked at that function.
That is, we need to pay attention to a single time ow through the function associated
with the aspect. In the prime-feature architecture, the required operations are distributed
to multiple functions, and the timings of the aspect must be checked at all the functions
performing the operations. That is, we need to pay attention to a time ow split over the
functions associated with the aspect. It increases the design complexity, especially for the
timing-sensitive applications. Figure 2.3 illustrates the two cases.

While resource sharing reduces the total volume of architecture, it increases the interac-
tions between the feature modules. No interaction between the feature modules is free for
charge; any interaction induces a timing overhead, which is an extra charge due to resource
sharing. One of such interactions in hardware is data transfer from one module to another.
If the system handles a large number of data, data transfer may increase the amount of
hardware or delay the availability of data for the subsequent modules. Thus the design
complexity is increased by the interactions between the feature modules.

We can easily construct a small-scale system around a microprocessor these days, since
powerful microprocessors are now inexpensive and generally available. However, it is not an

12

F1

F2

F3

F4

F5

?

?

?

?

?

?

(a) A Single Time Flow.

F1

F2 F3 F4

F5 F6 F7

F8

F9

?

?

�� @@
? ?

? ?

@@
?

??
��

?
��@@

?

(b) A Split Time Flow.

Figure 2.3: Time Flows Through Modules.

13

easy job to construct a large-scale system without scienti�c disciplines. In turn, scienti�c
knowledge and experience are accumulated by building a large-scale system, since some
systematic work is required to complete the construction.

We are interested in a large-scale real-time computing system for the real-time appli-
cations with periodic timing constraints, which periodically take, process, and produce a
large amount of data. The system architecture that handles periodic data depends on the
following key properties of the applications:

� the amount of periodic input data
� the rate of input data
� the types of operations on data

These properties direct the basic structures of the system. The amount of periodic input
data dictates its data transfer structure. The rate of input data a�ects its control structure.
The types of operations on data inuence its functional structure.

We had an opportunity to design a large-scale real-time computing system for a radar
signal processing application. It belongs to a class of the applications de�ned in terms of the
above-mentioned properties. The applications in that class have in common the following
properties:

� the amount of periodic input data: large
� the rate of input data: high
� the types of operations on data: vector operations

The amount of periodic input data is so large that a processor cannot process them on-
line without bu�ering them in a memory. The rate of input data is so high that a simple
scalar processor cannot handle data. The types of operations on data are vector operations;
the same operations are repeatedly performed on all the data items in a group. Figure 2.4
shows a typical timing chart for processing such data, where data input, data process, and
data output are overlapped, because input and output data are bu�ered before and after
data process, respectively.

Figure 2.5 shows a signal processing system for a phased-array radar, which consists
of a number of active antenna elements, collectively forming a single radar antenna. While
traditional radars scan mechanically, a phased-array radar scans electronically by controlling
the phases of power fed to antenna elements [128]. A variety of signal processing algorithms
are used to convert radar signals obtained at the antenna elements into radar images [29].
When a radar system operates in a search mode or a tracking mode, its output is small in
volume. However, when it operates in an image mode, its output is a large number of image
pixels.

14

- Time

Input

Process

Output

1 2 3 4 5

1 2 3 4

1 2 3

Figure 2.4: Periodic Real-Time Data Processing.

@@ @@ @@ @@ @@ @@ @@ @@�� �� �� �� �� �� �� ��

Signal

Processor

'
&
$
%Display

Antenna Elements

Phased-Array

Radar

Figure 2.5: A Phased-Array Radar System.

15

This chapter reviews the following major computer architectures:

� Dedicated Architecture
� Pipeline Architecture
� Parallel Architecture
� Massively Parallel Architecture
� Systolic Architecture
� VLIW Architecture
� Hypercube Architecture
� Data-Flow Architecture
� RISC Architecture
� Superscalar Architecture

They are evaluated for the target class of real-time applications.

The dedicated architecture is the architecture designed for speci�c applications. Many ar-
chitectural features are dedicated to particular aspects of the applications. We see many
examples in the area of signal processing.

Fourier Transform [23] has been (and still is) of great importance in signal processing.
In the history of signal processing, the invention of Fast Fourier Transform or FFT by J.
W. Cooley and J. W. Tukey in 1965 [42] triggered the subsequent development of a variety
of digital signal processing techniques in the 1960s and 1970s, along with the development
of digital computers. Many digital signal processing algorithms, including convolution, cor-
relation, and digital �lters as well as FFT, were developed on digital computers. FFT has
many variations in the way of computation [24], but it is basically an algorithm to compute

16

discrete Fourier Transform or DFT in O(n log n), much faster than the straightforward DFT
algorithm that takes O(n2). See [2, Chapter 7, pp.251{276], for example, for the compu-
tational complexity of FFT. The FFT algorithm contributed much to the development of
real-time signal processing systems involving Fourier Transform. Since Fourier Transform
has been a very time-consuming computation, compared with the other transformations, a
variety of hardware implementations have been developed [20], [71], [43], [3], [41]. Most of
the implementations were hardware-controlled and truly dedicated to FFT only; no other
signal processing operations could be performed with these systems.

Hardware control could provide the maximum performance the raw hardware could
achieve for a single signal processing application. However, it provided less exibility. In
order to obtain exibility to cover a wider variety of signal processing applications, the mi-
croprogramming techniques developed in the 1970s were applied to the signal processing
systems [96], [181], [195]. Microprogramming turned a single-function signal processor into
a multi-function signal processor that could handle many signal processing algorithms [4].

A vector processor (or array processor), called AP-120B, appeared in the late 1970s [189],
[34]. It was attached to a general-purpose computer to accelerate the performance of vector
operations (particularly, addition and multiplication). It included the pipelined adder and
multiplier. It was widely used for scienti�c and engineering applications. The pipeline vector
processing techniques were also applied to signal processors [22], [28], [60], since many signal
processing algorithms were amenable to vector operations.

With the advances in semiconductor technologies, digital signal processor (DSP) chips
appeared in the 1980s [113]. One of the common features in their architectural design is the
arithmetic capability for the computations in the form of A�B + C, which are frequently
found in the signal processing applications. These are used for relatively small-scale signal
processing applications, including telecommunications applications. One of the examples is
the mSP32 chip [178]. It is an experimental single-chip 32-bit VLSI signal processor, includ-
ing a 32-bit oating-point ALU (FALU) and a 32-bit oating-point multiplier (FMULT) to
support the oating-point computations in the form of A�B + C.

There have been real-time computing systems entirely dedicated to a single real-time
mission, such as an architecture for radar signal processing [65], an architecture for real-
time aerospace applications [149], a multiprocessor architecture for industrial process control
[92], a distributed architecture for industrial control [166], a fault-tolerant architecture for
commercial transport aircraft control [187], and a system architecture for the space shuttle
avionics [31].

FFT is still of great importance and a time-consuming computation in the signal pro-
cessing area. The recent design of FFT processors is more sophisticated than that of the
predecessors [15], [162].

17

Since the dedicated architecture is application-speci�c, it works very well for the target
applications but doesn't work well for the other applications. Our goal is not to design
another dedicated architecture for the target class of real-time applications, but to design
a more general architecture that can compete with the previous dedicated architectures in
performance for the target applications.

The basic concepts and techniques of the pipeline architecture are described by C. V. Ra-
mamoorth and H. F. Li in [156] by P. M. Kogge in [93], and by K. Hwang and F. A. Briggs
in [85]. Pipelining is one of the major architectural attributes of the modern computing
systems. It is a form of parallel processing. It divides a computation process into stages,
each of which performs a partial computation, sends the partial results to the next stage,
and takes the partial results from the preceding stage. As water ows through a physical
pipeline, tasks ow through the pipeline at a rate at which new entries are fed into the input
of the pipeline. Tasks in the pipeline are partially processed at each stage. Since di�erent
tasks stay at di�erent stages at one time, tasks are processed in parallel. A single task
becomes complete when it comes out through the pipeline stages. The execution time of a
single task is the total amount of time it resides in the pipeline. However, each task seems
to be complete at a rate of new entries fed into the pipeline, which is much higher than the
rate at which a non-pipelined processor can perform the task one by one sequentially.

It is an ideal state that tasks continuously ow through the pipeline stages; in this case
the pipeline operates at its maximum rate. However, there are hazards that prevent tasks
from continually entering the pipeline. Depending on the types of hazards, the processor
may delay some tasks at some stages or invalidate all the tasks in the pipeline in order
to maintain the consistency of the processor state. They degrade the performance of the
pipeline. Many design techniques have been developed to keep the pipeline performance as
close to the maximum possible performance as possible in the presence of hazards. There
are two general categories of hazards: structural and data-dependent hazards [93, Chapter
1, pp.1{20]. The structural hazards are cases where two di�erent tasks attempt to use the
same stage at the same time. The data-dependent hazards occur when a task at one stage
determines whether or not data may pass through other stages.

There are two types of pipelining: instruction and arithmetic. Instruction pipelining
is for instruction execution. In general the execution of an instruction can be roughly di-
vided into the stages for instruction fetch, instruction decode, operand fetch, and execution.
Arithmetic pipelining is for arithmetic computation. For example, a oating-point addition
can be divided into the stages for alignment, fraction addition, and normalization, and a
oating-point multiplication into the stages for fraction multiplication, exponent addition,
and normalization.

18

We briey review several pipeline architectures.

In the early 1960s, the IBM System/360 Model 91 was developed as a general-purpose
computer with instruction and arithmetic pipelining for oating-point addition, multipli-
cation, and division [9], [8]. Since then, the instruction pipelining techniques for general-
purpose computers have been established through the development of the computers in the
IBM System/370 family [30], the IBM System/370-XA family [141], and the IBM ESA/370
family [153]. Instruction pipelining is widely used in almost all the commercial computers.
See, for example, [45] for the VAX 8600.

Two of the early vector processors are the CDC STAR-100 and the TI ASC. In the
late 1960s, the CDC STAR-100 was designed for vector operations and had two arithmetic
pipeline processors for oating-point addition and multiplication [78]. In the early 1970s,
the TI ASC (Advanced Scienti�c Computer) was developed for scienti�c applications and
had a high degree of pipelining for both instruction execution and oating-point arithmetic
[185].

The scienti�c attached processors were popular in the late 1970s. The AP-120B is one
of them. It was developed as a back-end pipelined arithmetic processor attached to a host
computer to accelerate the execution of vector operations [189], [34]. It had a pipelined
oating-point adder and multiplier which could operate in parallel. However, it did not
have vector instructions; instead, long instructions containing concurrent microoperations
were used to specify the parallel operations within the processor. The FPS-164 evolved
from the AP-120B [85, Chapter 4, pp.233{324]. It improved the performance over the
AP-120B by extending precision (64-bit oating-point operations, instead of 38-bit oating-
point operations in the AP-120B) and memory. The IBM 3838 was also designed as a vector
processor to be attached to IBM mainframe computers [93, Chapter 4, pp.134{173], [85,
Chapter 4, pp.233{324].

The Cray-1 is one of the �rst modern vector pipelined supercomputers [161], [85, Chapter
4, pp.233{324], [80, Chapter 2, pp.68{143], [121]. It requires a front-end computer like a VAX
or an IBM mainframe as a system manager. The Cray-1 contains eight vector registers, each
64-element register (64 bits/element), and 12 functional pipeline units, which are organized
into four groups: address, scalar, vector, and oating-point units. All of the functional units
can operate in parallel. All integer arithmetic is performed in 24-bit or 64-bit form, and all
the oating-point arithmetic is performed in 64-bit form. Two pipelined vector operations
can be chained together to send the result data stream from a pipeline unit to one vector
register simultaneously to another pipeline unit as the operand stream. Pipeline chaining of
two vector operations can produce two combined results per machine cycle.

The Cyber-205 is also one of the �rst modern pipelined supercomputers [85, Chapter 4,
pp.233{324], [80, Chapter 2, pp.68{143], [121]. The Cyber-205 contains one scalar arith-
metic unit and a vector processor which can have one, two, or four oating-point arith-

19

metic pipelines. The scalar arithmetic unit has �ve independent functional pipelines for
add/subtract, multiply, log, shift, and divide/sqrt operations on 32- or 64-bit scalars. The
vector arithmetic pipeline can perform add/subtract, multiply, divide, sqrt, logical, and shift
operations on 32- or 64-bit vector operands. Each vector pipeline is directly connected to
the main memory without vector registers.

The Japanese supercomputers that followed Cray-1 and Cyber-205 are also pipelined
vector processors. They are, for example, Fujitsu FACOMVP-200 [129], [79], Hitachi HITAC
S-810 [140] , and NEC SX [94].

When the IBM 3090 system was introduced as a mainframe computer [179], the vector
facility was also introduced [27], [142]. The vector facility is optional to the standard IBM
3090 system and can be viewed as an addition to the instruction execution part of the
base machine. 171 new instructions were also introduced with the vector facility. The vector
facility contains a set of vector registers and two vector pipelines, one multiply/divide pipeline
and one arithmetic and logical pipeline. Each of the pipelines can produce one result per
machine cycle, except for divide operations. The two pipelines can be chained together to
produce two vector operations per machine cycle. For performance evaluation of the vector
facility, see [39], [36], [122], and [186].

As discussed above, a variety of pipelined computers have been developed and improved
for almost three decades. The pipeline techniques are the established techniques used in
almost all recent computers including microprocessors. As indicated by the development
of various vector computers, pipelining is very suitable for vector operations. Since an
application in our target class contains many vector operations, our architecture should be
based on pipelining.

The parallel architecture performs multiple operations, synchronously or asynchronously, at
the same time. It has many variations. In this section, we discuss the MIMD (Multiple
Instruction streams, Multiple Data streams) architecture, which was de�ned by M. J. Flynn
in [58]. There are several books and papers on MIMD parallel architectures. See, for example,
[85], [80], [14], [51], [163], [86], [68]. We outline the features and problems of the MIMD
architecture.

In the 1970s, many of the commercial mainframe computers added a multiprocessing
capability as in the IBM System/370 Model 168, the CDC Cyber 170, the Honeywell Series
60 Level 66, the UNIVAC 1100 Model 80, and the Burroughs B7700 [163]. In these mul-
tiprocessor systems, the main memory was shared among the processors. The number of
processors was limited to 2 to 4. These multiprocessor systems were designed to execute
di�erent tasks on di�erent processors in order to achieve higher throughput, rather than

20

to speed up the execution of a single task. They can be viewed as a parallel extension to
a multiprogrammed uniprocessor system in that tasks that had been executed in a time-
sharing manner in a uniprocessor system were executed in parallel on di�erent processors.
Although the internals of the operating systems were changed to accommodate the multi-
processing capability, no changes were made to application programs that were executed as
tasks. The major changes to the operating systems include the mechanisms to synchronize
processors competing for system resources like disks. The synchronization mechanisms used
some hardware-supported means for interprocessor communications. In the IBM System/370
Model 168, for example, the SIGP (Signal Processor) instruction and the TS (Test and Set)
or CS (Compare and Swap) instruction were used for that purpose. The processor executing
the SIGP instruction interrupts the other processor to get its attention for communications.
The TS or CS instruction performs an atomic memory access and is used to reserve a mem-
ory location associated with some system resource, which is protected against unauthorized
accesses.

Since UNIX operating systems have become popular, many multiprocessor UNIX systems
have been developed [68]. They have more processors than the multiprocessor mainframe
systems developed in the 1970s. The Sequent Balance (8000 and 21000) system contains 2 to
30 microprocessors (NS 32000 series) and runs the DYNIX operating system supporting the
4.2 BSD and System V Unix environments [175]. Each processor has a private write-through
cache memory. The bus-watching logic at each cache continuously monitors write cycles on
the system bus, comparing the write addresses to the internal cache state. When the logic
detects a hit, the cache controller invalidates the a�ected entry.

The Encore Multimax is another example of a shared-memory Unix multiprocessor sys-
tem [192]. It can be con�gured with 2 to 20 processors and up to 30 I/O channels. Each
processor has a private cache memory with a write-back protocol, which defers the store
of updated portions into memory until the last possible moment. In order to maintain the
cache consistency, cache entries are invalidated when there are updates in one cache. The
invalidation of the cached copies is done by sending a special read request which is issued
the �rst time a write or read-modify-write is attempted to a location.

The BBNButtery Processor is also a UNIXmultiprocessor system [165], [82]. Unlike the
previous two UNIX multiprocessor architectures, however, it has a memory distributed over
processing nodes. It can have 2 to 256 processing nodes, which are connected by the buttery
switching network, an indirect binary n-cube packet-switching network. Each processing
node contains a CPU and a local memory. Memory accesses by a CPU are either local or
remote. Local memory accesses are made to a local memory; remote memory accesses are
made through the buttery switching network to a memory on a di�erent processing node.
Experience with the Buttery processor is reported in [126], [136].

There have been many experimental architectures developed for some research purposes.
The early experimental parallel architectures are C.mmp [197], [196] and Cm* [67], [66], both

21

developed at the Carnegie Mellon University. The C.mmp was developed in the early 1970s to
examine the feasibility of a large multiprocessor computer for arti�cial intelligence research,
and, from the viewpoint of computer architecture, to study the parallel architecture with the
hierarchically structured processor clusters. Up to 16 of processors could be connected to
up to 16 shared memory modules through a 16� 16 crosspoint switch. The Cm* consists of
50 processor-memory pairs called Cm's, which are connected by a hierarchical, distributed
switching structure. It is divided into �ve clusters of up to 14 Cm's each. The clusters are
connected via intercluster buses. Experience with C.mmp and Cm* is reported in [89].

The S-1 system is also an experimental multiprocessor system aimed at the processing
performance of over 10 times the computational power of the Cray-1. It consists of 16
processors that are connected to 16 memory banks of the main memory through the 16 �
16 crossbar switch. The Burroughs Scienti�c Processor or BSP is another example of an
experimental multiprocessor system [103]. It consists of 16 processors that are connected to
17 memory banks via two data alignment networks. The system has a �ve-stage memory-to-
memory data pipeline, plus earlier instruction-setup pipeline stages, one for input and the
other for output. The memory-to-memory data pipeline is formed by �ve stages for fetch,
align, process, alien, and store. It is unique in that it uses 17 memory banks to achieve
conict-free memory accesses.

The Denelcor Heterogeneous Element Processor or HEP is yet another example of a
shared-memory MIMD architecture [95]. It consists of one or more pipelined MIMD Process
Execution Modules (PEMs) which share a common memory; each PEM is an MIMD com-
puter. There is no qualitative di�erence in the way processes are created and managed or
in the way in which they communicate in a single-PEM system versus a multi-PEM system.
The PEMs and the shared memory banks are connected by a pipelined message-switched
interconnection network. One of its unique features is the full/empty synchronization mech-
anism. Other experimental multiprocessor systems include the NYU Ultracomputer [70], the
UIUC Cedar [102], and the IBM RP3 [151].

The pipelined supercomputers have been adding a multiprocessing capability. The Cray
X-MP/1 has two CPUs, each of which is very similar in structure to the Cray-1 CPU [85,
Chapter 9, pp.643{731]. It was designed for multitasking applications; it can run independent
tasks on two processors. Discussions on the multiprocessor supercomputers are presented by
K. Hwang in [84].

Multiprocessor systems have been developed to achieve the high performance that a
uniprocessor system can not achieve. The n-processor system is expected to achieve the
performance n times the performance a uniprocessor system can achieve. This is true if
n processors execute independent tasks without sharing anything. However, tasks usually
share some system resources, such as code and data. These tasks must be synchronized to
maintain the consistency of the system state. Synchronization has been one of the focal

22

issues in the multiprocessor system design [64], [148], [47]. Many techniques for e�cient
synchronization have been studied and implemented [46]. In general, the synchronization
overhead in the MIMD architecture is not small, because the constituent processors operate
asynchronously and each processor doesn't have any information about the states of the
other processors without performing explicit interprocessor communications. Even in inter-
processor communications, there is no guarantee that the processor can quickly respond to
a request by the other processor. Due to the large synchronization overhead, the grain size
of parallel processing has to be large enough to pay o� the overhead; that is, the execution
between one synchronization point and the other has to be as long as possible. To exploit
�ne-grain parallelism, commonly found in solving a single problem with multiple tasks, the
MIMD architecture has to provide a synchronization mechanism with a small overhead. It
is one of the recent research topics.

The other issues in the multiprocessor architecture include memory accesses. The mem-
ory that can be physically or logically shared by processors is accessed through a shared buse
or a switching network. It is known that there will be a hot spot when processors try to access
a particular location of memory, and it signi�cantly degrades the system performance [152].
Cache memory is another important issue in memory accesses. When processors frequently
update a particular area of memory, many cache invalidation operations occur and degrade
the system performance. It is a research topic to �nd an e�cient invalidation scheme that
keeps coherency. See [47] for more detail.

The MIMD architecture is a fairly general architecture. It is too general for our tar-
get class of real-time applications. We can simplify the design of the system architecture
and avoid some of the problems in the design of the MIMD architecture by exploiting the
characteristics of the target applications. Since the target applications are based on vector
operations, which can be performed synchronously, asynchrony which comes along with the
generality of the architecture is undesirable. Asynchrony in system operations requires ex-
plicit interprocessor communications to get the information of the other processors, which
degrade the system performance. Although much �ne-grain parallelism can be found in
vector operations, the MIMD architecture can not exploit it due to the high cost of synchro-
nization.

The massively parallel architecture is classi�ed as an SIMD (Single Instruction stream, Mul-
tiple Data streams) architecture according to Flynn's taxonomy [58]. It consists of many
simple processing elements, all of which perform an identical operation under the control of
a single instruction. It is also called the processor array architecture because of its organi-
zation. In many cases a single instruction implies a single operation for all the processing

23

elements. In general it shows a good performance when it performs a single operation on a
large amount of data at the same time.

The Illiac IV system was the �rst SIMD supercomputer developed at the University of
Illinois in the 1960s [25], [81]. It consists of 64 processing elements which are interconnected
as a two-dimensional mesh network (an 8 array). Each processing element contains registers,
arithmetic units, and data links to its four neighbors. Data are represented in either 64- or
32-bit oating-point, 64-bit logical, 48- or 24-bit �xed-point, or 8-bit character form. Each
processing element can hold vectors of operands with 64, 128, or 512 elements. All the
processing elements are under the control of a control unit that transmits 32-bit instructions
to them. The system has been used for numerical weather forecasting and nuclear engineering
research.

The Massively Parallel Processor or MPP was developed at Goodyear Aerospace in the
early 1980s [154], [17]. It consists of 16,384 processing elements, which are arranged in a
128� 128 array. Each processing element is a bit-serial processor that performs only single-
bit operations, but can handle data of any length by processing them bit by bit. It can
communicate with neighboring processing elements as in the Illiac IV. It spends time in
proportion to the number of bits in data when it processes multiple-bit data. The MPP
contains staging memories that serve as data bu�ers for the array of processing elements.
They also have a capability of reordering data, which is required if the order of data input
is not the same as the order of processing. The DEC VAX-11/780 was attached to the MPP
as a host computer when it was delivered to NASA.

The Thinking Machines' Connection Machine is also a massively parallel architecture
[77], [180]. Unlike the Illiac IV and the MPP, the processing elements in the Connection Ma-
chine are interconnected in the hypercube form (see the following section for the hypercube
architecture) for interprocessor communication. The �rst implementation of the Connection
Machine is CM-1 with 16K to 64K data processors. When the CM-1 is con�gured to have
64K data processors, four blocks of 16K data processors with a sequencer are connected
by a 4 � 4 cross-point switch called nexus. The data-parallel I/O system connects proces-
sors to peripheral mass storage (called the Data Vault) and graphic display devices. The
applications for the Connection Machine include computer vision, VLSI design and circuit
simulation, molecular dynamics, and so forth.

The similar massively parallel architectures include the ICL DAP [57], the CLIP [62], the
STARAN [16], and the RPA [160].

The massively parallel architecture is suitable for the applications that perform one rel-
atively simple operation on a large amount of data. Image processing is a good example
application for it, since Many systems with this architecture connect each processing el-
ement with a few of its neighboring processing elements. This architecture can provide a
large amount of �ne-grain parallelism but limited interprocessor communications. Our target

24

real-time applications could be handled by this architecture, but it is not straightforward.
We can exploit the characteristics of the target applications, especially those of multiple-bit
vector operations.

The concept of systolic arrays was �rst presented by H. T. Kung and C. E. Leiserson in
[104]. It was originally proposed for VLSI implementation of some matrix computations.
Since then, several papers on systolic arrays were published [105], [115], [61], [106], [108].
S.-Y. Kung and his group proposed the similar concept called the wavefront arrays [107],
[108], [109].

The systolic architecture is based on a systolic computing model that derives computa-
tional e�ciency from parallel and pipeline processing. The systolic array architecture consists
of many (relatively small) processors arranged in various shapes by connecting them with
communication links. Data enter the systolic array through input elements and are propa-
gated to neighboring processors for further processing. Data move along a �xed direction
in which a link exists between neighboring processors and in a periodic manner. As data
ow through a sequence of processors, operations are applied on them in each processor.
Each processor in the systolic array repeats the same operations on di�erent data when they
pass by it. Operations are all regular and synchronous. A stream of data is processed in a
pipeline fashion.

The systolic architecture provides not only a parallel architecture but also a design
methodology for implementing VLSI algorithms. The VLSI algorithms that can be im-
plemented with systolic arrays are characterized by the systolicity in their computations.
There are many well-know algorithms that can be implemented with systolic arrays: matrix
computations, polynomial computations, graph algorithms, signal and image processing al-
gorithms including FFT and convolution, and so forth. When we apply the systolic array
to a problem, we need to systolize the algorithm for solving the problem. It is a mapping
problem: how to map an algorithm on an architecture. S.-Y. Kung presented an approach to
this mapping problem in [108]. His approach gives a method to convert computing networks
representing computations into systolic arrays or wavefront arrays. H. F. Li and R. Jayaku-
mar rigorously characterized the systolic structures and presented an approach to deriving
the systolic algorithms in [118].

The systolic architecture is very useful for our target class of real-time applications,
although it cannot be directly applied to the architecture to support the applications, because
each application may contain a variety of vector operations, and all the operations are not
necessarily prede�ned at the time of architectural design. The useful features of the systolic
architecture are parallelism, pipelining, and regularity.

25

The concept of the VLIW (Very Long Instruction Word) architecture was presented by J.
A. Fisher in [54], [55]. The VLIW architecture is characterized by its very long instructions.
It consists of multiple processors and one program counter which indicates the address of a
machine instruction to execute. In this architecture there are parallel operations but only a
single thread of control. Each instruction contains many operation �elds to control each of
the individual processors. A single instruction determines the operations of all the processors;
the operation for one processor may be di�erent from that for another processor, depending
on the corresponding operation �elds of the instruction. The instruction also controls all
the communications between the processors. The very long instruction word is very similar
to the long horizontal microcode word, which contains may operation �elds to control many
hardware components in the processor at the same time.

The e�ectiveness of the VLIW architecture heavily depends on the VLIW compiler that
compiles a program into a sequence of very long instruction words with e�orts to pack
as many operations as possible in a single instruction. The �rst compiler developed for
the VLIW computer is Bulldog [50]. It uses a global compaction technique called trace
scheduling, originally developed for microcode compaction [53], in order to generate very long
instruction words from a sequential source code. The trace scheduling technique heuristically
guesses the run-time control ow of a program and chooses the most likely forward execution
stream from the possible streams. Guesses are made for conditional branches. The compiler
also generates the code to move from the main execution stream to the other stream when
the guess turns out to be incorrect at run time. The compiled code runs with the maximum
performance if the guesses are correct; it degrades the performance of the machine if the
guesses are incorrect, but still produces correct results.

Parallelism available for the VLIW architecture is reported in [131]. Measurements were
made on 22 Fortran programs, most of which were numerical analysis programs. They
showed that the available global speedups ranges from 4 to 988 with the VLIW architecture.
The programs that exhibited the largest parallelism operate on arrays. Array processing
presented great opportunities for parallelism. See [131] for more detail.

The VLIW architecture may be classi�ed as an SIMD (Single Instruction stream, Mul-
tiple Data streams) according to Flynn's taxonomy [58], but it is clearly di�erent from the
massively parallel architecture or the processor array architecture, in which the same �elds
contained in a single instruction are used to control all the constituent processors. Although
they assumed that a processor controlled by an operation �eld of a very long instruction is
something like a RISC (Reduced Instruction Set Computer) processor, we need not limit the
processor to it; we can use more primitive arithmetic units instead of RISC-type processors.
Moreover, as indicated by the parallelism measurements, the VLIW architecture is suitable
for vector operations. Therefore, the basic concepts of the VLIW architecture, instead of

26

the architecture itself, is useful for our target class of real-time applications.

The hypercube architecture is based on the hypercube connection of processing elements,
each including a processor and a memory, and coordinates their computations by sending
messages to each other [167], [12], [74]. It di�ers from a shared-memory multiprocessor,
in which processors are connected to a shared memory through a switching network or a
common memory bus. Each processing element of the hypercube architecture operates as
an independent computer. The main feature of the hypercube architecture is in its way of
interconnecting processor elements.

The hypercube topology has several interesting properties. One of the most interesting
property is the communication path length. Any message sent by a processor element can
reach the destination in no more than log n hops in the n-dimensional hypercube architecture.
That is, the maximum length of the path (the number of edges on the path) a message may
follow is log n. It is a good property for implementing a variety of algorithms that require
many communications between processing elements. When many processing elements send
messages, messages may collide at one node for a single edge. Then all but one messages are
delayed for the use of the edge, or they may be sent along the other edges and take more
hops than required theoretically.

Each processing element is an independent computer that runs its own copy of an op-
erating system and operates asynchronously. When programs run on processing elements
to solve a single problem, they must synchronize at some points. If there are many such
synchronization points, then the performance of parallel execution is destroyed. Since the
synchronization overhead is not small in this type of architecture, it is suited for coarse-grain
parallel execution, not for �ne-grain parallel execution. In order to obtain asynchronous
coarse-grain parallelism, we have to make a program so that the number of synchroniza-
tions between processing elements should be kept minimum, while the number of operations
between synchronization points should be kept maximum.

A message goes through processing elements on its path to the destination. Each pro-
cessing element has to use some CPU time to route messages. The more messages come,
the more time the processing element has to spend for routing, degrading the performance.
Special hardware can be added to a processing element not to interrupt tasks running on
it. However, when the tasks come to a synchronization point, they have to send or receive
messages. Still, its performance is a�ected by the messages passing by that processing ele-
ment. There is no way to avoid the degradation of performance due to routing messages in
this architecture.

27

From the implementation point of view, the implementation of the n-dimensional hyper-
cube is limited by the number of links each processing element has, if n is large. For example,
if n = 10, then each of 210 = 1024 processing elements has 10 links. If each link is 8 bits,
16 bits, 24 bits, or 32 bits wide, then the total number of bits for each processing element is
80, 160, 240, or 320, respectively. Since each connection is one-to-one, the total number of
wires (one wire per bit) amounts to 40,960 for 8-bit links, 81,920 for 16-bit links, and 122,
880 for 24-bit links, and 163,840 for 32-bit links. Since some control signals and parity bits
are usually associated with each link, the total amount of wiring is more than that number
for each case. If we use a single-bit link, the amount of wiring is small, but it takes more
time to transfer data.

In general, the hypercube architecture is expected to show an e�cient communication
capability because of the property of the hypercube connection. However, it is not an
easy task to control the precise timings, because of the asynchronous parallel execution
and inuence of message routing. Moreover, it is the coarse-grain architecture, which is
not suited for arithmetic-level parallelism. It is very di�cult to implement the architecture
with a multiple-byte link for multiple-byte communications. Therefore, it is not a good
architecture for our target class of real-time applications.

The data-ow architecture is based on a data-driven computing model, where a computation
is initiated as soon as the required operands become available [44], [177], [11], [117]. It is quite
di�erent from the traditional von Neumann architecture in that its computation is driven by
the availability of data, whereas the computation in the conventional von Neumann archi-
tecture is controlled by a program consisting of instructions. A von Neumann architecture
executes instructions synchronously using a centralized control, while a data-ow architec-
ture has no centralized control over computations and executes instructions asynchronously
when their operands are ready. Since there is no prede�ned sequence of instructions, a
high degree of potential parallelism can be exploited in the data-ow architecture. Several
experimental data-ow machines have been constructed and evaluated (see [177] and [11]).

A program, called a data-ow program, for the data-ow architecture, is represented by
a directed graph where the nodes denote operations (addition, multiplication, etc.) and the
edges denote data dependencies between operations. One of the programming languages for
the data-ow architecture is VAL [124]. It is a high-level, function-based language designed
for the data-ow architecture. VAL provides implicit concurrency by using functional lan-
guage features, which prohibit all side e�ects. It is based on a single-assignment rule which
allows a variable to take only one value in a single expression and not to depend on itself.

The data-ow architecture is claimed to eliminate the von Neumann bottleneck that

28

limits potential parallelism in computations. However, it creates new problems. One of
them is the overhead per token, including the communication overhead for packing tokens,
routing tokens, unpacking tokens, etc. If most of the operations are small, the total overhead
of tokens dominates the execution of a program in time and space. The implicit parallelism
can not be exploited for high performance.

It is pointed out that it is very di�cult to design a data-ow architecture that can handle
a large array of data, which could be easily stored in the main memory in the conventional
architecture. Large arrays of data are required to store large vectors and matrices that are
commonly used in scienti�c and engineering applications. The data-ow architecture doesn't
have a main memory; it doesn't have a place to store a large volume of data. Data can be
distributed in pieces over processing elements. But it raises a heavy communication problem.

The other problem is that the data-ow architecture is based on run-time scheduling
of operations, whereas the conventional von Neumann architecture is based on compile-
time scheduling of operations. For the conventional architecture, the compiler can schedule
instructions at compile time; there is no instruction-level scheduling at run-time. However,
the data-ow architecture schedules instructions at run-time, which could be scheduled by
the compiler at compile-time. We haven't seen any non-trivial problems that require run-
time scheduling of instructions. Therefore, the data-ow architecture is a costly solution
with respect to scheduling.

The data-ow architecture doesn't seem to be a fully developed and established archi-
tecture. It may have overcome the von Neumann bottleneck, but it has created many other
technical problems that are not problems in the traditional von Neumann architecture. It
has not essentially broken the von Neumann \barrier." The data-ow architecture itself is
premature to apply to our target class of real-time applications that require extensive vector
operations.

The RISC or Reduced Instruction Set Computer architecture is the architecture that improves
performance by simplifying machine instructions and executing as many instructions as
possible within a CPU without referencing main memory [145], [155], [75], [147], [183].

The traditional computer architecture had been moving towards the integration of more
functionality in machine instructions with the help of microprogramming. This type of archi-
tecture is called the Complex Instruction Set Computer or CISC architecture. As discussed
in [146], the design of the CISC architecture is not always cost-e�ective with the advances
in VLSI technologies, since the design time is expanded and design errors are increased due
to the high design complexity. Although the complex instructions can provide more func-
tionality than the simple instructions, it is not an easy task for compilers to generate the

29

complex instructions. If compilers cannot generate these complex instructions, the part of
the architecture dedicated to the functions for the complex instructions is not used. The
chip area used for the functions for the complex instructions can be more e�ectively used for
more useful functions like a larger set of registers and on-chip cache memory in the RISC
architecture. Thus, the basic idea behind the RISC architecture is the simplicity in design
and the high performance with more commonly used system-wide functions.

The RISC architecture requires a good optimizing compiler. The compiler for the archi-
tecture has to perform extensive optimizations to reduce the total size of code; otherwise,
the size of code tends to be much larger than that for the CISC architecture, since the RISC
architecture provides a set of simple instructions. The optimizing compiler also has to keep
as many operations as possible within the processor without referencing the external mem-
ory, using a larger set of registers provided by the RISC architecture. Register allocation is
very important for this purpose. The optimizing compiler also has to deal with the pipeline
break with branch instructions, which may change the instruction stream and require the
pipeline ush, leading to degradation in performance.

The RISC architecture is now getting popular in the design of high-performance com-
mercial microprocessors: Motorola 88000 [6], MIPS R3000 [157], and Hewlett-Packard PA
[114], to name but a few. The RISC architecture is basically a general-purpose processor
architecture to be implemented on a VLSI chip. It provides no special advantages for vector
operations required for the target class of real-time applications. However, it can be used
for general system control.

The superscalar architecture is the architecture that improves performance by concurrent
execution of scalar instructions [88]. The superscalar techniques can apply to both RISC
and CISC architectures, since they mainly concern the processor organization, independent
of the instruction set and other architectural features. One of the attractive features of
the superscalar architecture is the code compatibility with the existing architectures. In
principle, it does not require any modi�cation of the code written for a RISC/CISC processor,
if the superscalar techniques are applied to the processor organization.

The basic idea behind the superscalar architecture is to exploit the instruction-level
parallelism with the lookahead capability to examine instructions beyond the current point of
execution. The superscalar processor fetches a subsequence of instructions from the complete
sequence of instructions stored in memory and checks to see if there are instructions in the
subsequence which can execute in parallel without any conicts. If the processor �nds
those instructions, it issues them to multiple functional units. Otherwise, it serializes the
instruction execution to avoid the inconsistency in the processor state.

30

A sequence of instructions can have three factors that limit the performance of a super-
scalar processor: data dependencies, procedural dependencies, and resource conicts [88]. A
data dependency exists if an instruction uses a value produced by a previous instruction.
In this case, the instruction has to wait until the previous instruction produces its result
value. A procedural dependency exists if a conditional branch instruction occurs in a se-
quence of instructions. In this case, the processor can not execute the instructions following
the branch instruction until the branch instruction is executed. A resource conict exists if
an instruction uses the same resource that the previous instruction uses. In this case, the
processor has to delay the instruction until the previous instruction �nishes and releases the
resource. All of these factors cause the serialization of instruction execution, limiting the
performance of the processor. See the studies on the available instruction-level parallelism
by N. P. Jouppi and D. W. Wall in [90] and by D. W. Wall in [182].

The superscalar architecture is very useful when we design a new processor that exe-
cutes the code written for a scalar processor with higher performance. It is also suited for
executing the instructions generated by the traditional compilers in a traditional execution
environment. However, it is not suitable for our target class of applications, because the
our goal is to design the real-time system architecture to meet timing requirements imposed
by the real-time applications, not to speed up the execution of existing programs. We have
no software compatibility problems, for which the superscalar architecture works well. The
superscalar architecture is a solution to speeding up the ordinary programs involving many
irregular operations, whereas our target applications are based on vector operations which
are very regular. We can exploit the regularity of vector operations for architectural design.

31

This chapter presents the design concepts of the real-time computing system architecture for
the target class of real-time applications. It also presents theoretical models for performance
and execution.

We are interested in the design of a real-time computing system architecture that is suitable
for the target class of real-time applications described in Chapter 2, that is, the class of real-
time applications that handle a large volume of periodic real-time data, on which a variety
of vector operations are performed.

In Chapter 3, we have reviewed the major existing computing system architectures. Some
of them are not quite suitable for the target class of real-time applications. They include the
dedicated, parallel, massively parallel, hypercube, data-ow, and superscalar architectures.
The others (pipeline, systolic, VLIW, and RISC architectures) have some features suitable
for the target applications. Especially, the pipeline architecture matches vector operations
very well, and is the basic architecture for the target class of real-time applications. How-
ever, the pipeline structure employed in the commercial supercomputers is too general; we
can optimize it with the characteristics of the target applications. Synchronous pipeline
computations in the systolic architecture are also a useful feature for the target applications.
The feature of the VLIW architecture can be used in our architecture without worrying
much about switching of instruction streams, because vector operations are provided in the
loop constructs in many cases. The RISC architecture is useful for the control of vector
computations.

The major timing constraints come from the periodicity of the input data. All the re-
quired tasks for a set of input data must �nish until the next set of data comes in. For

32

such a timing requirement, the statistical or probabilistic behavior of the system is undesir-
able. If there are many statistical factors in the architecture, it is very di�cult to ensure
the timing correctness of the system, and it is also di�cult to trace the timing errors when
they ever occur. Many of the state-of-the-art techniques in computer architecture can sta-
tistically provide high performance. Cache memory is a typical example of the statistical
system components. It can signi�cantly speed up memory references with more than 90% hit
ratios. However, its behavior heavily depends on the memory access patterns of application
programs and the operating system. It also depends on the history of memory accesses.

Since the existing computing systems are not suitable for the target class of real-time
applications, we need to design a new architecture that is capable of handling the target
real-time data. First, the architecture has a system structure that ows a large volume of
real-time data smoothly without any blockage. Since the volume of data is large, it can
process data in an on-line fashion; it has to store data in a memory. In order to ow data
freely, the system needs to have some form of pipeline processing. All the pipeline stages
must be built around memory. The memory need to be organized to have four banks that
can operate independently. The �rst of them is used to store a set of input real-time data,
the second to store a set of data for processing, the third to store a set of result data after
processing, and the fourth to store the data for output. They need to operate at the rate of
real-time data input, so that real-time data ow through the system like a free-owing water.
In order for the four memory banks to operate independently, they have to be connected
to four data buses so that each memory bank can use one of the data buses without any
conict.

At one of the system-level pipeline stages, vector operations are performed on the input
data in an execution unit. It is well known that vector operations have an a�nity for
pipeline processing. It is not reasonable to have a pipeline for each computation aspect
of the application, since it requires an unreasonable amount of hardware. Computational
resources must be shared among all the computational aspects of the application to make
the amount of hardware reasonable. No matter how complicated a vector operation is, they
can be decomposed into arithmetic-operation-level vector operations, such as arithmetic-
logic, shift, and multiply operations. Therefore, in the new architecture, the arithmetic-
operation-level functional modules are the computational resources to be shared and to be
interconnected to form one or more pipelines for the required computations.

The interconnections of the computational resources need to be changed dynamically for
di�erent vector operations. A cross-bar switch could provide all the possible interconnections
of the computational resources, but would be very expensive. A less expensive switching
network is desirable for changing the interconnections. The detailed analysis of the vector
computations required by the application can determine the set of computational resources
(number and kind) and their possible interconnections. The types and numbers of the
computational resources could be systematically determined, but it is beyond the scope of

33

this thesis. All the interconnections of computational resources should form pipelines to
support for the pipelined vector operations; each computational resource also needs to be
pipelined so that the interconnected resources can be pipelined.

Pipeline processing does not involve any statistical or probabilistic behavior; operations
are applied on data at each pipeline stage, regularly at each clock cycle. It is easy to check the
processing timings in the computation network, because it is predictable when a particular
data item comes in and out. Given a set of computational resources, the design of a pipeline
for a vector operation determines the processing time, which can be computed from the
total number of pipeline stages from input to output. Thus the dynamically recon�gurable
computation network addresses the issues of timings as well as those of resource sharing.

The following sections present performance and execution models for the new architec-
ture. The performance models give the theoretical performance achieved by vector operations
and pipeline processing, upon which the new architecture is based. They are derived from
the well-known results in the computer science and engineering �elds. They show the limits
of the performance gain with vector and pipeline operations. The execution model gives a
theoretical model for execution and presents the programmability of the new architecture
based on the dynamically recon�gured arithmetic pipelines. It is derived from the work done
by some other researchers. It is important particularly from the software point of view. It
includes the techniques to convert a loop construct to a pipeline network. It is also a basis
for the possible design tools, which are beyond the scope of this thesis.

Parallel/Vector Performance Model

Amdahl's Law is well-known as to parallel performance [7]. De�ne N , s and p as follows:
N = the number of processors, s = the time spent by a serial processor on a sequential
portion of a program, and p = the time spent by a serial processor on a portion of a program
that can be executed in parallel. Then Amdhal's Law says that the speedup S obtained by
executing the program with N processors is given by

S =
1

s + p=N
; (4:1)

where s+ p = 1. If we substitute p with 1 � s, then we obtain

S =
1

s+ (1� s)=N
: (4:2)

This is illustrated in Figure 4.1 with N = 1000. It shows that the speedup obtained with
1000 processors is only 500.3, 333.6, 250.2, and 200.2 if the sequential portion of the program

34

-

6

0.0% 0.1% 0.2% 0.3% 0.4%

Sequential Portion s

0

100

200

300

400

500

600

700

800

900

1000

Speedup S

u
u
u
u u u
u u u u u u

500.3

333.6

250.2

200.2

N = 1000

Figure 4.1: Speedup under Amdahl's Law.

35

is 0.1%, 0.2%, 0.3%, and 0.4%, respectively. Based on this equation, W. H. Ware showed
that even a small amount of serial processing can signi�cantly reduce the e�ectiveness of a
multiprocessor [184]. G. M. Amdahl argued in [7] that since parallel performance is limited
by the amount of the sequential portion of a program, the single processor approach is the
way to go. Although the current trend in computing technologies shows the clear direction
towards parallel computing with multiple processors [150], [63], [69], it is an unquestionable
fact that the sequential portion of a program limits the performance any parallel computing
system can achieve. Many e�orts are being made to reduce as much sequential portion of a
program as possible.

J. Worlton presented more elaborate discussions about parallel processing in [193]. He
used the following model:

B =
1

FH � TH + FL � TL
; (4:3)

where

B = results generated per unit time,
FH = the fraction of results generated in high-speed mode,
TH = the time to generate a single result in high-speed mode,
FL = the fraction of results generated in low-speed mode, and
TL = the time to generate a single result in low-speed mode.

It models a computer that operates in the high-speed and low-speed modes, implying the
parallel and sequential modes, respectively. If we consider the e�ect of the enormously fast
high-speed mode, that is, TH � 0, then

B �
1

FL � TL
: (4:4)

This indicates that the speed of a computer having two modes of operation is limited by its
low-speed mode given the fraction of results generated in that mode.

If we divide by TH the numerator and denominator of Equation 4.3, then we get

B =
BH

FH + FL � (TL=TH)
; (4:5)

where BH = 1=TH . This form of the model shows the e�ect of the ratio TL=TH on B. As
the ratio increases, the e�ect of FL also increases.

Based on these performance models given by Amdahl and Worlton, we now formulate
our performance model.

36

-

Ts Tv

Ts Tv
Sequential

Execution

Vector
Execution

0 tv ts

Task T = Ts + Tv
Ts: Serial Portion
Tv: Vector Portion

Figure 4.2: Sequential vs. Vector Execution.

Assume that a task T consists of two portions, Ts and Tv, where Ts is the sequential
portion of the task that can be performed only by sequential operations, and Tv the vector
portion that can be performed by vector operations. Let rs and rv be the fractions of the
task corresponding to Ts and Tv, respectively, where

rs + rv = 1 : (4:6)

Let ts and tv be the sequential execution time of T and the execution time of T when Tv
is performed by vector operations, respectively. This is illustrated in Figure 4.2.

Let A be the acceleration factor de�ned as the ratio of vector operations to sequential op-
erations for Tv. Then, the total speedup S obtained by vector operations for T is represented
by

S =
ts
tv

(4.7)

=
1

rs + rv=A
: (4.8)

If the acceleration factor A is so large that 1=A is negligibly small, that is, 1=A � 0, then
we get

37

-

6

0% 1% 2% 3% 4%

Sequential Portion rs

0

10

20

30

40

50

60

70

80

90

100

Speedup S

2

2

2

2

2

2

4

4

4

4

4
4

3
3

3
3

3
3

A = 100

A = 50

A = 25

Figure 4.3: Speedup with Vector Operations.

S �
1

rs
: (4:9)

Figure 4.3 shows the speedup with various values of rs and A. For example, if rs = 0:01,
rv = 0:99 and A = 100, then S = 1=0:0199 = 50:3. This means that if vector operations,
which are 100 times faster than the corresponding sequential operations, are applied to the
vector portion of the task, the total execution time of the task is reduced to 1.99% of its
sequential execution time, giving the speedup of 50.3. Figure 4.3 also shows that the speedup
obtained with a large value of the acceleration factor is not always greater than that with a
small value of the acceleration factor, depending on the ratio of the sequential portion. For
example, the speedup obtained with A = 100 and rs = 0:04 is less than that with A = 25
and rs = 0:005 (20.2 vs. 22.3).

38

When we design a real-time system, we can determine the acceleration factor A to some
extent, since it is derived from the system's architectural features and technology. In general,
we can increase it by choosing expensive technology and adding expensive architectural
features. Given S = ts=tv and rs = 1 � rv, A is represented by

A =
1 � rs

1=S � rs
: (4:10)

For example, if S = 10 and rs = 0:05, then A = 19. It means that if we need the speedup
of 10 for the application with the sequential portion of 5%, we have to design a system that
executes the vector operations 19 times faster than the corresponding sequential operations.
Since the feasible value of A must be positive, the following condition must be satis�ed

rs � S < 1 : (4:11)

That is, the product of the expected speedup and the sequential portion must be less than
1.

Given the acceleration factor, we may have many options to achieve it in designing the
system. Then we choose one of them by taking into account the design factors to optimize
the system design.

A very similar argument holds for parallel processing. In this case, we consider a task T
consisting of Ts (a sequential portion) and Tp (a parallel portion). We use rp (the fraction
of the parallel portion) instead of rv, and tp (the parallel execution time of Tv) instead of tv.
A should be interpreted as the acceleration factor de�ned as the ratio of parallel operations
to sequential operations for Tp. This is illustrated in Figure 4.4, which is very similar to
Figure 4.2.

A task T can be processed by parallel and vector processing. Consider a task T that
consists of a sequential portion Ts and a vector portion Tv, which in turn consists of a
sequential portion Tvs and a parallel portion Tvp. De�ne rs, rv, rvs and rvp as follows:

rs = the sequential fraction of T ,
rv = the vector fraction of T ,
rvs = the sequential fraction of Tv, and
rvp = the parallel fraction of Tv,

where

rs + rv = 1 ; (4.12)

rvs + rvp = 1 : (4.13)

39

-

Ts Tp

Ts Tp
Sequential

Execution

Parallel
Execution

0 tp ts

Task T = Ts + Tp
Ts: Serial Portion
Tp: Parallel Portion

Figure 4.4: Sequential vs. Parallel Execution.

Let ts, tv, and tvp be the sequential execution time of T , the execution time of T when Tv
is processed by vector processing, and the execution time of T when Tv is processed by vector
processing and Tvp is processed by parallel processing. This is illustrated in Figure 4.5.

The vector execution time tv and the parallel vector execution time tvp are given by

tv = rs � ts + rv � ts=Av ; (4.14)

tvp = rs � ts + rvs � tvv + rvp � tvv=Avp ; (4.15)

tvv = rv � ts=Av ; (4.16)

where

Av = the vector acceleration factor, and
Avp = the parallel vector acceleration factor.

The total speedup S is given by

S =
ts
tvp

(4.17)

=
1

rs + (rvs + rvp=Avp) � rv=Av

(4.18)

=
1

rs + rvs � rv=Av + rvs � rv=(Av �Avp)
: (4.19)

40

-

Ts Tvs Tvp

Ts Tvs Tvp

Ts Tv = Tvs + Tvp
Sequential

Execution

Vector
Execution

Parallel
Vector
Execution

0 tstvp tv

Task T = Ts + Tv;Tv = Tvs + Tvp
Ts: Serial Portion
Tv: Vector Portion
Tvs: Serial Vector Portion
Tvp: Parallel Vector Portion

Figure 4.5: Sequential vs. Parallel Vector Execution.

41

S1 S2 Sk- - - -Input Output

Stage 1 Stage 2 Stage k

Figure 4.6: k-Stage Pipeline.

Pipeline Performance Model

We consider a uniform-delay pipeline, which is simple and widely used in many pipeline
computing systems.

Figure 4.6 shows a k-stage uniform-delay pipeline. Let k, � , and n be the number of
pipeline stages, the clock period per stage, and the number of data, respectively.

Let Tk be the execution time of n data with a k-stage pipeline processor. It is given by

Tk = k � � + (n� 1) � � (4.20)

= (k � 1) � � + n � � : (4.21)

where (k � 1) � � is the startup time, and n � � is the apparent data processing time for n
data items, each per � . This is illustrated in Figure 4.7.

Let T1 be the execution time of n data with the equivalent non-pipeline processor. It is
given by

T1 = n � k � � : (4:22)

Then the speedup Sk of the k-stage pipeline processor over the equivalent non-pipeline
processor is

Sk =
T1
Tk

=
n � k � �

(k � 1) � � + n � �
=

n � k

k + n� 1
: (4:23)

If n � k, that is, the number of data is very large compared to the number of pipeline
stages, then

Sk � k : (4:24)

42

1

2

3

k � 1

k

1 2 3 k � 1 k k + 1

k + n� 2

?

k + n� 1

?

D1

D1

D1

D1

D1 D2

D2

D2

D3

D2 D3 Dn

Dn�1 Dn

Clock Cycle

Stage

Startup Time

Figure 4.7: Data Processing Flow with k-Stage Pipeline.

-

6

0 10 20 30 40 50 60 70 80 90 100

2

4

6

8

10

Vector Length n

Speedup S

k = 10

u

u

u

u

u
u

u u u u u u

Figure 4.8: Speedup of Pipeline Prcessing.

43

J
J
J
JJ

J
J
J
JJ

J
J
J
JJ

J
J
J
JJ

J
J
J
JJ

J
J
J
JJ

n n n

?

6

� -� -�-

(k � 1)� n� s�

k Stages

Figure 4.9: Pipeline Processing for Multiple Data Sets.

The maximum speedup with a k-stage pipeline processor is equal to the number of pipeline
stages. Figure 4.8 shows the speedup of pipeline processing when n = 1, 5, 10, 20, : : : , 100
with k = 10.

We now consider a problem of processing multiple data sets in pipeline. Let n and m be
the number of data items in a data set and the number of data sets, respectively. The total
number of data item is given by

N = m � n : (4:25)

Assume that each data set is processed with a k-stage pipeline processor. Then the total
processing time T 0

k is given by

T 0

k = f(k � 1) � � + n � �g �m+ (m� 1) � s � � (4.26)

= f(n+ k + s� 1) �m� sg � � ; (4.27)

where s � � is the setup time between one data set and the next. This is shown in Figure 4.9.
The speedup S 0

k is given by

S 0

k =
T1
T 0

k

(4.28)

=
mnk

(n+ k + s� 1)m� s
: (4.29)

If m� s, then

S 0

k �
nk

n+ k + s� 1
: (4:30)

44

If n is large compared to k + s� 1, then S 0

k is almost equal to k. If s = �(k � 1), then

S 0

k =
mnk

nmk � s
: (4:31)

The setup time s has a negative e�ect on the total pipeline performance, although it
doesn't a�ect the performance for processing each set of data. We may have several cases
where data is partitioned into multiple data sets for processing. One of the cases is a natural
case where data are sampled in groups at intervals. Another case is a situation that arises
from some restrictions of the system. For example, if the system has a limited number of
registers (e.g., vector registers), it has to process data that can be stored in the registers. In
this case, the system has to store the computation results in the registers before loading the
next set of data into the registers. The limited size of memories causes a similar situation.
Yet another case is the situation where the application algorithm has to handle data sets
separately.

We have investigated the performance of the pipeline through which data continuosly
ow. There are some cases in which a pipeline can not be �lled with data for some reasons.
In these cases, we use dummy data to �ll up the pipeline, rather than controlling clocking
to the pipeline. Consider a k-stage pipeline that processes actual data and dummy data.
Assume that data are organized in groups of k data items and that each group contains c
actual data and k � c dummy data (0 � c � k). Actual and dummy data alternately enter
the pipeline; the pipeline processes c actual data and k � c dummy data at any moment.
Figure 4.10 illustrates the situation.

Now we consider the speedup for the case with actual and dummy data owing alternately
through a pipeline. Let T 00

k be the execution time for n actual data with a k-stage pipeline.
The pipeline processes k � c dummy data for every c actual data; the total number of data
is nk=c, instead of n. Then T 00

k is given by

T 00

k = f(k � 1) + nk=cg � � ; (4:32)

where � is the clock period per stage. The speedup S00

k is then given by

S00

k =
T1
T 00

k

=
nk

(k � 1) + nk=c
: (4:33)

If n� 1, then

S00

k � c : (4:34)

This means that the speedup obtained with a k-stage pipeline is close to the number of
actual data per group of k data items, not to the number of the pipeline stages k. That is,
the speedup is bounded not by the number of stages but by the number of actual data when
the pipeline alternately processes actual and dummy data.

45

?

1

2

k � 1

k

c

c

c

k � c

k � c

k � c

k-Stage Pipeline

Group of k Data Items

c Actual Data Items
k � c Dummy Data Items

Figure 4.10: Pipeline Processing of Actual and Dummy Data.

46

Vector Loops

Many scienti�c and engineering applications, including real-time applications, involve vector
computations, which are typically identi�ed in loop constructs in high-level language pro-
grams. Not all of the loop constructs are in the vector form. The loop constructs that are
amenable to vector processing are called vector loops. We distinguish the vector loops from
other loops by using a vector for construct.

Consider a simple vector-scalar multiplication as follows:

v = w � s: (4:35)

where v and w are n-element vectors and s is a scalar. Each element of the vector v can be
computed as follows:

vi = wi � s for i = 1; 2; : : : ; n: (4:36)

This computation can be programmed using a C-like language as shown below:

for (i = 1; i <= n; i++)
f

v[i] = w[i] � s;
g

Since it is in the vector form, it can be expressed with a vector for loop as follows:

vector for (i = 1; i <= n; i++)
f

v[i] = w[i] � s;
g

Consider another example of a matrix multiplication given by

A = B�C; (4:37)

where A, B, and C are all matrices of n�n. Each element of A can be computed as follows:

aij =
nX

k=1

bik � ckj : (4:38)

This matrix multiplication can be programmed with three nesting for loops. Since the
vector loop is limited to the innermost loop, the program with the vector for loop is de-
scribed as follows:

47

for Loops

vector for Loops

Vector Flow Graph

Pipeline Network Graph

?

?

?

?

j1

j2

j3

j4

Loop Transformations

Loop Compilation

Mapping

Transformations

Figure 4.11: A Pipeline Network Generation Flow.

for (i = 1; i <= n; i++)
f

for (j = 1; j <= n; j ++)
f

a[i][j] = 0;
vector for (k = 1; k <= n; k ++)
f

a[i][j] = a[i][j] + b[i][k] � c[k][j];
g

g
g

We are concerned with the vector for loops. In the following sections, we present the

48

Switching Network

VRs

OM OM

IM IM FM FM

??

? ?

? ?

? ?

? ?

? ?

IM: Input Module

OM: Output Module

FM: Functional Module
VRs: Vector Registers

Figure 4.12: A Logical Machine Model.

techniques to generate a pipeline network from a vector for loop. The procedural ow for
generating a pipeline network from a for loop is shown in Figure 4.11. The ow starts with
a given for loop in the �rst box. Through some loop transformations, which are beyond
the scope of this thesis, for loops are transformed to vector for loops in the second box.
Then they are represented by vector ow graphs in the third box, using the compilation
algorithms. The vector ow graphs are then converted to pipeline network graphs in the
fourth box through several transformations (pipeline chaining, delay insertion, etc.). The
pipeline network graph is an abstract network graph for a particular logical pipeline network
con�guration.

The Logical Vector Machine Model

We de�ne a logical vector machine model that executes the vector for loops in pipeline.
Its general structure is illustrated in Figure 4.12. In this �gure, VRs are vector registers
that hold input, output and intermediate vector data, IM is an input module that reads
vector data from VRs, OM is an output module that writes vector data into VRs, and FM
is a functional module that performs some arithmetic on vector data. These modules are
interconnected via a switching network. We assume that all the vector data to be processed

49

are stored in VRs and all the result vector data are also stored in VRs.

An FM is either a single-cycle module or a multi-cycle module. A single-cycle module
takes one pipeline cycle in processing vector data; a multi-cycle module is a pipeline module
and takes multiple cycles in processing vector data. If all the FMs are single-cycle modules,
the interconnections of these FMs through the switching network form one or more pipelines.
If multi-cycle modules are included, then their interconnections through the switching net-
work form two-level pipeline networks.

The switching network can be a set of data buses, a crossbar switch, or a multi-stage
interconnection network. For simplicity, we ignore the delay of the switching network and
assume no restrictions on the interconnections of modules. Here we assume that there are an
arbitrary number of data buses available for connections, numbered B1, B2, B3, : : : , in the
switching network. We also assume that the CONNECT command is available to connect
one module to the speci�ed data bus. For example, consider the following three CONNECT
commands.

CONNECT ALU5.S B3;
CONNECT ALU5.A B2;
CONNECT ALU5.B B7;

The �rst CONNECT command connects the output S of the functional module ALU5 to the
data bus B3, the second CONNECT command connects the input A of ALU5 to B2, and
the third CONNECT command connects the input B of ALU5 to B7. Using the CONNECT
command, we can \program" the switching network to form logical connections between
modules for a particular operation. We assume that the connections made by the CONNECT
commands stay valid until the DISCONNECT command is used to disconnect them. All
the modules are disconnected from the data buses by issuing

DISCONNECT ALL;

and one module is disconnected from the data buses by

DISCONNECT ALU5;

The last command disconnects all the inputs (A and B) and output (S) of the module ALU5

from the data buses.

Vector Flow Graph

A vector ow graph is a graphical representation of a vector for loop and is a special form
of a ow graph.

A ow graph G = (V;E) is a directed graph where

50

@@ �� @@ �� @@ ��

�� @@ �� @@ �� @@

�

�
	�

�

�
	+

�

�
	�

? ?

?

?

?

?
��@@

�� @@
?

??

a b c

x z y

v1 v2 v3

v4 v5 v6

v7

v8

v9

e1 e2 e3

e4

e5

e6

e7

e8

e9

Figure 4.13: An Example Flow Graph.

V = fv1; v2; : : : ; vng: a set of nodes; and
E = fe1; e2; : : : ; emg: a set of edges.

A node vi is either an operation node, an input node, or an output node. The input and
output nodes are distinguished from the operation nodes due to their special roles.

A ow graph is produced from a program segment written in a C-like high-level language.
Consider the following program segment:

x = a � b;
y = x+ c;
y = x � y;

where the variables a, b, c, x, y, and z are all scalars. The corresponding ow graph is shown
in Figure 4.13. This ow graph is represented by G = (V;E), where

V = fv1; : : : ; v9g; and
E = fe1; : : : ; e9g.

51

In Figure 4.13, v1, v2, and v3 are input nodes (for a, b, and c, respectively), v4, v5, and v6
are output nodes (for x, y, and z, respectively), and v7, v8, and v9 are operation nodes (for
*, +, and *, respectively).

A ow graph produced from the body of a vector for loop is called the vector ow graph.
For example, consider the following program segment with a vector for loop:

vector for (i = 1; i <= 100; i++)
f

x[i] = a[i] � b[i] + c[i];
g

The vector ow graph for the body of this vector for loop is shown in Figure 4.18.

We assume that the body of the vector for loop consists of a sequence of assignment
statements, whose lefthand side is a vector element. We call these assignment statements
vector assignment statements. A vector ow graph is created from each vector assignment
statement. Since one assignment statement has only one output, the vector ow graph
produced from it is a tree. We call it a vector assignment tree. The following algorithm
creates a vector assignment tree for a given assignment statement.

[Vector Assignment Tree Generation Algorithm]

Input: A vector assignment statement S
Output: A vector assignment tree T

Procedure:

Step 1: Create an output node vout for the vector element on the lefthand side.

Step 2: Create an input nodes vinj
for each unique variable on the righthand

side.

Step 3: Create an operation node vi for each operator on the righthand side.

Step 4: Create an edge ek from an operator to its operand.

The vector assignment tree is basically a syntax tree. It is easily created from the post�x
form of the righthand side of the vector assignment statement. Scanning the post�x form
from left to right, create an input node if the token is a variable and it is unique, or create
an operation node if the token is an operator. When an operator node is created, create the
edge(s) between the operator and the previous one or two variables, depending on the type
of the operator.

52

The body of a vector for loop may consist of more than one vector assignment state-
ment. If two consecutive vector assignments have some variables in common, two separately
generated vector assignment trees can be merged. If the output vector element of a vector
assignment statement appears on the righthand side of the subsequent vector assignment
statement, Then the merging operation is called chaining. If the two assignment statements
have no common variables, then no e�ective merging operation takes place. This procedure
is described as follows:

[Vector Assignment Tree Merge Algorithm]

Input: two vector assignment trees T1 and T2
Output: a vector ow graph G

Procedure:

Step 1: If there are common input nodes in T1 and T2, then eliminate one of
them and connect all the edges connected to it to the other one.

Step 2: If there is an input node in T2 that has the same label (the associated
variable) the output node of T1 has, then eliminate that node and
connect all the outgoing edges from the node to the output node.

Step 3: Create a graph with all the nodes and edges.

Figure 4.14 shows an example of the tree merge, where trees T1 and T2 are merged. The
output node of T1 is connected to an input node of T2 (both of them denote the identical
data x[i]). Since T1 and T2 have the same input a[i], the input of T2 is eliminated and an
edge from the input of T1 is added.

This algorithm can be applied successively to all the vector assignment statements in a
vector for loop, producing a vector ow graph. Now we describe the procedure that creates
a vector ow graph from a vector for loop.

[Vector Loop Compilation Algorithm]

Input: the body of a vector for loop L

Output: a vector ow graph G

Procedure:

53

@@ @@ @@ @@ @@ @@�� �� �� �� �� ��

? ? ? ? ?

? ?
�� ��@@ @@

x[i]

x[i]a[i] a[i]

T1 T2

@@

@@R

?

Figure 4.14: Vector Assignment Tree Merge.

54

vector for (: : :)
f

S1;
S2;

Sk;
Sk+1;

g

?

Vector Flow Graph

Vector Assignment Tree

-

-

�

merge

Figure 4.15: Constructing a Vector Flow Graph.

Step 1: Create a vector assignment tree for each of the vector assignment
statement in L using the vector assignment tree generation algorithm.

Step 2: Create a vector ow graph G by applying the vector assignment tree
merge algorithm successively to the vector assignment trees created in
Step 1.

Figure 4.15 illustrates this process, where the vector assignment tree created from the
statement Sk+1 is merged into the vector ow graph created from the statements S1, S2, : : : ,
Sk.

Pipeline Network Graph

A pipeline network graph is an abstract network graph that reects the logical con�guration
of a machine model. It can be directly implemented on the logical vector machine model.
Figure 4.16 shows an example pipeline network graph. Figure 4.17 is a simpli�ed graph.
In these graphs, FADD is a pipeline oating-point adder module with 5 pipeline stages,
FMUL is a pipeline oating-point multiplier module with 4 pipeline stages, and PDLY is
a programmable delay module programmed for 4 stages. Both of the graphs represent the
pipeline network for the following computations:

55

@@ �� @@ �� @@ ��

?? ?

? ?

?
�� @@

a[i] b[i] c[i]

FMUL PDLY

FADD

x[i]

Figure 4.16: An Example Pipeline Network Graph.

56

@@ �� @@ �� @@ ��

? ? ?
4 4

5
? ?

?
�� @@

a[i] b[i] c[i]

x[i]

FMUL PDLY

FADD

Figure 4.17: A Simpli�ed Pipeline Network Graph.

vector for (i = 1; i <= 100; i++)
f

x[i] = a[i] � b[i] + c[i];
g

The vector ow graph generated from this vector for loop is shown in Figure 4.18.

The di�erence between the vector ow graph and the pipeline network graph is the
existence of the delay module in the pipeline network. The vector ow graph is a syntax tree
of the statements in the vector for loop and represents the dependencies of data, whereas
the pipeline network graph represents the data ows through the pipeline. In order to obtain
the pipeline network graph for a given vector for loop or its vector ow graph, a procedure
is required to insert the delays to synchronize the data ows. The synchronous data ow
is essential to pipeline processing. In order to keep the consistency in pipeline processing,
all the paths from an input to an output must include the same number of pipeline stages.
Delay insertion is required to make all the data go through the same number of pipeline
stages.

Delay Insertion

Delay insertion is a transformation on a vector ow graph to obtain a pipeline network graph
that is directly implementable on the logical vector machine model.

57

@@ �� @@ �� @@ ��

�� @@

? ?�

�
	�

�

�
	+

? ?

?

a[i] b[i] c[i]

x[i]

Figure 4.18: A Vector Flow Graph.

@@ @@ @@ @@ @@�� �� �� �� ��

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

3 3 3 3 3

2 2 2 2 2

a wavefront

a wavefront

Figure 4.19: Wavefronts in Pipeline.

58

A set of data owing through the pipeline network at the same time is called a wavefront.
A wavefront consists of data (vector elements) that came out of input nodes at the same
time. We can de�ne the validity of the pipeline network using the wavefront. Assume that
all the data of a wavefront are in input modules at cycle 0. We say that a wavefront is
at the (pipeline) stage k if all the data of the wavefront are at the stage k. The pipeline
network is valid if a wavefront is at the stage k at cycle k; otherwise, it is invalid. If the
pipeline network is valid, then data in a wavefront reach the output nodes at the same time.
Figure 4.19 shows wavefronts.

Coming out of the input nodes, a wavefront reaches the operation nodes connected from
the input nodes through their outgoing edges. Then it propagates through the operation
nodes and go to the next operation nodes through the connected edges. Since di�erent
operation nodes may have di�erent delays, some data of the wavefront may come out of the
operation nodes and the others stay at the operation nodes. As long as the pipeline network
is valid, however, the wavefront should be at the stage k at cycle k.

The following delay insertion algorithm makes the pipeline network valid.

[Delay Insertion Algorithm]

Input: a vector ow graph G

Output: a pipeline network graph P

Procedure:

Step 1: Assign the delay to each operation node in G. The delay is the number
of stages in the pipeline formed in the operation node.

Step 2: From each input node, follow all the edges and nodes on the path(s)
to the output module(s) in the breadth-�rst fashion. Assign 0 to all
the outgoing edges of all the input nodes. Follow the outgoing edges
of the input nodes.

Let Nin(i) be the number of incoming edges of the operation node vi.
Similarly, let Nout(i) be the number of outgoing edges of the operation
node vi.

Step 2a: At each operation node vi:

Step 2a-1: If Nin = 1, then A(i) = the value assigned to the incoming edge.

Step 2a-2: If Nin > 1, then A(i) = the max of the values assigned to the incoming
edges.

Step 2a-3: If Nin > 1, for each edge whose assigned value (x) is less than A(i),
insert the delay node of A(i)� x in the middle of the edge.

59

@@ @@ @@ @@�� �� �� ��

4

3

5

3

2

3

HHH��
�

HHH��
�

HHH��
�

HHH��
�

HHH��
�

HHH��
� Inserted Delay

? ?
?

?? ? ?

? ?

? ?

? ?

�� @@

�� @@

�� @@

�� ��@@ @@

0 0 0 0 0

4
2 2

7 5

12 12

15

(4) (2)

(5)

(7)

(3)

Figure 4.20: An Example of Delay Insertion.

Step 2b: At each outgoing edge of the operation node vi, assign d+A(i) to it,
where d is the delay of the operation node vi.

Step 2c: Follow each outgoing edge of the operation node vi and repeat Step
(2a) until it reaches the output node.

Step 3: Compare all the values assigned to the edges going to the output nodes
and take the maximum as M . Then insert the delay of M � v on each
of the edges with the value v.

Figure 4.20 shows an example of delay insertion, where �ve delays are inserted.

In the above-mentioned algorithm, a delay is inserted so that each operation node receives

60

its operands in the same wavefront. Since all the operation nodes receive their operands in
the same wavefront in the transformed graph, it is a valid pipeline network.

Vector Reductions

A general vector-reduction function g is de�ned by

g : V1 � V2 � � � � � Vk ! S; (4:39)

where g is a k-ary function, Vi for i = 1; 2; : : : ; k are vectors, and S is a scalar. For instance,
the inner product is a binary vector-reduction function (k = 2). Here we consider only the
unary vector-reduction function f , that is,

f : V ! S: (4:40)

Let v be a vector with n elements. Consider the vector-reduction of the form:

x = v1 � v2 � � � � � vn; (4:41)

where � is a binary operator de�ned by f . It can be programmed as follows:

x = v[1];
for (i = 1; i < N ; i++)
f

x = x � v[i];
g

where x is a scalar variable.

If the operation module for � has k pipeline stages in it, then the program can be rewritten
as follows:

x[0] = x[�1] = � � � = x[�(k � 1)] = a;
vector for (i = 1; i < N ; i++)
f

x[i] = x[i� k] � v[i];
g
z = x[N � 1] � x[N � 2] � � � � � x[N � k];

61

where a � x = x for any x. In this program, x[N � j] for 1 � k is given by

x[N � j] = v[N � j] � v[N � j � k] � v[N � j � 2k] � � � � : (4:42)

Because of the k pipeline stages in the operation module, the last k elements of the vector
x have to be added up with � after the vector for loop. This vector for loop can be
implemented with a feedback path as shown in Figure 4.21.

If there are k similar statements in the vector for loop, then

x1 = v1[1];
:

xk = vk[1];
for (i = 1; i < N ; i++)
f

x1 = x1 � v1[i];
:

xk = xk � vk[i];
g

In this case, k independent statements are alternately processed in the same pipeline. If there
are fewer indenpendent statemenst, we can add dummy statements. Then the performance
of the pipeline is bounded by the number of actual data items per group of k data items, as
discussed in the previous chapter.

Linear Recurrences

An m-th order linear recurrence system of n equations R < n;m > is de�ned for m � n� 1
by

xi = 0 for i � 0; (4.43)

xi = ci +
i�1X

j=i�m

aijxj for 1 � i � n: (4.44)

It has the form

xi = ci + ai;i�mxi�m + ai;i�m+1xi�m+1 + � � �+ ai;i�1xi�1 for i = 1;2; : : : ; n: (4:45)

For example, an R < 5; 2 > system has the form

x1 = c1; (4.46)

62

@@ ��

?
�� @@

??

u

v[i]

x[i] = x[i� k] � v[i]

�1

2

:

k � 1

k

k + 1

Figure 4.21: A Pipeline Network for Vector Reduction.

63

x2 = c2 + a21x1; (4.47)

x3 = c3 + a31x1 + a32x2; (4.48)

x4 = c4 + a42x2 + a43x3; (4.49)

x5 = c5 + a53x3 + a54x4: (4.50)

Ifm = n�1, the system is called a general linear recurrence system and denoted byR < n >.

Consider the following program segment

/* c > 0 */
for (i = c+ 1; i < N ; i++)
f

x[i] = a[i] � x[i� c];
g

where � denotes some arithmetic operation. In this assignment statement, the i-th element
of the vector x is computed using the (i � c)-th element of the same vector. Because of
this dependency, x[i] can not be computed until x[i� c] is computed. We assume that the
operation module for the operation � has k pipeline stages in it.

If k < c, then the pipeline network can be con�gured with a feedback path and a delay.
For example, consider

vector for (i = 6; i < 100; i++)
f

x[i] = a[i] � x[i� 5];
g

If the operation module that performs � has 3 pipeline stages in it, it can be computed with
the pipeline network graph shown in Figure 4.22, which shows a snap shot at i = 15.

In the case of k < c, we can con�gure the pipeline network without a feedback path as
shown in Figure 4.23. Since k < c, x[i] can be computed with a[i] and x[i� c], both read
from the VRs, and stored into the VRs.

If k � c, then we need to rewrite the program by rewriting the vector assignment state-
ment. x[i] can be expressed as follows:

x[i] = a[i] � a[i� c] � x[i� 2c];
x[i] = a[i] � a[i� c] � a[i� 2c] � x[i� 3c];
� � �
x[i] = a[i] � � � � � a[i� (t� 1)c] � x[i� tc];
� � �

64

@@ ��

�� @@

??

?
u

?

a[i]

x[i]

�

delay

x[i] = a[i] � x[i� 5]

i = 10

i = 11

i = 12

i = 13

i = 14

i = 15

Figure 4.22: A Pipeline Network for Recurrence.

65

@@ �� @@ ��

�� @@

? ?

?

a[i] x[i� c]

x[i]

k-Stage Pipeline (k < c)

Figure 4.23: Another Pipeline Network for Recurrence.

Choose the smallest value of t such that k < tc. Then x[c+1], x[c+2], : : : , x[tc] have to be
precomputed before the vector for loop. As an example, consider

for (i = 4; i < 100; i++)
f
x[i] = a[i] � x[i� 3];
g

If the operation module for � has 7 pipeline stages in it, then the loop is rewritten as follows:

x[4] = a[4] � x[1];
x[5] = a[5] � x[2];
� � �
x[9] = a[9] � x[6];
vector for (i = 10; i < 100; i++)
f
x[i] = a0[i] � x[i� 9];
g

where a0[i] is assumed to be precomputed by

a0[i] = a[i] � a[i� 3] � a[i� 9].

66

?
�� @@

? ?

i � c

i� c+ 1

i� c+ 2

i� 1

dummy

dummy

i

i+ 1

:

i+ c� 1

dummy

i + c

i+ c+ 1

u k-Stage Pipeline

c actual data items

k � c dummy data items

a group of k data items

Figure 4.24: A Pipeline Network with Dummy Data.

67

Then we can apply the method for k < c to the transformed vector for loop.

Another way to handle the case of k � c is to insert k � c dummy statements in the
vector for loop so that x[i] can be computed with x[i� c] after x[i� c] has been computed.
This method requires groups of k data items, including c actual data items and k�c dummy
data items. In processing each group of k data items, x[i], x[i+ 1], x[i+ 2], : : : , x[i+ c� 1]
are computed. This is illustrated in Figure 4.24. As discussed in the previous chapter, the
pipeline performance is bounded by c < k in this case.

68

In this chapter, we propose a computing system architecture, called the Dynamically Recon-

�gurable Architecture or DRA, for the target class of real-time computing. We focus on the
major architectural features.

The DRA system consists of the following system components:

� Scalar Processor Unit (SPU)
� Vector Processor Unit (VPU)
� Global Memory Unit (GMU)
� Input/Output Units (IOUs)

The SPU is an autonomous processor unit that performs scalar operations and system
control operations. The VPU is a semi-autonomous processor unit that performs vector
operations under the control of the SPU. The GMU is a memory unit that stores input,
intermediate, and output data. The IOUs are the units for input and output operations.

As shown in Figure 5.1, these system components are interconnected via four system
buses. Two of them are used to transfer data between the GMU and IOUs; the other two
buses are used to transfer data between the GMU and the VPU. Four system buses allow
the system to perform input/output operations and vector operations at the same time.
Each bus can be used for any type of data transfer operation. In one of the typical system
activities, the following data transfer operations might be performed in parallel:

� IOU to GMU: real-time data input
� GMU to IOU: real-time data display
� GMU to VPU: inputs for vector computations
� VPU to GMU: results of vector computations

69

SPU VPU

GMU

IOU IOU

4 Memory Buses

Figure 5.1: DRA System Structure.

IOU

GMU

IOU

6

6

?

6

6

VPU

?

?
Input Output

Figure 5.2: DRA System-Wide Pipelines.

70

The capability of these four parallel data transfer operations enables the system to operate
globally in pipeline. This system-wide pipeline consists of �ve stages: the �rst stage for real-
time data input, the second for vector data input, the third for vector computations, the
fourth for vector data output, and the �fth for result data output, as shown in Figure 5.2.

In general, the time spent for each data transfer operation is proportional to the number
of data (input real-time data); that is, O(n), where n is the number of data. However, the
time spent for vector computations is not necessarily in proportion to n. Although it depends
on the algorithms and the available resources, in many complex vector computations, it is
O(n log n) or O(n2), which is larger than O(n). In such a case, data transfer operations
terminate before vector computations �nish, if they start at the same time.

When we design a DRA system for a speci�c real-time application in the target class,
the time period of this system-wide pipeline is upper-bounded by the cycle time of periodic
real-time data input, which is the maximum time allowed for data transfer operations and
vector computations at the pipeline stages.

The Scalar Processor Unit or SPU performs scalar operations and controls the other system
components. It consists of the Scalar Memory Unit (SMU) and the Scalar Execution Unit
(SXU), as shown in Figure 5.3. The SXU is an autonomous processor that executes programs
stored in the SMU. It reads machine instructions from the SMU and executes them. Data
referenced by an instruction are also fetched from the SMU and the results of the instruction
execution are stored back to it. Data can be moved back and forth between the SMU and
the GMU by a DMA-like operation.

The SPU controls the other components through its control interface (control address and
control data) as shown in Figure 5.3. The control address is the address of the location to
access, and the control data is the data to send to the location or to receive from the location.
Control addresses are uniquely assigned to the various locations for control in the system
components. This interface is used to initiate vector operations in the VPU. As illustrated
in Figure 5.4, in a typical case, the SPU �rst prepares for a vector operation (Vi) in the VPU
(Ci) and then initiates the VPU using the control interface. After the VPU starts performing
the vector operation, the SPU does its own scalar task (S). When the VPU terminates the
vector operation, it signals the termination to the SPU by INT (interruption). The SPU
prepares for the next vector operation (Vi+1) and repeats the process.

The SPU can be a single-processor unit that contains a CPU (SXU) and a main memory
(SMU). It requires nothing special for the DRA and can be built with a commercial (RISC)
microprocessor.

71

SMU

SXU

? ?

6
CAR CDR

Control
Address

Control
Data

SPU

Memory Buses

Figure 5.3: SPU Structure.

C1 S C2 S C3 S

V1 V2 V3

SPU

VPU

? ? ?
6 6 6

Activate Activate ActivateINT INT INT

S: Scalar Operation
Ci: Control Operation for Vi
Vi: Vector Operation
INT: Interrupt

Figure 5.4: SPU and VPU Operations.

72

SPU VCU

VXU

VMU

-

-

-

6

?

6

?

Memory Buses

VPU

Figure 5.5: VPU Structure.

The Vector Processor Unit or VPU performs vector operations in pipeline under the control
of the SPU. It consists of the Vector Memory Unit (VMU), the Vector Execution Unit
(VXU), and the Vector Control Unit (VCU), as shown in Figure 5.5.

The VMU stores vector data, input, intermediate, and output. As shown in Figure 5.6, it
consists of four vector memory blocks so that four types of memory access can be performed
in parallel. Each memory block can process memory access requests independently. In
Figure 5.6, VMB0 is used for write from one of the memory buses, VMB1 for read to one of
the memory buses, VMB2 for read to the VXU, and VMB3 for write from the VXU. These
four types of memory access activities may continue, but the memory blocks used for each
memory access type may change. For example, at the next stage after the vector operation
terminates in the VXU, VMB0 may be used for read to the VXU, VMB1 for write from the
VXU, VMB2 for write from a memory bus, and VMB3 for read to a memory bus in the next
stage.

As shown in Figure 5.7, the VCU contains a control register (CR) that holds a very
long instruction to control the vector operations in the VXU. A sequence of instructions is
read into the control register from the control memory (CM) and sets up for a vector oper-
ation to be performed in the VXU. The instruction sequence is controlled by the sequencer
(SEQ). When the instruction sequence terminates with a halt operation, the formation of the
computation network in the VXU is complete and ready. The SPU speci�es the sequence
of instructions corresponding to a vector operation by giving the CM address of the �rst
instruction in the sequence, and then activates the sequencer. The last instruction of the

73

VMU

VMB0 VMB1 VMB2 VMB3

VXU

Memory Buses

?

6

?

6

VMBi: Vector Memory Block i

Figure 5.6: VMU Structure.

VCU

VXU

CR

CM (Control Memory)SEQ -

?

? ? ? ? ? ? ? ?

ACT

Figure 5.7: VCU Structure.

74

GMU

MC0 MC1 MC2 MC3

MB0 MB1 MB2 MB3

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

Memory Buses

Figure 5.8: GMU Structure.

sequence contains the halt operation, which inactivates the sequencer and signals it to the
SPU. The SPU checks to see that the sequence of instructions successfully terminates and
then activates the vector operation by turning on the activation ag in the activation control
register (ACT). The termination of a vector operation turns o� the activation ag in the
activation control register and signals it to the SPU by interrupt.

The design spectrum of the VCU is large. One end in the design spectrum is a single
instruction per one vector operation. In this case, the instruction contains the control �elds
for all the components in the computation network, and it stays active until the vector
operation terminates. The other end in the design spectrum is some encoding of multiple
control functions into one �eld of the instruction. In this case, there are types of instruction,
and the separate registers are required to hold the control data that are active during the
vector operation. In order to reduce the setup time for a vector operation, some design
inclined towards the �rst end is desirable.

The VXU is the execution unit of vector operations, where the computation network is
organized.

75

SPU

AR

IR

MBi

?

?

? ?

-

-
-

Memory Address

?
@@ ��

@
@
@
@@

�
�

�
��

u

u

+

Figure 5.9: GMU Address Generator.

The Global Memory Unit or GMU is a system-wide memory unit and connected to the four
memory buses. It is accessed from the other system components. As depicted in Figure 5.8,
it consists of four memory banks (MB0 through MB3); each bank is equipped with an access
controller (MCi) and can be accessed independently so that four data transfer operations,
each associated with a memory bank, can be performed in parallel.

Most of data transfer operations from/to the GMU involve a relatively large quantity of
data (vector data) that are stored regularly. A memory address generator is attached to each
memory bank to support a DMA-like operation. It is illustrated in Figure 5.9, the register
AR holds the current memory address and the register IR holds the address increment to be
added to the value in AR for the next memory location. With this address generator, the
memory address is automatically updated every time a memory request is received.

The Input/Output Units or IOUs are the input and/or output units. They depend heavily
on the I/O requirements. One of the input units is an input unit that takes real-time data
at a certain interval. It bu�ers real-time data and transfers them to a memory bank in the

76

GMU via one of the memory buses. One of the output units may be an output unit that
sends data to a display. It reads data from a memory bank in the GMU through one of the
memory buses.

Other possible IOUs include a communication unit, a system diagnostic unit, a disk con-
trol unit, a program loading unit, and so forth. The communication unit handles serial-line
communications, network-based communications, etc. The system diagnostic unit provides
a means for diagnosing the system components. The disk control unit controls one or more
disks. The program loading unit is a unit for loading programs from outside the system,
when the system is embedded without disks.

The computation network formed in the VXU consists of functional modules. Basic func-
tional modules are as follows:

� Input Module
� Output Module
� Arithmetic-Logic Module
� Register Module
� Delay Module
� Shift Module
� Multiply Module

The input module reads vector data, element by element, from the VMU (Vector Memory
Unit). Figure 5.10 shows the structure of the input module. It contains an address generator
that can successively generate linear addresses in the form b+i�s, where b is the base address,
i the vector index, and s the stride between vector data. The current memory address is
held in the register MR, and the address stride in the register SR. It also contains the data
counter, which counts the number of vector elements to read. The VMU takes the memory
address stored in MR, reads the vector element at that location into the data register DR.
The current data count is kept in the register CR. When the data count becomes zero, it
will be signalled to the VCU.

The output module stores the output stream of vector data into the VMU. Its structure
is shown in Figure 5.11. It contains an address generator and a data counter, both of which
are similar to those in the input module. It also contains a stage counter and the activation
control. The stage counter initially holds the number of stages through which data ow
from an input module to an output module, and counts down every cycle after the input
module starts reading data from the VMU. After the number of cycles held in that counter,
the output module starts writing the result into the VMU. This is because it takes time

77

Switching Network

VCU VMU

CR SR MR

+ +

DR

IM

-

?

?

?

?

?

?

?

?

?

6

?

?

u u

u

Zero

-1

Data
Counter

Address
Generator

Figure 5.10: Input Module.

78

VCU Switching Network

VMU

Activation

Control

Stage

Control

Data

Counter

Address

Generator

MR DR

?

?

? ?

?

OM

Figure 5.11: Output Module.

79

VMU - - - - --

IM FM FM FM OM

1 2 3 4 5

(a) 5-Stage Pipeline.

Stage 1
Stage 2
Stage 3
Stage 4
Stage 5

1 2 3 4 5 6 7 8 9 10 11 12

D1
D1

D1
D1

D1

D2
D2

D2
D2

D2

D3
D3

D3
D3

D3

D4
D4

D4
D4

D4

D5
D5

D5
D5

D5

Start Stop

Start Stop
IM

OM

Active

Active

(b) 5-Stage Pipeline Flow.

Figure 5.12: Pipeline Start/Stop Control.

for the �rst data read by the input module to propagate through the pipeline. When the
value in the stage counter becomes zero, implying that the �rst result has reached to the
output module, the output module stores the data in the data register DR into the VMU.
The activation control is for the activation/deactivation of the write operations.

The activation/deactivation control of the pipeline is illustrated in Figure 5.12. Fig-
ure 5.12(a) shows an example �ve-stage pipeline. The input module is at the �rst stage, the
output module at the �fth stage, and between the �rst and last stages are three functional
modules. Figure 5.12(b) shows a timing chart, where six data elements (D1 through D6) ow
through the �ve-stage pipeline. The input module becomes active at time 1 and inactive at
time 8, whereas the output module becomes active at time 5 and inactive at time 12.

80

Switching Network

SR

@@ ��
@
@
@
@@

�
�

�
��

?

6

? ?

ALU
VCU -

Figure 5.13: ALU Module.

81

VCU Switching Network

SR

�
�
�
�
�
�

�
�
�
�
�
�

-

?

?

6

Shifter

Figure 5.14: Shift Module.

The arithmetic-logic module performs arithmetic and logic operations. Its structure is
shown in Figure 5.13. It takes two operands from the switching network and performs the
arithmetic or logic operation speci�ed by the VCU. The result of the operation is stored in
the staging register SR, which is connected to the switching network.

The shift module performs an arithmetic or logical shift operation. Its structure is illus-
trated in Figure 5.14. It takes the operand from the switching network and stores the result
in the staging register SR, which is connected to the switching network. The shift control
(arithmetic/logical, right/left, shift amount) comes from the VCU.

The register module contains a set of registers to provide a constant or to store an
intermediate data. Its structure is shown in Figure 5.15. The read/write control and the
register address are speci�ed by the VCU. If it is in a read mode, the data stored at the
speci�ed register is read into the staging register SR. If it is in a write mode, the data coming
from the switching network is stored into the speci�ed register. The registers can also be
used as an accumulator in a read/write mode. In one pipeline cycle, the data stored in the
register speci�ed by the read address is read into the staging register, and at the same time
the data from the switching network is stored into the register speci�ed by the write address.

82

VCU Switching Network

SR

-

?

?

6

Registers

Figure 5.15: Register Module.

83

S4R

S3R

S2R

S1R

VCU Switching Network

?

-

6

?

?

?

? ? ? ?

u

u

u

Figure 5.16: Programmable Delay Module.

84

VCU Switching Network

SHR SLR

��@@

�� @@

Multiply

H L

-

? ?

? ?

6 6

Figure 5.17: Multiply Module.

The delay module is a programmable staging register module. An example delay module
is shown in Figure 5.16, where four staging registers are contained and one of them is selected
by the VCU.

The multiply module multiplies two data. Its structure is shown in Figure 5.17. Two
operands are taken from the switching network, and the higher bits of the product are stored
in the register SHR, and the lower bits in the register SLR. Control is provided by the VCU.

Each of the basic functional modules produces results in one pipeline cycle. Functional
modules may take more than one pipeline cycle. For example, a oating-point adder and a
oating-point multiplier are multi-cycle functional modules. In order to keep the principle of
pipeline, they have to perform oating-point operations in pipeline. The design for pipelining
of oating-point arithmetic has been well known. Similarly, a divide module and a multiply
module for longer data are also multi-cycle modules that can operate in pipeline. See [83],
for example, for more detail.

There are many possible interconnections to connect functional modules [168], [1], [194].
One of the simplest interconnections is the bus-based interconnection. The number of data
buses depends on how many data transfer operations occur between functional modules at the
same time. If the number of data buses is small, all the functional modules can be connected

85

to all the data buses. However, if the number of data buses is large, it is not feasible to
connect all the functional modules to all the data buses. If data transfer operations can
be divided into groups, then a technique to cluster data buses may reduce the number of
connection points. In this case, each group of data transfer operations corresponds to each
cluster of data buses. Inter-cluster data buses are also required to carry data from one cluster
to another.

One approach to reducing the connection points between functional modules and data
buses is a time-sharing bus technique. In this technique a data bus is time-shared between
multiple data transfer operations. It requires subdivision of a pipeline cycle. If a pipeline
cycle can be divided into, say, four subcycles, then four data transfer operations can be
performed in one pipeline cycle. The implementation of this technique usually requires the
faster and expensive technology than that for the other components. It also requires a
complex timing control design.

The most general approach to interconnecting functional modules is the multi-stage in-
terconnection network, which operates in pipeline. One of its advantages is that it provides
exibility in interconnecting functional modules. One of its disadvantages is that it makes
the total length of pipeline longer. Since every data transfer operation between one func-
tional module and the other requires a certain number of pipeline stages to go through, a
long pipeline operation may be made much longer. A long pipeline is undesirable from the
viewpoint of performance if the vector length is relatively short (See Section 4.2). Therefore,
in general, it is too general for the target class of real-time applications.

A programming model of a system is a view from the programmer who develops programs
for the system. The programming model of the DRA is de�ned by the SPU, since all the
programs written for a DRA system are executed in the SPU, which controls the activities of
the other system components. All the system components controlled by the SPU are mapped
in the memory-mapped I/O space of the SPU. They are all assigned unique I/O addresses,
to which the SPU sends control data and from which the SPU receives status data.

If the SPU is built around one of the RISC microprocessors, the programs to be executed
in the SPU are written in the assembly language or high-level languages for the microproces-
sor. However, these languages do not provide any support for programming for the vector
operations in the VPU, since all the functions of the VPU are controlled via I/O commands.
It may be possible to extend the assembly language or the high-level languages so that they
can directly handle the functions of the VPU at a high level. However, it usually takes a
long time to develop such an assembler or a compiler, and in many cases some language
constructs force programmers to follow a particular style of programming, which is not nec-

86

essarily favorable to them in terms of programming e�ciency. Because of these reasons, it
is more practical and reasonable to develop libraries linked to the object codes produced by
the assembler or the high-level language compiler. The libraries are basically sequences of
I/O commands, mixed with some arithmetic instructions.

For user-level programming of vector operations in the VPU, the following three functions
can be used:

� StartVF();
� CheckVF();
� AbortVF();

where the StartVF() function starts the vector function speci�ed by its arguments, the
CheckVF() function gets the status of the current vector function executed in the VPU,
and the AbortVF() function aborts the current vector function.

The StartVF() function is an asynchronous function; it returns before the operation
terminates. The three functions are described in Figure 5.18. As shown in the �gure, all
the three functions are basically the same in structure. They �rst �nds the library function
and sets up the parameters using the template de�ned by the library function merged with
the parameters given as their arguments. Then they issue a trap to the system to transfer
control to the VPU handler through the system trap routine. The VPU handler issues I/O
commands to the VPU according to the given parameters, and obtains the status at the end
of the operations, which is returned to the program. This is illustrated in Figure 5.19.

It is very hard for a programmer to make a program to control the VPU, since the
program is basically just a sequence of I/O commands. Programming tools would help the
programmer write programs for the VPU. They include a vectorizing tool and a debugging
and performance tuning tool.

The vectorizing tool is a software tool that vectorizes a program written in a high-level
programming language like Fortran, Pascal, or C. The vectorizing techniques have been
studied in [101], [144], [5], [190]. They are based on the dependence analysis [99, Chapter
2, pp.80{186], [143], [100], [191], [52], [119]. These techniques have been incorporated into
commercial compilers [10], [199], [164], [174], [127], [40]. Based upon these techniques, the
vectorizing tool analyzes a program to �nd the dependency and transforms it to reduce the
dependency.

The debugging and performance tuning tool helps the user debug the programs written
for the VPU and enhance their execution performance. Many research e�orts have been
made around parallel programs running on asynchronous multiprocessor systems. Since no
assumption is made about the relative speed of parallel processes and their deterministic
properties, debugging logical and timing errors is very di�cult. There are two approaches

87

int StartVF(fnum, plist) /* returns the status */
int fnum; /* vector function number */
int *plist; /* parameter list */
f

Find the library function speci�ed by fnum;
Set up the parameters from the plist;
Issue a trap to the system;
(The system actually issues I/O commands to the VPU)
Return the status at the return from the trap;

g

int CheckVF(fnum) /* returns the status */
int fnum; /* vector function number */
f

Find the library function speci�ed by fnum;
Set up the parameters for status check;
Issue a trap to the system;
(The system issues I/O commands to the VPU)
Return the status at the return from the trap;

g

int AbortVF(fnum) /* returns the status */
int fnum; /* vector function number */
f

Find the library function speci�ed by fnum;
Set up the parameters for abort;
Issue a trap to the system;
(The system issues I/O commands to the VPU)
Return the status at the return from the trap;

g

Figure 5.18: StartVF(), CheckVF(), and AbortVF().

88

User Program

VF Library

Trap

Handler

VPU

Handler

VPU

xxxVF

�

-

? -

-

?�@@I?

-

?

��HH
HH��

-
-
-
-
-

command

command

command

command

command

� status

Figure 5.19: Vector Function Execution Flow.

89

to debugging parallel programs: the selective snapshot approach [18], [13], [33], and the
replay approach [32], [38], [112]. There is a uni�ed approach to program debugging and
performance tuning based on replay [135] on the BBN Buttery processor [136].

Unlike general multiprocessor systems, programs running on pipeline systems are easier
for debugging and performance tuning, because their behavior is synchronous and determin-
istic. Although some hardware mechanism for debugging and performance tuning is useful, a
simulator for the system should be enough. Since the design philosophy of the DRA includes
the avoidance of the statistical behavior, the system simulator can simulate the behavior of
the DRA system to an arbitrary accuracy. Therefore, the system simulator is also used as a
debugging and performance tuning tool for a DRA system.

In implementing a DRA system, the major design e�ort would be required to implement
the VPU, where the computation network is formed. The types and numbers of functional
modules in the VXU are the most important design parameters to determine. A general
approach to their determination is to analyze the set of applications for the DRA system
to identify the vector computations, and to determine the set of functional modules that
can be used to form the pipelines required for all the vector computations with timing
constraints. It is easy to identify the types of the functional modules (arithmetic-operation-
level computational resources) required for the vector computations. However, the numbers
of the functional module types are not necessarily easy to determine.

Suppose that a set of vector computations is given by S = fV1; V2; : : : ; Vng, where
each vector computation Vi is a pipeline sequence of arithmetic operations given by <

v1i ; v
2
i ; : : : ; v

mi

i >. The types of the functional modules can be determined from all the dif-
ferent operations found in each sequence of Vi. We number the types of functional modules
from 1 to k. Let Fi be a list of the form (f1i ; f

2

i ; : : : ; f
k
i), where f

j
i is the number of func-

tional module type j required for the vector computation Vi. Let G be a list (g1; g2; : : : ; gk),
where gj =max

n
i=1ff

j
i g. Then the list G shows the number of each functional module type

required for the set of vector computations given by S.

The pipeline sequence of arithmetic operations given by the form < v1; v2; : : : ; vm > is
a single-input single-output sequence. However, a vector computation may be a multiple-
input multiple-output sequence in a general case. Then it is represented by a graph (a
pipeline graph), as described in the previous chapter. But the number of each functional
module type can be computed in the same way as before. Therefore, for a given set of
vector computations, each represented by a pipeline graph, we can identify all the types of
functional modules and compute the number of each type with a relatively simple method.

If a single vector computation requires a large set of computational resources, it needs to

90

be divided into smaller vector computations so that the total number of functional modules
can be reduced. It is not obvious to divide a vector computation to optimize the number of
functional modules; it is an optimization problem. Some research work is required to address
this problem, which is beyond the scope of our work. If a large vector computation is critical
for the application, it is sometimes very di�cult to divide it because of timing requirements.
Then it has to be implemented anyway, no matter how many functional modules are required
and no matter how ine�cient they are in terms of usage.

The interconnections of the functional modules are also an important design problem. A
cross-bar switch can provide all the possible interconnections for a given set of functional
modules, but it is very expensive. The analysis of the pipelines formed for the vector com-
putations may reduce the complexity of the interconnections. When the number of possible
interconnections are relatively small, then multiple data buses can be used to connect func-
tional modules. Data buses are a relatively cheap solution. If the interconnections can be
divided into some groups, then clusters of data buses may be useful. In general, some form
of switching network is chosen depending on the interconnection requirements. There is no
well-known method to give a switching network for a given set of interconnections. Exploring
this method also requires some research e�ort.

There would be variations in the system-level structure. The basic system structure is
built around four memory banks and four data buses so that four data transfer operations can
be performed in parallel. Some applications may require an extra data transfer operation,
for example, for communications with the other computing systems. Other applications
may need more memories and data buses for extra input and/or output. Since the basic
principle in the design of a DRA system is to keep the system-level pipeline in order to ow
a large amount of data without any blockage, all the variations must be implemented to keep
this principle. As long as the principle is kept in design, system-level pipeline processing is
guaranteed.

When a real-time application contains a large set of vector computations, it is very
di�cult to design a system manually. A possible useful tool might be a design tool to help
a system designer design the computation network for a given set of vector computations by
computing the types and numbers of functional modules and giving their interconnections.
Some research work is required to explore such a design tool.

Since all the vector computations are performed with pipelines formed in the computation
network, their performance is predicted as described in Section 4.2 (Performance Models).
If the application is composed of vector computations and a small amount of glue scalar
operations, its performance is predicted to be high. However, if the application contains
many scalar operations, then its performance is not expected to be high in general, because
of Amdahl's law. If scalar operations in the SPU can be overlapped with vector opera-
tions in the VPU, the performance will not be degraded much. Conversely, as many scalar

91

operations as possible need to be performed in parallel with vector operations in order to
avoid the performance degradation. The performance models described in Section 4.2 give a
general guideline for the performance design of the application mixed with scalar and vector
computations.

The execution model described in Section 4.3 serves as a theoretical model for multiple
pipelines, on which the proposed new architecture is based, and has shown that a pipeline
can be con�gured for a given vector operation. It also has shown the techniques for vector
reductions and linear recurrences with some restrictions. The described techniques would
be used to build a tool to automate the pipeline design process. For a given computation
network, the tool would map a vector operation onto a pipeline.

92

This chapter presents the MSP (Mitsubishi Signal Processor), an example implementation of
the Dynamically Recon�gurable Architecture or DRA, which was designed as an experimental
real-time signal processor primarily for high-speed real-time radar signal processing [134],
[137], [138], [139].

The MSP is an instance of the DRA system. Its structure is illustrated in Figure 6.1. The
GMU (Global Memory Unit) is the system-wide memory unit that stores real-time input
data, intermediate data, and result data. The CPU (Control Processor Unit) is the scalar
processor that controls the other system components. It contains the PMU (Program Mem-
ory Unit) and PCU (Program Control Unit). The PMU stores programs to execute, and
the PCU executes the programs. The APU (Array Processor Unit) is the vector processor
that performs vector operations. It contains the DMU (Data Memory Unit) and the DPU
(Data Processor Unit). The DMU stores vector data and the DPU performs vector opera-
tions with the dynamically recon�gured computation network under the control of the CPU.
The XIU (External Interface Unit) provides the interface to the outside world. The IOUs
(Input/Output Units) are the input/output units. The M-Bundle consists of four data buses
and connects the GMU, the CPU, the APU, and the XIU, which are also connected via the
C-Bundle consisting of two control buses. The IO-Bundle consists of two data buses and
connects the XIU and the IOUs.

The main data handled by the MSP are 24-bit integers and 24-bit complex data with
12-bit integer real and imaginary parts. The MSP does not handle oating-point data. The
data buses in the M-Bundle and IO-bundle are all 24 bits wide. The internal structures of
the APU and the CPU are also 24 bits wide.

93

CPU

PCU

PMU

APU

DPU

DMU
XIU

IOU IOU

GMU

M-Bundle

C-Bundle

IO-Bundle

Figure 6.1: MSP Structure.

94

RM

RR

RI

0 8 12 14 23

0 8 12 14 23

0 8 12 23

OP R1 B2 D2

OP R1 0 0 R2

OP R1 I2

�
�
�

�
�
�
��

Figure 6.2: MSP Instruction Formats.

The CPU is an implementation of the SPU (Scalar Processor Unit) of the DRA. The LMEM
is a logical memory local to the CPU and stores programs and data. It is implemented in
the PMU. It is accessed on the basis of 24-bit data.

There are four types of registers:

� 16 general registers (GR0-F);
� four base registers (BR0-3);
� four control registers (CR0-3); and
� the program status register (PSR).

The general registers GR0-F are used to hold intermediate data and two of them (GR0-1)
are also used to as index registers. The base registers BR0-3 are used to store base addresses
for memory accesses. The base register 0 (BR0) always contains the base address for instruc-
tion fetch. The control registers CR0-3 hold system control data including interrupt control
bits and address search data. The program status register PSR is 48 bits long and holds the
instruction address, operation status, interrupt masks, interrupt levels, and so forth.

The machine instructions executed in the CPU are all 24 bits long and categorized into
three format types:

95

� RM (Register-Memory) format;
� RR (Register-Register) format; and
� RI (Register-Immediate) format.

These three formats are illustrated in Figure 6.2. The instruction �elds are as follows:

� OP (bits 0-7): operation code;
� R1 (bits 8-11): general register for the �rst operand;
� B2 (bits 12-13): base register for the second operand;
� D2 (bits 14-23): address displacement for the second operand;
� R2 (bits 20-23): general register for the second operand;
� I2 (bits 12-23): immediate data used as the second operand.

The �rst operand is stored in the general register speci�ed by the R1 �eld, where the
result of the operation is also written. The second operand is stored at the LMEM location
pointed by the base register speci�ed by the B2 �eld and the displacement speci�ed by the
D2 �eld in the RM format, stored in the general register speci�ed by the R2 �eld in the RR
format, or is the value of the I2 �eld in the RI format.

The memory address generations for the second operand in the RM format, the branch
target address in the RM format, and the next instruction address are shown in Figure 6.3.
The generated memory addresses are all 16-bit addresses of the LMEM. The second operand
address in the RM instruction is formed by adding the displacement in the D2 �eld to the
address held in the base register speci�ed by the B2 �eld. Three base registers BR1-3 are
available for the second operand. The branch target address in the RM instruction is formed
by adding the displacement in the D2 �eld to the address stored in the base register 0
(BR0). The instruction address used to fetch the next instruction is formed by adding the
value stored in the base register 0 (BR0) to the value in the instruction address �eld of the
program status register (PSR). The base register 0 (BR0) always holds the current program
base address. The value kept in the PSR is relative to the base address in the BR0.

The LMEM is a memory local to the CPU. Data and programs can be transferred back
and forth between the global memory (GMEM) in the GMU and the LMEM by the LDL
(Load Local Memory) and STG (Store Global Memory) instructions. The LDL instruc-
tion loads data/programs from the GMEM to the LMEM; the STG instruction stores data
from the LMEM to the GMEM. Both of the instructions move the speci�ed amount of
data/programs in the manner similar to the DMA operation. Both instructions are of the
RM type, and their second operand speci�es the parameter list of four words to control the
data transfer operation. The parameter list includes

� GAI: GMEM Address Increments;
� GSA: GMEM Start Address;

96

OP R1 B2 D2
14 23

- m+ - (BRi) + D2

? BR1/2/3

0 8 23

6

(a) Operand Address Generation.

OP R1 B2 D2
14 23

- m+ - (BR0) + D2

BR0
0 8 23

6

(b) Branch Address Generation.

BR0
0 8 23

- m+ - (BR0) + IA
PSR (IA)

0 8 23

6

(c) Instruction Address Generation.

Figure 6.3: MSP Address Generations.

97

� LSA: LMEM Start Address; and
� WC: Word Count.

This parameter list enables the LDL and STG instructions to access the GMEM area
represented by GSA + i � GAI (i = 0; 1; 2; : : : ;WC � 1). The data transfer operation
initiated by these instructions is performed in parallel with the execution of the subsequent
instructions and terminates with an interrupt. The TST (Test) instruction can check the
status of the data transfer operation.

The structure of the CPU is shown in Figure 6.4. The CPU is a microprogram-controlled
processor. The instruction address register IAR holds the next instruction address that is
sent to the LMEM. The instruction address held in the IAR is pushed into the IA stack when
the subroutine call instruction is executed. The instruction address at the top of the stack
is loaded into the IAR when the subroutine return instruction is executed. If the subroutine
nesting is too deep for the IA stack to hold all the return addresses, the subsequent return
addresses are stored in the LMEM. When the subroutine call is executed and the IA stack
overow occurs, the overow ag is turned on, and the overow trap is raised to transfer
control to the IA stack overow routine, which stores the return address in the LMEM.
When the subroutine return instruction is executed while the overow ag is on, the trap is
raised to transfer control to the overow routine, which loads the return address from the
LMEM. If there is no more return addresses stored in the LMEM, then the overow ag is
turned o�.

The instruction read from the LMEM is loaded into the instruction register IR, where
the instruction is decoded. The instruction mapper IMAP generates the microcode entry
address for the instruction execution. The microinstructions are stored in the micro memory
and loaded into the microinstruction register MIR.

The execution section of the CPU contains a 24-bit ALU, a 24-bit shifter, and a 24-bit
data memory containing general registers. There are four data registers AR, BR, CR, and
DR. AR and BR are mainly used to hold data for some arithmetic. CR and DR are mainly
used to hold the control data (UCC and UCD) to the other system components. The unit
control command (UCC) gives the address of the unit to control; the unit control data (UCD)
gives the data to the unit. Both of them are sent through the C-Bundle. The control of the
APU is provided by the UCC and UCD.

The APU is an implementation of the Vector Processor Unit or VPU in the DRA. Figure 6.5
shows its structure. It consists of the DMU (Data Memory Unit), the DPU (Data Processor
Unit), and the DCU (Data Control Unit). The DMU, DPU, and DCU correspond to the

98

INT Cont

6

?

Data

Memory

?

?

IA

Stack

?
IAR

? ?

?
u

?

LMEM

6

u

? ?

u
??

IR

?

IMAP

?

u

?

u

- Micro

Memory

?
MIR

?@@R��	

�
�
�
��

�
�
�
��

Shift

?

@
@
@ �

�
�

AA ��

ALU

?
u

AR BR CR DR

? ? ? ? ?

?

u
?? ??

u
? ?

u u

?

? ?
u 6

AA �� AA �� �� AA

UCC UCD

Figure 6.4: CPU Structure.

99

APU

Control

DCU

Computation Network

DPU

DMU

MG0 MG1 MG2 MG3

DMM

0-3

DMM

4-7

DMM

8-11

DMM

12-15

GMUCPU

?

6

?

6

-

-

? ? ?

6 6

?

6

?

6

M-BundleC-Bundle

Figure 6.5: APU Structure.

100

DPU

DMU

MG0 MG1 MG2 MG3

GMU

? ? ?

6 6

?

6

Figure 6.6: Parallel Data Transfer Operations with DMU.

VMU (Vector Memory Unit), the VPU (Vector Processor Unit), and the VCU (Vector
Control Unit) of the DRA, respectively. The functions of the DCU are more primitive
than those of the VCU, since the CPU has more direct control over the vector computations
performed in the DPU.

As discussed in Chapter 5, the capability of parallel data transfer operations is crucial
to the system-level pipeline operations. The DMU supports the parallel vector data transfer
operations with four groups of data memories MG0 through MG3, as shown in Figure 6.6.
Each group consists of four data memories (DMMs); the total number of data memories is
16. The four groups of data memories operate independently. In Figure 6.6, MG0 supplies
vector data to the DPU; MG1 stores the vector data coming out of the DPU; MG2 stores
the input vector data from the GMU; and MG3 holds the results of vector operations, which
are stored into the GMU.

The computation network is formed in the DPU and is controlled by the CPU. The
physical structure of the DPU is shown in Figure 6.7. The DPU contains the following types
of functional modules:

� IN: Input
� OUT: Output
� PCI: Program Control Interface
� ALU: Arithmetic and Logic Unit

101

PCI IN IN IN

ALU ALU SCM DLY

ALU ALU MPY MPY MPY MPY

DLY DLY DLY DLY

ALU ALU SFT DLY

OUT OUT

Bundle A (A0-A3)

Bundle B (B0-B8)

Bundle C (C0-C3)

Figure 6.7: DPU Structure.

102

FM

CMEM

CM

CREG

-

??

-

C-Bundle

Figure 6.8: Control Module Structure.

� SFT: Shifter
� MPY: Multiplier
� SCM: Scratch Memory
� DLY: Delay

The INmodule reads vector data from the DMU. The OUTmodule writes vector data into
the DMU. The PCI module provides interface to the CPU. The ALU module performs one
24-bit integer arithmetic/logic operation or two 12-bit integer arithmetic/logic operations.
The SFT module shifts a 24-bit data left or right. The MPY module multiplies two 12-bit
integers and produces a 24-bit integer as a product. The SCM module is a scratch memory
that holds scalar data. The DLY module is a delay module that contains a staging register.

The DPU consists of the three subnetworks of functional modules. The subnetwork A
contains one PCI, three DINs, two ALUs, one SCM, and one DLY, which are all connected
via the Bundle A (Buses A0-A3). The subnetwork B contains two ALUs, four MPYs, and
four DLYs, which are all connected via the Bundle B (Buses B0-B8). The subnetwork C
contains two ALUs, one SFT, one DLY, and two DOUTs, which are all connected via the
Bundle C (Buses C0-C3). Each of the data buses consists of two 12-bit data buses. It is
usually used a single 24-bit bus; it can be separated into two 12-bit buses when 12-bit real
and 12-bit imaginary parts of 24-bit complex data are handled separately.

103

ALU MPY

CM for ALU

CREG

CD

CMEM

-

?

-

CM for MPY

CREG

CD

CMEM

-

?

-

u CMEM Address

Computation Network

Figure 6.9: Computation Network Con�guration Control.

104

��
��
�

��
��
�

��
��
�

��
��
�

z�1

z�1

��
�

HHH

��
�

HHH
HH

H
���

HH
H

���

C

D

A

Bu

u

u- -
+

+

+
+

Wn

Wn�1

Wn�2

+
+

+
+

Xn Yn

Figure 6.10: 2nd-Order IIR Filter.

In the MSP, a control module is associated with each functional module. Its structure
is shown in Figure 6.8. It contains the CMEM (control memory) and the CREG (control
register). The CREG holds the control data (CD) for the corresponding functional module
during a vector operation. The CMEM stores a set of control data. The address of a CD to
load into the CREG is speci�ed by the CPU through the C-Bundle. In switching from one
vector operation to the other, a CD is loaded from the CMEM into the CREG. The CPU
can directly load a CD into the CREG via the C-Bundle.

The con�guration of the computation network is controlled collectively by the control
modules, as illustrated in Figure 6.9. In order to reduce the setup time for a vector compu-
tation, a single CMEM address, associated with a vector computation, is provided to all the
CMEMs by the CPU. All the CMEMs read a CD at the location speci�ed by the address
and load it into the CREGs. It takes only a single step to load CDs required to set up the
computation network. Thus, all the CDs at a CMEM location collectively form a single long
instruction to control the computation network, as discussed in the previous chapter.

We show the 2nd-order IIR �lter operation as an example vector computation to demonstrate
how the computation network works.

105

The 2nd-order IIR �lter can be de�ned by

H(z) =
z2 +A � z +B

z2 � C � z �D
: (6:1)

This is illustrated in Figure 6.10. Its computation is given by

Wn = Xn + C �Wn�1 +D �Wn�2 ; (6.2)

Yn = Wn +A �Wn�1 +B �Wn�2 : (6.3)

This computation requires two additions and two multiplications for Wn and another
two additions and two multiplications for Yn. Since the computation network of the MSP
includes six ALUs and four multipliers, the computational resources are enough to compute
Wn and Yn at one time. However, they can not be computed at one time because there
are fewer data buses in the MSP computation network than required. Therefore, Wn and
Yn must be computed separately. Figure 6.11 shows two network con�gurations: the left
network for Wn and the right for Yn. It also shows the data bus assignments. All the values
of Wn are �rst computed with the left network in Figure 6.11 and stored in memory. Then,
the values of Yn are computed with the stored values of Wn through the right network in
Figure 6.11.

Since the equation ofWn is a form of linear recurrence, the computation network contains
a feedback loop. It takes two clock cycles to produce each value of Wn in the network; each
value ofWn is produced at every other clock cycle. It is due to the fact that add and multiply
take two pipeline stages. However, once all the values for Wn are computed and stored in
memory, the values of Yn are computed at the full speed, that is, each value is produced at
every clock cycle.

In these networks, all the constants (A, B, C, and D) are read from memory through
the IN modules. The address generator of each IN module generates the same address
pointing to the location where the constant is stored during the computation. The input
data Xn are stored as a vector in memory and read by the IN module with the address
generator incrementing the address at each clock cycle. The values of Wn, produced by the
left network in Figure 6.11, are stored as a vector in memory and read by the IN module in
the computation of Yn. Since the address generator in the OUT module for Wn updates the
memory address by incrementing it by 1 at every clock cycle, the actual values of Wn are
stored in alternating positions in the output vector. They are accessed by the IN module
with the address generator incrementing the address by 2 so that each value of Wn can be
read at every clock cycle in the computation of Yn.

106

C D Xn

IN IN IN

ALU ALU DLY

MPY DLY

ALU

MPY MPY

ALU

DLY

OUT

Wn

? ? ?? ?
0 0

?

? ??

? ?

??
u

? ?

?
u

?

A1 A2 A0

B3 B7 B8

B5 B6

B4

B1 B2

B0

C0

(a) Network for Wn

Wn B A

IN IN IN

ALU ALU DLY

DLY

MPY MPY

ALU

ALU

OUT

DLY

Yn

? ? ?? ?
0 0

?

? ?

?

u

??

? ?

?

?

?

u

A0 A1 A2

B4 B5 B6

B7

B3

B1 B2

B0

C0

(b) Network for Yn

Figure 6.11: Networks for 2nd-Order IIR Filter.

107

The analysis of the operations in the real-time signal processing applications revealed that
the signi�cant amount of time would be spent on FFT computations. In order to accelerate
the speed of FFT computations, the MSP employed a special computation scheme based on
the dynamically recon�gurable computation network.

Consider a radix-2 FFT algorithm for n data. A radix-2 FFT algorithm has many
variations as described in [176]. They di�er in computational geometry. The version of
the algorithm used in the MSP is shown in Figure 6.12. It is a DIT (Decimation in Time)
algorithm that requires a simple data addressing scheme without the bit reverse operation.
As shown in Figure 6.12, FFT is computed through \passes." For 2n data, FFT is computed
through log n passes, each pass containing n=2 butteries. The total number of butteries
amount to (n=2) � log n.

A FFT buttery (DIT) is de�ned by

P 0 = P +Q �W; (6.4)

Q0 = P �Q �W; (6.5)

where P and Q are input data, W is a twiddle factor, and P 0 and Q0 are output data (all
the data are complex).

Figure 6.13 shows the network for the radix-2 buttery computation for FFT. It consists
of three INs, two OUTs, six ALUs, four MPYs, and three DLYs. Each of two ALUs following
the INs is used as a delay. Each of the two ALUs followed by the OUTs is used as two 12-bit
ALUs. In this �gure the assignment of data buses is also shown.

Consider the j-th buttery in pass i, where 0 � i � n � 1 and 0 � j � 2n�1 � 1. Let
p, q, p0, and q0 be the addresses of P , Q, P 0, and Q0, respectively. Then, p, q, p0, and q0 are
given by

p = div(j; 2n�i�1) � 2n�i +mod(j; 2n�i�1); (6.6)

q = p + 2i; (6.7)

p0 = j; (6.8)

q0 = p0 + 2n�1; (6.9)

where for non-negative integers x, y, q, and r, the functions div and mod are de�ned as
follows:

108

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

S
S
S
S
S
S
S
S
S
S
SS

S
S
S
S
S
S
S
S
S
S
SS

S
S
S
S
S
S
S
S
S
S
SS

S
S
S
S
S
S
S
S
S
S
SS

�
�
�
��

�
�
�
��Q

Q
Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
QQ

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

Q
Q
Q
QQ

Q
Q
Q
QQ

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��A

A
A
A
A
A
A
AA

A
A
A
A
A
A
A
AA

�
�
�
��

�
�
�
��

Q
Q
Q
QQ

Q
Q
Q
QQ

Q
Q
Q
QQ

Q
Q
Q
QQ�

�
�
�
�
�
�
��

�
�
�
�
�
�
�
��A

A
A
A
A
A
A
AA

A
A
A
A
A
A
A
AA

�
�
�
��

�
�
�
��

j
j
j
j

j
j

j
j

j
j

j
j

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0
Pass 0 Pass 1 Pass 2

x

x

x

x

�
�
�
�
�
�@

@
@
@
@
@

j
Q

P

Q'

P'

m m+

m+

-

- -

-

6

-

6

?
��@@

W

Q

P

Q'

P'+

-
+

+

Figure 6.12: FFT Geometry.

109

IN IN IN

ALU ALU DLY

DLY MPY MPY MPY MPY

DLY ALU ALU

ALU ALU

OUT OUT

? ? ??
0

?
0

? ? ? ? ? ? ? ? ?

? ? ? ? ?

? ? ? ? ? ? ? ?

?
@@ ��

?
@@ ��

A0 A1 A2

B0 B1H B1LB2H B2L

B3 B4 B5 B6 B7

B8H B8L C0H C1L

C2H C2L C3H C3L

uuu u

uu uu

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Figure 6.13: FFT Network.

110

x = y � q + r; (0 � r � y � 1) (6.10)

div(x; y) = q; (6.11)

mod(x; y) = r: (6.12)

Each buttery can be computed with the network con�guration shown in Figure 6.13.
The buttery network forms a �ve-stage pipeline: data read and staging at the �rst stage,
multiplications at the second stage, ALU operations at the third stage, the second ALU
operations at the fourth stage, and data write at the �fth stage.

Let C(n) be the number of pipeline cycles required to compute the 2n-point FFT. Note
that each buttery can be computed in one pipeline cycle with the network con�guration
shown in Figure 6.13. In general, C(n) is given by

C(n) = a+ n � (2n�1 + b+ c); (6:13)

where a is the overhead at the beginning and end of the FFT computation, b is the overhead
due to memory contentions, and c is the overhead in transition from one pass to the next.

The overhead a is unavoidable as long as the pipeline is used to compute the FFT. The
memory contention overhead b is not easily eliminated. Consider a data access scheme in
which separate data memories are used for data input and output, and data memories are
switched in transition from one pass to the next. The memory interleaving technique with
multiple memory banks cannot eliminate memory contentions for the data accesses of p,
q, p0, and q0. The pass transition overhead c is not easily eliminated, either. Because of
the pipeline staging, the pass transition does not take place until all the buttery results
of a pass go through all the pipeline stages and are stored in memory. The MSP employed
a new memory access scheme that reduces both b and c to zero. Figure 6.14(a) shows a
timing chart for a conventional way of FFT processing with the memory contention and
pass transition overheads, whereas Figure 6.14(b) shows a timing chart for the MSP scheme
for FFT processing.

In the new scheme, a prime memory system is introduced in order to reduce the memory
contention overhead b to zero, and a special data bu�ering scheme is used to reduce the pass
transition overhead c to zero.

The prime memory system was proposed by D. H. Lawrie and C. R. Vora in [111]. The
basic idea behind the prime memory system is that vector data stored in the memory system
with the prime number of memory banks can be accessed by multiple processors without
memory contentions. The MSP uses the mod 3 prime memory scheme, where 2n vector data
are stored in 3 memory modules, as illustrated in Figure 6.15. Since the VMU consists of
four groups of four data memories, three data memories in a group can be used for this

111

Stage 1
Stage 2
Stage 3
Stage 4
Stage 5

Pass n Pass n+ 1 Pass n+ 2 Pass n+ 3 Pass n+ 4 Pass n+ 5

(b) New FFT Pipeline Flow.

Stage 1
Stage 2
Stage 3
Stage 4
Stage 5

Pass n Pass n+ 1 Pass n + 2

(a) Conventional FFT Pipeline Flow.

Figure 6.14: FFT Pipeline Flow.

0

1

2

0 1 2

3 4 5

6 7 8

DMM0 DMM1 DMM2

Figure 6.15: FFT Prime Memory.

112

DMM

0

DMM

1

DMM

2

DMM

3

DMM

4

DMM

5

DMM

6

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

BM BM

? ? ?

? ? ?

? ? ?

? ?

? ? ?

? ?

? ?

-

-

u u

P Q W

P' Q'

Figure 6.16: FFT Pipeline Con�guration.

data arrangement. In one pass of the FFT computation, P and Q are stored in three data
memories in one group and P 0 and Q0 are stored in three data memories in the other group.
The addresses of P and Q are given by p and q de�ned by Equations 6.6 and 6.7, respectively.
Since the address di�erence between p and q is 2i, simultaneous read accesses to P and Q
do not cause any memory contentions. Similarly, simultaneous write accesses to P 0 and Q0

do not cause any memory contentions, either, since the address di�erence between p0 and q0

is 2n�1. Thus, the mod 3 prime memory scheme reduces the memory contention overhead
b to zero. Note that the mod 3 address calculations are performed with special ROMs that
produce the mod 3 address and the memory module number for a given address.

Figure 6.16 shows the network and memory con�guration for the FFT computation. In
this �gure, data memories DMMs 0-3 of memory group 0 store P and Q, and data memories
DMMs 4-6 of memory group 1 store P 0 and Q0. The memory groups 0 and 1 are switched in

113

transition from one pass to the next. Figure 6.16 also shows special bu�er memories (BMs).
They are used to store P 0 and Q0 after data memories are switched when input data read
operations terminate. After all the P 0s and Q0s left in the pipeline at the data memory
switching are stored into BMs, they are stored one by one into the previous output data
memories (input data memories after the data memory switching). This is possible because
one of the three data memories is always free for access, since two of them are used for P
and Q at one time. For this purpose, each bu�er memory (BM) contains the data address
and memory module number as well as data itself. Each free memory module in the input
data memory group is checked against the information contained in the two bu�er memories.
Thus, this data bu�ering scheme reduces the pass transition overhead c to zero.

With the mod 3 prime memory system and the special data bu�ering scheme, in the
MSP, the number of pipeline cycles C(n) is given by

C(n) = a+ n � 2n�1: (b = c = 0) (6:14)

The vector operation in the APU is initiated by the CMF (Call Macro Function) instruction.
It is used to execute parameterized macro functions, such as matrix computations, FFT,
digital �lters, and so forth. Like the LDL and STG instructions, the execution of the CMF
instruction ends in reading the parameter list and initiating the vector operation in the APU.
The actual vector operation is performed in the APU in parallel with the execution of the
subsequent instructions in the CPU. When the vector operation terminates, an interrupt is
raised to the CPU. The termination of the vector operation can also be checked by the TST
instruction. Figure 6.17 shows the execution of the CMF instruction and the termination
checks by the TST instruction.

The execution of the CMF instruction causes a trap to transfer control through the trap
handling routine to the CMF routine, whose entry point is shared among all the macro func-
tions implemented with the CMF instruction. The CMF routine receives the parameter list
speci�ed by the second operand of the CMF instruction, determines which subroutine shall
be invoked, and transfers control to the appropriate subroutine. The invoked subroutine,
corresponding to some macro function, gets the parameters, sends the control data gener-
ated from the given parameters to the APU to form the desired computation network and
to set up the registers such as data counters and address generators, and then activates the
vector operation in the APU. Control is returned to the instruction stream following the
CMF instruction and its execution is resumed when the vector operation is initiated.

Using the UCC (Unit Control Command) and UCD (Unit Control Data), the CPU
controls the vector operation in the APU when a CMF instruction is executed. The APU

114

CPU

APU
?

CMF

?

TST

?

TST

?

Not End

End

-

-

-

u

u?

Start

Not End

End

�

�

Figure 6.17: The CMF Instruction Execution.

115

CPU

APU

L1 F1 S1 L2 F2 S2 L3 F3 S3 L4

L1 F1 S1 L2 F2 S2 L3 F3 S3

Li: Load from GMU

Fi: FFT

Si: Store into GMU

?
6 6 6 6 6 6 6 6

Figure 6.18: Example FFT Processing.

uses a double bu�ering scheme for control data and can bu�er in advance the control data
for the next vector operation while holding the current active control data. It reduces the
overhead in switching from one vector operation to another, because the CPU can send the
control data for the next vector operation before the current operation terminates.

A series of vector operations can be e�ciently implemented with an interrupt-based
programming technique discussed in the previous chapter. The FFT computation is a good
example of the execution of a series of vector operations using the CMF instruction. Consider
a task that performs the radix-2 32-point FFT on 64 data sets, each containing 32 sample
data. The task contains the CMF instruction to invoke the radix-2 32-point FFT in the
APU. The CMF parameter list contains the function number assigned to the radix-2 FFT,
the number of points (32), and the number of data sets (64). The function number is used
by the CMF routine to �nd the subroutine for that function. The radix-2 32-point FFT
consists of �ve passes, each including 16 buttery operations. Sample data are processed,
pass by pass, in units of some speci�ed number of data sets, say, eight. Then each pass has
16� 8 = 128 butteries, and the total number of butteries for the 64 data sets amounts to
16 � 8� 5� 8 = 5120.

The radix-2 FFT subroutine invoked by the CMF instruction handles 64 data sets in
units of eight sets. First, the subroutine sends the control data to transfer the �rst eight
data sets from the GMU to one of the data memory group in the DMU, and initiates the data
transfer operation. With the APU's double bu�ering capability, the CPU sends the control
data for the 32-point FFT to be performed on the transferred data sets without waiting for
the termination of the data transfer operation for the �rst data sets. After the CPU �nishes
sending the control data, control is returned to the instruction stream following the CMF
instruction. When the data transfer operation for the �rst eight data sets terminates, the
APU starts the 32-point FFT on the data sets stored in the DMU, using the control data

116

CPU

APU

?
6 6 6 6 6 6

L1 F1

L2

S1

F2

L3

L4

S2

F3

F4

L5

S3

S4

F5

L6

L7

S5

F6

F7

L8

S6

L1 F1 S1 L4 F4 S4 L7

L2 F2 S2 L5 F5 S5

L3 F3 S3 L6 F6

Li: Load from GMU

Fi: FFT

Si: Store into GMU

Figure 6.19: Improved Example FFT Processing.

sent in advance. The termination of the data transfer operation also issues an interrupt to
the CPU. The program being executed in the CPU is interrupted, and control is moved to
the radix-2 FFT subroutine through the interrupt handling routine. The subroutine prepares
the control data to store the FFT results in the DMU into the GMU and returns control to
the suspended instruction stream. When the 32-point FFT terminates, an interrupt is issued
to the CPU, which suspends the current instruct stream and transfers control to the FFT
subroutine. The FFT subroutine sends the control data to the APU to read the second data
sets from the GMU into the DMU and then returns control to the suspended instruction
stream. The cycle of data load, FFT, and data store operations are repeated until the eight
data set groups are processed. This series of operations is illustrated in Figure 6.18.

Since the DMU has four data memory groups that operate in parallel, the above example
of FFT computations can be improved with the DMU capability as shown in Figure 6.19,
where three operations (loading, FFT, and storing) are scheduled at the same time.

117

This chapter gives an evaluation of the example implementation of the proposed system
architecture, the design methodology of a real-time computing system, the architectural
variations, and the related work.

The �rst version of the MSP system was implemented with over 7,000 standard TTL ICs
[133], [134]. In order to evaluate its performance, we used the following three algorithms
[134]:

� Complex Multiply and Add
� Radix-2 FFT Buttery
� 2nd-Order IIR Filter

They are briey described below. In their description, each data D is assumed to be a
24-bit complex data in the following form:

D = Dr + jDi; (7:1)

where Dr is the 12-bit real part and Di the 12-bit imaginary part.

(1) Complex Multiply and Add

The computation is de�ned by

Z = A�B + C; (7:2)

or

Zr = Ar �Br �Ai �Bi + Cr; (7.3)

Zi = Ar �Bi +Ai �Br + Ci: (7.4)

118

A B C

Z

IN IN IN

* * * * d

- + d

+ +

?

u

? ?

u

??

u

???

u

?

?? ? ? ?

? ? ? ?

@@ ��

?
OUT

Figure 7.1: Network Con�guration for Complex Multiply and Add.

119

The network con�guration for this computation is shown in Figure 7.1.

(2) Radix-2 FFT Buttery

The radix-2 FFT buttery computation is de�ned by

X = P +Q �W; (7.5)

Y = P �Q �W; (7.6)

or

Xr = Pr +Rr; (7.7)

Xi = Pi +Ri; (7.8)

Yr = Pr �Rr; (7.9)

Yi = Pi �Ri; (7.10)

where

Rr = Qr �Wr �Qi �Wi; (7.11)

Ri = Qr �Wi +Qi �Wr: (7.12)

The network con�guration for this computation is shown in Figure 6.13 in the previous
chapter.

(3) 2nd-Order IIR Filter

The original de�nition of the 2nd-order IIR �lter is given by

H(z) =
z2 +A � z +B

z2 � C � z �D
: (7:13)

And its computations is de�ned by

Wn = Xn + C �Wn�1 +D �Wn�2; (7.14)

Yn = Wn +A �Wn�1 +B �Wn�2: (7.15)

The network con�gurations are illustrated in Figure 6.11 in the previous chapter.

In general the performance of a computer is measured in MIPS (Million Instructions Per
Second) for general-purpose computers and in MFLOPS (Mega FLoating-point Operations
Per Second) for supercomputers. We measure the performance of the MSP by MOPS (Million
Operations Per Second). Here we refer to a 12/24-bit addition or 12-bit multiplication as an
operation.

120

The clocking rate in the �rst version of the MSP was 140 nsec. The value of MOPS can
be computed by

M =
N

0:14
; (7:16)

where N is the number of operations performed at each clock cycle.

In the complex multiply and add computation, 8 operations (4 multiplications and four
additions) are performed per each clock cycle. In the FFT buttery computation, 10 opera-
tions (4 multiplications and 6 additions) are performed per each clock cycle. In the 2nd-order
IIR �lter computation, 4 operations (2 multiplications and 2 additions) are performed per
two clock cycles in computing Wn and 4 operations (2 multiplications and 2 additions) per
each clock cycle in computing Yn. Thus the MSP achieved 57 MOPS, 71 MOPS, 14 MOPS,
and 22 MOPS in computing the complex multiply and add, the FFT buttery, Wn in the
2nd-order IIR �lter, and Yn in the same �lter, respectively.

The performance of the radix-2 FFT buttery (71 MOPS) showed that the MSP was
60 times and 3.8 times faster than the IBM 4341-12 (1.2 MIPS) and the IBM 3081K (18.8
MIPS), respectively. This high performance was due to the special FFT hardware described
in the previous chapter. Since the clocking rate of the MSP was 140 nsec, it computed one
buttery operation in 140 nsec in the FFT computation. When it performed the 2048-point
FFT, which consists of 11,264 buttery operations, it �nished the computation in 1.6 msec.
It was the very high performance that the CRAY-1 computer could not achieve at that time,
although its basic operations were 64-bit oating-point additions or multiplications, more
complicated operations than those performed in the MSP.

We designed the MSP based on the performance models described in Chapter 4. The
target signal processing application for the MSP contained a task with a mix of vector
computations, including FFT. The vectorizable part of the task was 98%, and the serial part
2%, implying that the theoretical upper bound of the speedup for this task was 50 according
to Equation 4.9. The required speedup was roughly 30. From Equation 4.10, the acceleration
factor A was given by

A =
0:98

1=30 � 0:02
= 75:4 : (7:17)

That is, the MSP system had to provide a vector processor that could perform the vector-
izable part of the task 75.4 times faster than the existing processor in order to achieve the
speedup of 30. We investigated the computing technologies, both hardware and software,
to achieve that acceleration factor and found that no software solution could achieve it;
we needed a hardware solution. We estimated that a hardware solution could achieve the
speedup of 15 with hardware pipeline based on TTL/CMOS technology.

The analysis of the task showed that 90% of the execution time of the vectorizable part
of that task was spent for FFT computations. Since each buttery operation contains 10

121

arithmetic operations, we could get the speedup of 10 by parallelizing it. The total speedup
obtained by parallelization was 1=(0:1 + 0:9=10) = 5:3. Therefore, the estimated speedup
obtained by hardware pipeline and parallelization was 15� 5:3 = 79:5 > 75:4.

The �rst version of the MSP with the clocking rate of 140 nsec actually achieved the
speedup of 11 in hardware pipeline, the acceleration factor of 11� 5:3 = 58:3, and the total
speedup of 1=(0:02 + 0:98=58:3) = 27:0 for the task. Therefore, we recognized that the
second version of the MSP should be 75:4=58:3 = 1:3 times faster in order to achieve the
total speedup of 30, implying that its clocking rate would be less than 140=1:3 = 108 nsec.

The implementation of the APU was fairly straightforward. The subdivision of the com-
putation network reduced the total amount of wiring and the total number of connection
points. This was done with the analysis of the operations performed in the target appli-
cations. We investigated alternative interconnections of functional modules. However, the
bus-structured interconnection employed in the APU was simple and fast, compared to the
other alternatives. Although we reduced the number of data buses by dividing the total
network into three subnetworks, we still had a wiring problem in the physical design of the
APU. It is not just an engineering problem, but it is a fundamental problem, which can
make the total system design invalid.

We implemented a special mechanism for FFT on the top of the dynamically recon�g-
ured computation network. Because of that mechanism, the MSP achieved the maximum
performance for the FFT computations. Although we added special mod 3 address gener-
ators, special data bu�ers, and other small specials, the basic computational capability for
FFT was derived from the basic structure of the computation network. It showed that the
computation network is very powerful and general for heavy computations like FFT.

We designed four groups of four data memory modules in the APU. They were very
e�cient and useful, since memory accesses were critical both in vector pipelining and in
system-wide pipelining. The particular numbers of groups and data memory modules in
each group were derived from the design requirements for the MSP.

The CPU is based on a custom-made 24-bit processor. We could have used a commercial
microprocessor from the functional point of view. From the application viewpoint, however,
a custom processor was required. Unfortunately, we didn't choose the RISC architecture for
the processor. When the MSP was designed, the RISC architecture was gaining momentum
in the computer industry, but we didn't have a chance to evaluate it. If we could try it again,
we would choose the RISC architecture for the control processor.

When the MSP was designed for the �rst time, the assembler was the only programming
tool for it. Many signal processing algorithms were implemented with it manually, since
the total number of functional modules is not large and the signal processing algorithms
were not complicated. However, many programmers complained about the di�culties in

122

programming the APU and debugging their programs. A couple of programming tools were
available for those programmers for the later version of the MSP.

We have presented the new real-time computing system architecture, called Dynamically Re-
con�gurable Architecture or DRA in the preceding chapters. As briey mentioned in Chap-
ter 1, the way we have presented it reects a design methodology for a real-time computing
system. We have followed the following steps:

(1) to de�ne the target class of real-time applications;
(2) to review the existing architectures;
(3) to study the computing models;
(4) to propose the architecture;
(5) to study the programming aspects of the architecture; and
(6) to implement a prototype of the architecture.

These design steps are fairly standard in designing a computing system in general. As
discussed in Chapter 2, however, the many previous real-time computing systems have been
designed in an ad hoc manner, based on the a priori knowledge of the applications. Using
a priori knowledge of the applications is nothing wrong in designing a suitable architecture.
Heavily dependent on it, however, the conventional design has been just a collection of fea-
ture modules, each associated with some aspect of the applications, and lacking the notion of
resource sharing, leading to an ine�cient design, especially for large-scale real-time systems.
The conventional design method can be applied to small- and medium-scale real-time sys-
tems, because those systems do not require many hardware and software resources anyway.
But it cannot be applied to large-scale real-time systems, because the amount of resources
required by its design prohibits their reasonable implementation. Resource sharing is neces-
sary to make their implementation reasonable. As discussed in Chapter 2, resource sharing
raises problems not only in the functional design but also in the timing design in general.

With the DRA, we have shown that resource sharing can be e�ciently incorporated
into the architectural design without sacri�cing performance and without increasing design
complexity. In the DRA, resource sharing is realized by functional modules and their dynamic
interconnections. Many functional modules are primitive operation-level modules that can
be combined to perform higher-level functions as well as to form one or more pipelines.
Functional modules can be functionally combined by making logical connections between
them, which automatically form pipelines. This simple basic principle remains the same
no matter how many functional modules are involved. The recon�gurability of the network
enables functional modules to be reused for di�erent operations. Thus the dynamically

123

recon�gured computation network in the DRA is very simple in structure but very powerful
in concept. It can be easily applied to large real-time systems.

Since our target applications were based on vector operations, they were easily imple-
mented on the DRA system discussed in Chapter 6, and the system achieved high perfor-
mance. One of the excellent features of the computation network is that the con�gurability of
the network for an operation guarantees the performance delivered to the operation. That
is, if a computation network can be con�gured to perform a particular operation, it can
achieve the performance as expected, since the network processes data in pipeline without
any probabilistic or statistical factor in behavior. We avoided as many probabilistic or sta-
tistical factors as possible in the DRA design so that real-time applications could be easily
implemented using the DRA without timing problems.

We have presented the execution model upon which the proposed architecture is based in
Chapter 4. The proposed architecture described in Chapter 5 is derived from the theoretical
execution model, and its design is simple and exible. The speci�cation of the architecture
is not tight and allows many architectural variations to be implemented.

The computation network can be implemented with a variety of functional modules and
interconnections. As discussed in Chapter 6, the MSP uses single-cycle functional modules,
which operate in one pipeline cycle and contain one staging register in it, since all the
computations are performed on 12-bit or 24-bit integer data. The computation network
consisting of only single-cycle modules makes the timing design easy, because the number of
functional modules on a path from input to output is equal to the number of pipeline stages.
The other implementation may use oating-point arithmetic modules, which are multi-cycle
modules. The computation network including multi-cycle modules makes the timing design
harder and requires some software tool for that.

There are many possible interconnections for functional modules. The more general the
interconnection is, the more wiring is required and the more di�cult the implementation
is, in general. In the MSP, the computation network is divided into three subnetworks in
order to reduce the total amount of wiring and the number of connection points. This
subdivision of the network was derived from the analysis of the operations required for
the target applications. The MSP uses a bus-structured network instead of a multi-stage
interconnection network, because the bus-structured network works well for a relatively
small number of connection points. If an implementation uses a large number of functional
modules, and the computation network includes a large number of connection points, then
a multi-stage interconnection network may be a choice. For the computation network using
it, the stages in the interconnection network have to be taken into account in the timing
design.

The applications in the target class are characterized by a sequence of vector operations
on sets of real-time data that move in and out periodically. There may be a small amount of

124

irregular \glue" operations between one vector operation and the succeeding one. Such glue
operations, which are performed in the scalar processor (SPU), are usually negligible with
respect to execution time; the total execution time is dominated by that of regular vector
operations. Parallelism of the operations in the SPU and VPU reduces as much e�ects of
the glue operations as possible on the overall performance of the architecture. If the SPU
performance is high, it can control multiple VPUs, leading to the design of the DRA system
with multiple VPUs.

The concept of dynamic recon�guration is not new. It has been discussed with fault-tolerant
computing and studied as an attribute for computer architecture, interconnection structure,
system software, and task scheduling [169]. Dynamic recon�guration is roughly de�ned to
be the capability of undergoing changes in the semantics or the interconnection of the com-
ponents in a dynamic way. A major issue in research on the topic is how to dynamically
recon�gure the system in an e�cient way. Recent research focus has been on general-purpose
multiprocessor systems and VLSI systems [35], [159], [48], [56]. In our research work, how-
ever, emphasis is on the application of the dynamic recon�guration concept to real-time
computing, not to fault-tolerant computing. The proposed real-time computing system
architecture is called the Dynamically Recon�gurable Architecture or DRA, because of its
capability of reorganizing the computation network dynamically for vector computations.

The characteristics and problems in real-time computing, presented in Chapter 2, are
mostly shared by J. A. Stankovic [170], [171]. The major computer architectures reviewed in
Chapter 3 include much work related to our research work. It is referenced in that chapter.
The performance models presented in Chapter 4 are based on the previous work, which is
also referenced in the chapter.

There is some work related to the execution model discussed in Chapter 4. K. Hwang
and Z. Xu presented a theoretical work on multipipeline networking for vector compound
functions in [87]. They developed the discussions similar to those in Chapter 4. Their discus-
sions are more theoretical. They used the forpipe loop as a high-level language construct
to specify the vector compound functions (VCFs), each of which is a collection of linked
scalar operations to be executed repeatedly many times in a looping structure. Their VCF
compilation algorithm generates a program graph from a forpipe loop, and their pipeline
networking algorithm converts the generated program graph into a pipeline network. Their
graph partitioning algorithm can partition a program graph into subgraphs with the number
of operators equal to or less than a certain number of operators. L. M. Ni and K. Hwang
discussed the vector reduction techniques for arithmetic pipelines in [130]. D. Bernstein, H.
Boral, and R. Y. Pinter discussed the chaining technique to compute vector expression trees
in the context of automatic code generation in [19].

125

We have proposed a new computing system architecture, called the Dynamically Recon-

�gurable Architecture or DRA, for a class of real-time applications. It includes a Vector
Processor Unit (VPU) that performs arithmetic operations on vector data with the dynami-
cally recon�gurable computation network, which can be dynamically reorganized for pipelined
vector computations. We have also described an example implementation of the proposed
architecture.

We have presented the design problems of real-time computing systems and characterized
the target class of real-time applications, at which the proposed architecture is targeted. We
have reviewed the major existing computer architectures and examined their advantages and
disadvantages for the target class of applications. We have presented the design concepts
for the proposed architecture, including the discussions about performance and execution
models.

The major contributions of our research work are as follows.

1. Architecture Design Methodology

We have demonstrated a design methodology for constructing a real-time computing
system through this thesis, although it is not complete in the sense that there are
still many issues to be addressed. As discussed in Chapter 2, the previous design of a
real-time computing system is based on the collection of features, each corresponding
to some aspect of a real-time application, and has provided no exibility to cover a
wide variety of applications. Given a target class of real-time applications, we have
identi�ed the architectural features and constructed a new archtiecture. Although the
target class of applications is somewhat restricted, we have demonstrated that our
approach to the design is viable and e�ective. We believe that our design methodology
can apply to a wider class of real-time applications with minor modi�cations.

2. Dynamically Recon�gurable Architecture

126

We have demonstrated the e�ectiveness of the Dynamically Recon�gurable Architecture
or DRA for the target class of real-time applications in Chapter 5. We have also shown
that the proposed architecture is exible and scalable for use as a base architecture for
the target class of applications. There is no quantitative restrictions on the architec-
ture, implying that there can be many possible implementations of the architecture. It
is speci�cally important for the implementation with VLSI chips which are expected
to continue making a rapid progress in density and speed. There are no architectural
constraints on the interconnections between the major system components. This leads
to the upgradability of the system. For instance, we can replace a slow SPU with a
faster SPU based on a state-of-the-art microprocessor, possibly a RISC microprocessor,
to have better control over the VPU, or even multiple VPUs.

3. Dynamically Recon�gurable Computation Network

We have demonstrated the e�ectiveness of the dynamically recon�gurable computa-
tion network for vector computations and its controllability in Chapter 5. Its basic
operational principle is structurally very simple but conceptually very powerful. The
interconnections of functional modules to achieve the desired functionality automati-
cally form a pipeline network.

4. Programmability of the Proposed Architecture

We have shown the programmability of the proposed architecture in Chapter 5. An
interrupt-based programming technique is used to control the computation network
formed in the VPU. Programs written for a DRA system are executed by the SPU,
which controls the VPU for pipelined vector operations.

5. Theoretical Basis of the Architecture Design

We have shown that the proposed architecture is based on theoretical performance
and execution models in Chapter 4. Since the proposed architecture is basically the
parallel pipeline architecture, it is not a di�cult task to predict its performance when
it is implemented. The execution model for the proposed architecture gives what is
possible and what is not possible with the architecture at the early stage of the system
design. Therefore, the major unpredictable (and undesirable) factors can be eliminated
at the early design stage. It also gives opportunities for design automation, which has
not been addressed in this thesis.

Possible further research work includes:

1. system design tools

In order to automate the design of a DRA system, we need design tools to compute the
types and numbers of funtional modules required for a given set of vector computations

127

and to produce a switching network to interconnect the functional modules for the
required pipelines.

2. the execution model

The execution model we have presented is very basic. More research is required to
extend it for a wider class of algorithms.

3. an e�cient interconnection of functional modules

One of the major di�culties in the implementation of the computation network is in
the interconnections of the functional modules. More research is required to �nd an
e�cient way to interconnect them.

4. multiple VPUs

Multiple VPUs can tremendously enhance the performance of the system. The system
with multiple VPUs is basically a multiprocessor system. It will raise new problems.

5. programming tools

More research is required to develop programming tools to enhance the programma-
bility of the proposed architecture. Especially, a vectorizing and parallelizing tool will
be useful to run many exiting programs on the DRA system.

128

I am grateful to my thesis advisor, Professor Toshiyuki Kitamori, for his strong support of
my work and his invaluable advice. I am also grateful to the members of my thesis committee
for their fruitful discussions and suggestions.

I would like to express my deep gratitude to Dr. Tohei Nitta, President of Mitsubishi
Electric Research Laboratories, Inc. (MERL), for his continuous encouragement. I thank
Mr. Laszlo A. Belady, Chairman and Director of MERL, for his continuous support of my
thesis work. I also thank all the MERL research sta� members, Dr. Hann-Bin Chuang, Dr.
Hugh C. Lauer, Dr. Koichiro Mashiko, Dr. Charles Rich, and Dr. Richard C. Waters, for
their encouragement, support, and useful feedback. I would also like to thank all the MERL
administrative sta� members, Ms. Holly Abernethy, Ms. Lydia Ann McIntosh, and Ms.
Sandra Sta�, who gave me many good suggestions for English expressions in my thesis.

I am grateful to Dr. Eiichi Ohno, Director of the Headquarters R&D of Mitsubishi
Electric Corporation (MELCO), Dr. Tamotsu Nomaguchi, Dr. Hitoshi Ogata, and Mr.
Muneaki Ogata, Managers of the MELCO Headquarters R&D, for their encouragement and
support. I thank Mr. Nobuyuki Iijima, Mr. Teijiro Sakamoto, and Mr. Toshiyuki Hirai,
Managers of the MELCO Kamakura Works, who worked with me on the design of the
proposed architecture, implemented it, tested it, and improved it. I also thank Mr. Akira
Iwase, Dr. Chiyoji Tanaka, and Mr. Tatsuya Mutoh, who gave me much useful advice while
I was associated with the MELCO Computer & Information Systems Laboratory.

I thank Ms. Naomi Iwasaki for her e�cient administrative work at the MELCO Head-
quarters R&D. I would like to thank Ms. Yuko Katsuki, who helped me collect materials
for my thesis while I was with the MELCO Headquarters R&D. I would like to express my
special thanks to Ms. Tomoko Matsuzawa, who often helped me organize my ideas through
valuable discussions, while I was associated with the MELCO Computer & Information
Systems Laboratory, and encouraged me by e-mail once I moved to the Boston area.

Finally, I would like to thank Dr. Noriko Ohkami, my wife, for her continuous encour-
agement and support, and Satoshi and Youki, our children, for their humorous conversations
at home during my thesis work.

129

Real-Time Computing

The IEEE Computer Society has published a tutorial on hard real-time systems [172], which
is a collection of published papers on real-time computing. It includes a paper on the next-
generation real-time computing systems [170] and a paper on the scheduling algorithms
for hard real-time systems [37]. Technical issues in real-time computing are described in
[170] and [171]. References [120] and [97] describe fault-tolerant scheduling algorithms for
real-time computing.

Signal Processing

Reference [42] is the seminal paper on FFT (Fast Fourier Transform) by J. W. Cooley and J.
W. Tukey. References [23] and [24] are books on Fourier Transform and Fast Fourier Trans-
form (FFT), respectively. Reference [176] presents variations of the radix-2 FFT algorithm.
Reference [2, Chapter 7, pp.251{276] describes the computational complexity of FFT. Ref-
erence [128] is a book on the principles and signal processing techniques for airborne pulsed
doppler radars. Reference [29] is a book on signal processing techniques for radar systems.

Transaction Processing

Reference [116] is a paper on the classi�cation of transaction processing systems based on
abstracted transaction properties. Reference [76] is a book on performance modeling of
transaction processing systems. Reference [123] is a paper on an OLTP (On-Line Transaction
Processing) performance prediction tool, based on the performance analysis described in
[132].

VLSI and Computing Technologies

The October 1987 issue of Scienti�c American is a special issue on advanced computing
technologies, which includes a paper on a general perspective of advanced computing tech-
nologies [150], a paper on a perspective of parallel architectures for advanced computing [63],
a paper on a perspective of VLSI chips for advanced computing systems [125], a paper on

130

a perspective of parallel programming for advanced computing [69], a paper on a perspec-
tive of data-storage technologies for advanced computing [98], a paper on a perspective of
advanced use-computer interfaces [59], and a paper on a perspective of computer networks
for advanced computing [91].

Dedicated Architectures

Hardware implementations of FFT are described in [20], [71], [43], [3], and [41]. Microprogram-
based hardware implementations of FFT are described in [96], [181], [195], and [4]. Recent
FFT processor architectures are described in [15] and [162]. Signal processors with the capa-
bility of vector processing are described in [22], [28], and [60]. VLSI digital signal processors
are described in [113] and [178]. Reference [65] describes a processor dedicated to radar
signal processing. Reference [149] describes a reliable computer architecture for real-time
aerospace applications. Reference [92] and [166] describe computing systems for industrial
process control. Reference [187] describes a fault-tolerant system architecture for commer-
cial transport aircraft control. Reference [31] describes a system architecture for the space
shuttle avionics.

Pipeline Architectures

Reference [93] is a book on the pipeline computers. Reference [156] is a survey paper on
pipeline architectures. Reference [85] also contains chapters on pipeline architecture. Refer-
ences [9] and [8] describe the pipeline processing techniques in the IBM System/360 Model
91. Reference [45] describes pipeline processing in VAX 8600. Reference [78] describes the
CDC STAR-100 architecture. Reference [185] describes the architecture of TI ASC. Refer-
ences [189] and [34] describe the AP-120B. Reference [85, Chapter 4, pp.233-324] describes
the architecture of the FPS-164. Reference [93, Chapter 4, pp.134{173] describes the IBM
3838 array processor. The architecture of the Cray-1 is described in [161], [85, Chapter 4,
pp.233{324], [80, Chapter 2, pp.68{143], and [121]. The CDC Cyber-205 is described in [85,
Chapter 4, pp.233{324], [80, Chapter 2, pp.68{143], and [121]. References [129] and [79]
describe the Fujitsu FACOM VP-200. Reference [140] describes the Hitachi HITAC S-810.
Reference [94] describes the NEX SX. References [27] and [142] describe the IBM System/370
Vector Facility introduced with the IBM 3090 [179]. Its performance evaluation is presented
in [39], [36], [122], and [186].

Parallel Architectures

References [85], [80], [14], [51], [163], [86], and [68] are general references to the MIMD
parallel architecture. Reference [175] describes the Sequent Balance system architecture.
Reference [192] describes the Encore Multimax system. References [165] and [82] describe
the BBN Buttery Processor. Experience with the Buttery system is described in [126]

131

and [136]. References [197] and [196] describe the C.mmp experimental parallel architecture,
and references [67] and [66] the Cm* parallel architecture, both developed at the Carnegie
Mellon University. Experience with C.mmp and Cm* is described in [89]. Reference [188]
describes the S-1 system. Reference [103] describes the Burroughs Scienti�c Processor (BSP).
Reference [95] describes the Denelcor Heterogeneous Element Processor (HEP). Reference
[70] describes the NYU Ultracomputer. Reference [102] describes the UIUC Cedar system.
Reference [151] describes the IBM RP3. Reference [85, Chapter 9, pp.643{731] describes the
Cray X-MP. Reference [84] presents discussions about the multiprocessor supercomputers.
References [64], [148], and [47] describe the synchronization issues in multiprocessor systems.
Reference [46] gives a survey on the synchronization techniques. Reference [152] describes
the hot spot contention problem.

Massively Parallel Architectures

References [25] and [81] describe the Illiac IV developed at the University of Illinois. Ref-
erences [154] and [17] describe Goodyear's Massively Parallel Processor. References [77]
and [180] describe Thinking Machines' Connection Machine. Reference [57] describes the
ICL DAP system. Reference [62] describes the CLIP system. Reference [16] describes the
STARAN system. Reference [160] describes the RPA (Recon�gurable Processor Array) sys-
tem.

Systolic Architectures

The concept of systolic arrays was �rst presented by H. T. Kung and C. E. Leiserson in
[104]. General references to systolic arrays include [105], [115], [61], [106], and [108]. The
wavefront arrays are described in [107], [108], and [109]. Reference [118] presents a rigorous
approach to characterizing the systolic structures.

VLIW Architectures

References [54] and [55] describes the VLIW architecture. Reference [50] presents the Bulldog
compiler for the VLIW architecture. Reference [53] describes the trace scheduling technique
for microcode compaction, on which the VLIW compiler is based. Reference [131] reports
on the potential parallelism in programs.

Hypercube Architecture

The hypercube architecture is described in [167], [12], and [74].

132

Data-Flow Architecture

The dataow architecture is described in [44], [177], [11], and [117]. Reference [124] describes
the VAL programming language for the dataow architecture.

RISC Architecture

The RISC architecture is described in [145], [155], [75], [147], and [183]. Reference [146]
made a case for the RISC architecture. Commercial RISC microprocessors are described in
[6] (Motolora 88000), [157] (MIPS R3000), and [114] (Hewlett-Packard PA).

Superscalar Architecture

Reference [88] is a book on the superscalar architecture. References [90] and [182] present
the studies on the available instruction-level parallelism for the superscalar architecture.

Performance Models

Reference [7] is a paper on the well known Amdahl's Law. Reference [184] describes the
e�ect of serial portion on the parallel performance. Reference [58] presents the taxonomy
of computer architectures proposed by M. J. Flynn. Reference [193] presents elaborate
discussions about the parallel performance.

Vectorizing Compilers

The basic techniques for vectorizing programs are described in [101], [144], [5], and [190].
The dependence analysis, on which the vectorizing techniques are based, is described in [99,
Chapter 2, pp.80{186], [143], [100], [191], [52], and [119]. Commercial vectorizing compilers
include [10] (CDC Cycber-205), [199] (Hitachi S-810), [164] (IBM), [174] (FACOMVP), [127]
(Convex), and [40] (Unisys).

Debugging Tools

References [18], [13], and [33] present the snapshot approach to debugging parallel programs.
References [32], [38], and [112] present the replay approach. Reference [135] presents an
approach to unifying debugging and performance tuning for parallel programs.

Execution Models

Reference [87] describes the multipipeline networking techniques. Reference [130] describes
the vector-reduction techniques. Reference [19] describes the optimal chaining of vector
operations.

133

Dynamically Recon�gurable Systems

Reference [169] is a technical report on dynamically recon�gurable systems. Reference [35]
presents a taxonomy of recon�guration techniques for fault-tolerant processor arrays. Refer-
ence [159] presents the e�cient algorithms for recon�guring processor arrays in the presence
of faulty processors and �xed hardware resources. Reference [48] describes a general ap-
proach to designing tree-structured multiprocessors with optimal or near-optimal fault toler-
ance properties. Reference [56] describes the Recon�gurable Arithmetic Processor developed
at MIT.

Miscellaneous Topics

Reference [58] describes Flynn's taxonomy of computer architecture. Reference [30] describes
the IBM System/370 architecture. Reference [141] describes the IBM System/370 Extended
Architecture. Reference [153] describes the IBM ESA/370 architecture. Reference [83] is
a book on computer arithmetic. Reference [99] is a book on the structure of computers.
Reference [111] is on prime memory systems. References [168], [1], and [194] describe the
interconnection networks.

Our Work

References [133], [134], [137], [138], and [139] describe the techniques used in the MSP, an
example implementation of the DRA. Reference [178] presents a 32-bit VLSI digital signal
processor. Reference [136] describes our experience with Chrysalis on the BBN Buttery
Processor. Reference [135] presents a uni�ed approach to debugging and performance eval-
uation of parallel programs. Reference [123] is a paper on an OLTP performance prediction
tool called SMART. Reference [132] is a paper on the performance analysis of an OLTP
system.

134

[1] G. B. Adams III, D. P. Agrawal, and H. J. Siegel, \Fault-Tolerant Multistage Inter-
connection Networks," IEEE Computer, Vol.20, No.6, June 1987, pp.14{27.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley, 1974.

[3] Z. M. Ali, \A High-Speed FFT Processor," IEEE Transactions on Communications,
Vol.26, No.5, May 1978, pp.690{696.

[4] J. Allen, \Computer Architecture for Signal Processing," Proceedings of the IEEE,
Vol.30, No.4, April 1975, pp.624{633.

[5] R. Allen and K. Kennedy, \Automatic Transaltion of FORTRAN Programs to Vector
Form," ACM Transactions on Programming Languages and Systems, Vol.9, No.4,
October 1987, pp.491{542.

[6] M. Alsup, \Motorola's 88000 Family Architecture," IEEE Micro, Vol.10, No.3, June
1990, pp.48{66.

[7] G. M. Amdahl, \Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities," Proceedings of the AFIPS Spring Joint Computer Confer-

ence, 1967, pp.483{485.

[8] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D. M. Powers, \The IBM
System/360 Model 91: Floating Point Execution Unit," IBM Journal of Research

and Development, Vol.11, No.1, January 1967, pp.34{53.

[9] D. W. Anderson, F. J. Sparacio, and R. M. Tamasulo, \IBM System 360 Model
91: Machine Philosophy and Instruction Handling," IBM Journal of Research and

Development, Vol.11, No.1, Janurary 1967, pp.8{24.

[10] C. Arnold, \Vector Optimization on the Cyber 205," Proceedings of the 1983 Inter-

national Conference on Parallel Processing, August 1983, pp.530{536.

135

[11] Arvind and D. E. Culler, \Dataow Architectures," in Annual Reviews in Computer

Science, Vol.1, Annual Reviews Inc., 1986, pp.225{253.

[12] W. C. Athas and C. L. Seitz, \Multicomputers: Message-Passing Concurrent Com-
puters," IEEE Computer, Vol.21, No.8, August 1988, pp.9{24.

[13] F. Baiardi, N. DeFrancesco, and G. Vaglini, \Development of a Debugger for a Con-
current Language," IEEE Transactions on Software Engineering, Vol.12, No.4, April
1986, pp.547{553.

[14] J. L Baer, \A Survey of Some Theoretical Aspects of Multiprocessing," ACM Com-

puting Surveys, Vol.5, No.1, March 1973, pp.31{80.

[15] R. K. Bardin and J. D. Sisk, \Optimizing Architectures for Parallel FFT Processing,"
Proceedings of the SPIE, Vol.1154, Real-Time Signal Processing XII, August 1989,
pp.147{156.

[16] K. E. Batcher, \STARAN Parallel Processor System Hardware," Proceedings of the

National Computer Conference, 1974, pp.405{410.

[17] K. E. Batcher, \Design of a Massively Parallel Processor," IEEE Transactions on

Computers, Vol.29, No.9, September 1980, pp.1{9.

[18] P. Bates and J. Wileden, High-Level Debugging of Distributed Systems: The Behav-

ioral Abstraction Approach, Technical Report COINS 83-29, Department of Com-
puter and Information Sciences, University of Massashusetts, 1983.

[19] D. Bernstein, H. Boral, and R. Y. Pinter, \Optimal Chaining in Expression Trees,"
IEEE Transactions on Computers, Vol.37, No.11, November 1988, pp.1366{1374.

[20] G. D. Bergland, \Fast Fourier Transform Hardware Implementations | An
Overview," IEEE Transactions on Audio Electroacoustics, Vol.17, No.6, June 1969,
pp.104{108.

[21] G. E. Blelloch, Vector Models for Data-Parallel Computing, The MIT Press, 1990.

[22] W. C. Booth, \Approaches to Radar Signal Processing," IEEE Computer, Vol.16,
No.6, June 1983, pp.32{42.

[23] R. N. Bracewell, The Fourier Transform and Its Applications, 2nd Ed., McGraw-Hill,
1978.

[24] E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, 1974.

136

[25] W. J. Bouknight, S. A. Denenberg, D. E. McIntyre, J. M. Randall, A. H. Sameh,
and D. L. Slotnick, \The Illiac IV System," Proceedings of the IEEE, Vol.60, No.4,
April 1972, pp.369{388.

[26] I. Y. Bucher, \The Computational Speed of Supercomputers," Proceedings of the

1983 ACM SIGMETRICS Conference on Measurement and Modeling of Computer

Systems, 1983, pp.151{165.

[27] W. Buchholz, \The IBM System/370 Vector Architecture," IBM Systems Journal,
Vol.25, No.1, 1986, pp.51{62.

[28] R. S. Bucky et al., \Nonlinear Filtering and Array Computation," IEEE Computer,
Vol.16, No.6, June 1983, pp.51{61.

[29] W. S. Burdic, Radar Signal Analysis, Prentice-Hall, 1968.

[30] R. P. Case and A. Padegs, \Architecture of the IBM System/370," Communications
of the ACM, Vol.21, No.1, January 1978, pp.73{96.

[31] G. D. Carlow, \Architecture of the Space Shuttle Primary Avionics Software Sys-
tem," Communications of the ACM, Vol.27, No.9, September 1984, pp.926{936.

[32] R. H. Carver and K. C. Tai, \Reproducible Testing of Concurrent Programs Based
on Shated Variables," Proceedings of the 6th International Conference on Distributed

Computing Systems, 1986, pp.428{433.

[33] K. M. Chandy and L. Lamport, \Distributed Snapshots: Determining Global States
of Distributed Systems," ACM Transactions on Computer Systems, Vol.3, No.1,
February 1985, pp.63{75.

[34] A. E. Charlesworth, \An Approach to Scienti�c Array Processing: The Architectural
Design of the AP-120B/FPS-164 Family," IEEE Computer, Vol.14, No.9, September
1981, pp.18{27.

[35] M. Chean and J. A. B. Fortes, \A Taxonomy of Recon�guration Techniques for Fault-
Tolerant Processor Arrays," IEEE Computer, Vol.23. No.1, January 1990, pp.55{69.

[36] H. Cheng, \Vector Pipelining, Chaining, and Speed on the IBM 3090 and Cray X-
MP," IEEE Computer, Vol.22. No.9, September 1989, pp.31{46.

[37] S.-C. Cheng, J. A. Stankovic, and K. Ramamritham, \Scheduling Algorithms for
Hard Real-Time Systems | A Brief Survey," in J. A. Stankovic and K. Ramam-
ritham (Eds.), Tutorial: Hard Real-Time Systems, IEEE Computer Society, 1988,
pp.150{173.

137

[38] S. Y. Chu, Debugging Distributed Computations in a Nested Atomic Action Sys-
tem, Technical Report MIT/LCS/TR-327, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, 1984.

[39] R. S. Clark and T. L. Wilson, \Vector System Performance of the IBM 3090," IBM
Systems Journal, Vol.25, No.1, 1986, pp.63{82.

[40] H. B. Coleman, \The Vectorizing Compiler for the Unisys ISP," Proceedings of the
3rd International Conference on Supercomputing, Vol.2, 1988, pp.186{195.

[41] R. A. Collesidis et al., \An Ultra-High Speed FFT Processor," Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing, 1980,
pp.784{787.

[42] J. W. Cooley and J. W. Tukey, \An Algorithm for the Machine Calculation of Com-
plex Fourier Series,"Mathematics of Computation, Vol.19, No.90, April 1965, pp.297{
301.

[43] M. J. Corinthios et al., \A Parallel Radix-4 Fast Fourier Transform Computer." IEEE
Transactions on Computers, Vol.24, No.1, January 1975, pp.80{92.

[44] J. B. Dennis, \Data Flow Supercomputers," IEEE Computer, Vol.13, No.11, Novem-
ber 1980, pp.48{56.

[45] J. DeRosa, R. Glackemeyer, and T. Knight, \Design and Implementation of the VAX
8600 Pipeline," IEEE Computer, Vol.18, No.5, May 1985, pp.38{48.

[46] A. Dinning, \A Survey of Synchronization Methods for Parallel Computers," IEEE
Computer, Vol.22, No.7, July 1989, pp.66{77.

[47] M. Dubois and C. Scheurich, \Synchronization, Coherence, and Event Ordering in
Multiprocessors," IEEE Computer, Vol.21, No.2, February 1988, pp.9{21.

[48] S. Dutt and J. P. Hayes, \On Designing and Recon�guring k-Fault-Tolerant Tree
Architectures," IEEE Transactions on Computers, Vol.39, No.4, April 1990, pp.490{
503.

[49] D. L. Eager, J. Zahorjan, and E. D. Lazowska, \Speedup Versus E�ciency in Parallel
Systems," IEEE Transactions on Computers, Vol.38, No.3, March 1989, pp.408{423.

[50] J. R. Ellis, Bulldog: A Compiler for VLIW Architectures, The MIT Press, 1986.

[51] P. H. Enslow, Jr., \Multiprocessor Organization | A Survey," ACM Computing
Surveys, Vol.9, No.1, March 1977, pp.103{129.

138

[52] J. Ferrante, K. J. Otttenstein, and J. D. Warren, \The Program Dependence Graph
and Its Use in Optimization," ACM Transactions on Programming Languages and
Systems, Vol.9, No.3, July 1987, pp.319{349.

[53] J. A. Fisher, \Trace Scheduling: A Technique for Global Microcode Compaction,"
IEEE Transactions on Computers, Vol.30, No.7, July 1981, pp.478{490.

[54] J. A. Fisher, \Very Long Instruction Word Architectures and the ELI-512," Proceed-
ings of the 10th Annual International Symposium on Computer Architecture, June
1983, pp.140{150.

[55] J. A. Fisher, \The VLIW Machine: A Multiprocessor for Compiling Scienti�c Code,"
IEEE Computer, Vol.17, No.7, July 1984, pp.45{53.

[56] S. Fiske and W. J. Dally, \The Recon�gurable Arithmetic Processor," Proceedings
of the 15th Annual International Symposium on Computer Architecture, May-June
1988, pp.30{36.

[57] P. M. Flanders, D. J. Hunt, S. F. Reddaway, D. Parkinson, \E�cient High-Speed
Computing with the Distributed-Array Processor," in D. J. Kuck, D. H. Lawrie, and
A. H. Sameh (Eds.), High Speed Computing and Algortithm Organization, Academic
Press, 1977.

[58] M. J. Flynn, \Some Computer Organizations and Their E�ectiveness," IEEE Trans-
actions on Computers, Vol.21, No.9, September 1972, pp.948{960.

[59] J. D. Foley, \Interfaces for Advanced Computing," Scienti�c American, October
1987, pp.82{90.

[60] K. S. Forrstrom et al., \Array Processors in Real-Time Flight Simulation," IEEE
Computer, Vol.16, No.6, June 1983, pp.62{70.

[61] M. J. Foster and H. T. Kung, \The Design of Special-Purpose VLSI Chips," IEEE
Computer, Vol.13, No.1, January 1980, pp.26{40.

[62] T. J. Fountain and V. Goetcherian, \CLIP4 Parallel Processing System," IEE Pro-
ceedings, Vol.127, No.5, Part E, September 1980, pp.219{224.

[63] G. C. Fox and P. C. Messina, \Advanced Computer Architectures," Scienti�c Amer-
ican, October 1987, pp.44{52.

[64] D. D. Gajski and J.-K. Peir, \Essential Issues in Multiprocessor Systems," IEEE
Computer, Vol.18, No.6, June 1985, pp.9{27.

139

[65] J. R. Gaskill et al., \Multimode Radar Processor," Proceedings of the SPIE, Vol.154,
Real-Time Signal Processing, 1978, pp.141{149.

[66] E. F. Gehringer, A. K. Jones, and Z. Z. Segall, \The Cm* Testbed," IEEE Computer,
Vol.15, No.10, October 1982, pp.40{53.

[67] E. F. Gehringer, D. P. Siewiorek, and Z. Segall, Parallel Processing: The Cm* Ex-
perience, Digital Press, 1987.

[68] E. F. Gehringer, J. Abullarade, and M. H. Gulyn, \A Survey of Commercial Parallel
Processing," ACM SIGARCH Computer Architecture News, Vol.16, No.4, September
1988, pp.75{107.

[69] D. Gelernter, \Programming for Advanced Computing," Scienti�c American, Octo-
ber 1987, pp.64{71.

[70] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuli�e, L. Rudolph, and M.
Snir, \The NYU Ultracomputer | Designing an MIMD Shared Memory Parallel
Computer," IEEE Transactions on Computers, Vol.32, No.2, February 1983, pp.175{
189.

[71] H. L. Groginsky et al., \A Pipeline Fast Fourier Transform," IEEE Transactons on
Computers, Vol.19, No.11, November 1970, pp.1015{1019.

[72] R. Gupta, A. Zorat, and I. V. Ramakrishnan, \Recon�gurable Multipipelines for
Vector Supercomputers," IEEE Transactions on Computers, Vol.38, No.9, September
1989, pp.1297{1307.

[73] J. J. Hack, \Peak vs. Sustained Performance in Highly Concurrent Vector Machines,"
IEEE Computer, Vol.19, No.9, September 1986, pp.11{19.

[74] J. P. Hayes and T. Mudge, \Hypercube Supercomputers," Proceedings of the IEEE,
Vol.77, No.12, December 1989, pp.1829{1841.

[75] J. L. Hennessy, \VLSI Processor Architecture," IEEE Transactions on Computers,
Vol.33, No.12, December 1984, pp.1221{1246.

[76] W. H. Highleyman, Performance Analysis of Transaction Processing Systems,
Prentice-Hall, 1989.

[77] W. D. Hillis, The Connection Machine, The MIT Press, 1985.

[78] R. G. Hintz and D. P. Tate, \Control Data Star-100 Processor Design," Proceedings,
COMPCON Fall 1972, September 1972, pp.1{4.

140

[79] T. Hirakuri, A. Tabata, T. Tsuchimoto, and S. Taguchi, \Supercomputer FACOM
VP in Parallel Pipeline Processing System Achieving a Machine Cycle of 7.5 ns,"
Nikkei Electronics, No.314, April 11, 1983, pp.131{155. (in Japanese)

[80] R. W. Hockney and C. R. Jesshope, Parallel Computers, Adam Hilger Ltd., 1981.

[81] R. M. Hord, The Illiac IV: The First Supercomputer, IEEE Computer Science Press,
1982.

[82] C. D. Howe, \An Overview of the Buttery GP1000: A Large-Scale Parallel UNIX
Computer," Proceedings of the 3rd International Conference on Supercomputing,
Vo.2, 1988, pp.134{141.

[83] K. Hwang, Computer Arithmetic: Principles, Architecture, and Design, John Wiley
& Sons, 1979.

[84] K. Hwang, \Multiprocessor Supercomputers for Scienti�c/Engineering Applica-
tions," IEEE Computer, Vol.18, No.6, June 1985, pp.57{73.

[85] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, McGraw-
Hill, 1985.

[86] K. Hwang, \Advanced Parallel Processing with Supercomputer Architectures," Pro-
ceedings of the IEEE, Vol.75, No.10, October 1987, pp.1348{1379.

[87] K. Hwang and Z. Xu, \Multipipeline Networking for Compound Vector Processing,"
IEEE Transactions on Computers, Vol.37, No.1, January 1988, pp.33{47.

[88] M. Johnson, Superscalar Microprocessor Design, Prentice-Hall, 1991.

[89] A. K. Jones and P. Schwarz, \Experience Using Multiprocessor Systems | A Status
Report," ACM Computing Surveys, Vol.12, No.2, June 1980, pp.121{165.

[90] N. P. Jouppi and D. W. Wall, \Available Instruction-Level Parallelism for Super-
scalar and Superpipelined Machines," Proceedings of the 3rd International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
April 1989, pp.272{282.

[91] R. E. Kahn, \Networks for Advanced Computing," Scienti�c American, October
1987, pp.128{135.

[92] H. D. Kirrmann and F. Kaufmann, \Poolpo | A Pool of Processors for Process
Control Applications," IEEE Transactions on Computers, Vol.33, No.10, October
1984, pp.869{878.

141

[93] P. M. Kogge, The Archiecture of Pipeline Computers, McGraw-Hill, 1981.

[94] K. Kokatsu, S. Watanabe, and R. Kondo, \The SX Supercomputer System with
Maximum Performance of 1.3 GFLOPS and 6-ns Machine Cycle Time," Nikkei Elec-
tronics, November 19, 1984, pp.237{272. (in Japanese)

[95] J. S. Kowalik (Ed.), Parallel MIMD Computation: HEP Supercomputer and Its Ap-
plications, The MIT Press, 1985.

[96] G. L. Kratz et al., \A Microprogrammed Approach to Signal Processing," IEEE
Transactions on Computers, Vol.23, No.8, August 1974, pp.808{817.

[97] C. M. Krishna and K. G. Shin, \On Scheduling Tasks with a Quick Recovery from
Failure," IEEE Transactions on Computers, Vol.35, No.5, May 1986, pp.448{455.

[98] M. H. Kryder, \Data-Storage Technologies for Advanced Computing," Scienti�c
American, October 1987, pp.72{81.

[99] D. J. Kuck, The Structure of Computers and Computations, Vol.1, John Wiley &
Sons, 1978.

[100] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, \Dependence
Graphs and Compiler Optimizations," Conference Record of the 8th Annual ACM
Symposium on Principles of Programming Languages, January 1981, pp.207{218.

[101] D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, \The Structure of an Advanced
Retargetable Vectorizer," in K. Hwang (Ed.), Tutorial on Supercomputers: Design
and Applications, IEEE Press, 1984, pp.163{178.

[102] D. J. Kuck, E. S. Davidson. D. H. Lawrie, and A. H. Sameh, \Parallel Supercomput-
ing Today and the Cedar Approach," Science, Vol.231, February 28, 1986, pp.967{
974.

[103] D. J. Kuck and R. A. Stokes, \The Burroughs Scienti�c Processor (BSP)," IEEE
Transactions on Computers, Vol.31, No.5, May 1982, pp.363{376.

[104] H. T. Kung and C. E. Leiserson, \Systolic Arrays (for VLSI)," in I. S. Du� and G.
W. Stewart, Sparse Matrix Proceedings, 1978, SIAM, 1979, pp.256{282.

[105] H. T. Kung, \Let's Design Algorithms for VLSI Systems," Proceedings of the CAL-
TECH Conference on VLSI, January 1979, pp.65{90.

[106] H. T. Kung, \Why Systolic Architectures?" IEEE Computer, Vol.15, No.1, January
1982, pp.37{46.

142

[107] S.-Y. Kung, K. S. Arun, R. J. Gal-Ezer, and D. V. Bhaskar, \Wavefront Array Proces-
sor: Language, Architecture, and Applications," IEEE Transactions on Computers,
Vol.31, No.11, November 1982, pp.1054{1066.

[108] S.-Y. Kung, \On Supercomputing with Systolic/Wavefront Array Processors," Pro-
ceedings of the IEEE, Vol.72, No.7, July 1984, pp.867{884.

[109] S.-Y. Kung, S. C. Lo, S. N. Jean, and J. N. Hwang, \Wavefront Array Processors |
Concept to Implementation," IEEE Computer, Vol.20, No.7, July 1987, pp.18{33.

[110] D. H. Lawrie, \Access and Alignment of Data in an Array Processor," IEEE Trans-
actions on Computers, Vol.24, No.12, December 1975, pp.1145{1155.

[111] D. H. Lawrie and C. R. Vora, \The Prime Memory System for Array Access," IEEE
Transactions on Computers, Vol.31, No.5, May 1982, pp.435{442.

[112] T. J. LeBlanc and J. M. Mellor-Crummey, \Debugging Parallel Programs with In-
stant Replay," IEEE Transactions on Computers, Vol.36, No.4, April 1987, pp.471{
482.

[113] E. A. Lee, \Programmable DSPs: A Brief Overview," IEE Micro, Vol.10, No.5,
October 1990, pp.14{16.

[114] R. B. Lee, \Precision Architecture," IEEE Computer, Vol.22, No.1, January 1989,
pp.78{91.

[115] C. E. Leiserson, \Systolic Priority Queues," Proceedings of the CALTECH Conference
on VLSI, January 1979, pp.199{214.

[116] A. Le� and C. Pu, \A Classi�cation of Transaction Processing Systems," IEEE
Computer, Vol.24, No.6, June 1991, pp.63{76.

[117] E. J. Lerner, \Data-Flow Architecture," IEEE Spectrum, April 1984, pp.57{62.

[118] H. F. Li and R. Jayakumar, \Systolic Structures: A Notation and Characterization,"
Journal of Parallel and Distributed Computing, Vol.3, No.3, September 1986, pp.373{
397.

[119] Z. Li, P.-C. Yew, and C.-Q. Zhu, \An E�cient Data Dependence Analysis for Paral-
lelizing Compilers," IEEE Transactions on Parallel and Distributed Systems, Vol.1,
No.1, January 1990, pp.26{34.

[120] A. L. Liestman and R. H. Campbell, \A Fault-Tolerant Scheduling Problem," IEEE
Transactions on Software Engineering, Vol.12, No.11, November 1986, pp.1089{1095.

143

[121] R. D. Levine, \Supercomputers," Scienti�c American, January 1982, pp.119{125.

[122] B. Liu and N. Strother, \Programming in VS Fortran on the IBM 3090 for Maximum
Vector Performance," IEEE Computer, Vol.21, No.6, June 1988, pp.65{76.

[123] T. Matsuzawa, N. Ogawa, T. Ohkami, and T. Noji, \An OLTP Performance Predic-
tion Tool: SMART," Proceedings of the 1991 Spring IPS Japan Conference, Vol.4,
March 1991, pp.73{74. (in Japanese)

[124] J. R. McGraw, \The VAL Language: Description and Analysis," ACM Transactions
on Programming Languages and Systems, Vol.4, No.1, January 1982, pp.44{82.

[125] J. D. Meindl, \Chips for Advanced Computing," Scienti�c American, October 1987,
pp.54{62.

[126] J. M. Mellor-Crummey, \Experiences with the BBN Buttery," Digest of Papers,
COMPCON Spring 88, February/March 1988, pp.101{104.

[127] R. Mercer, \The CONVEX FORTRAN 5.0 Compiler," Proceedings of the 3rd Inter-
national Conference on Supercomputing, Vol.2, 1988, pp.164{175.

[128] G. V. Morris, Airborne Pulsed Doppler Radar, Artech House, 1988.

[129] K. Miura and K. Uchida, \FACOM Vector Processor VP-100/VP-200," Proceedings
of the NATO Advanced Research Workshop on High-Speed Computing, June 1983,
Springer-Verlag, pp.20{22.

[130] L. M. Ni and K. Hwang, \Vector-Reduction Techniques for Arithmetic Pipelines,"
IEEE Transactions on Computers, Vol.34, No.5, May 1985, pp.404{411.

[131] A. Nicolau and J. A. Fisher, \Measuring the Parallelism Available for Very Long
Instruction Word Architectures," IEEE Transactions on Computers, Vol.33, No.11,
November 1984, pp.968{976.

[132] N. Ogawa, Y. Yamanaga, T. Matsuzawa, T. Ohkami, and T. Noji, \Performance
Analysis of OLTP Systems Using the TPC Model," Proceedings of the Operating
Systems Meeting of the IPS Japan, March 1991, Paper No.50-2. (in Japanese)

[133] T. Ohkami, \A Signal Processor with a Dynamically Recon�gurable Computation
Network," Proceedings of the Information Processing Group Meeting of the IEE
Japan, November 25, 1983, Paper No.IP-83-41. (in Japanese)

144

[134] T. Ohkami, \MSP: A High-Speed Signal Processor with a Dynamically Recon�g-
urable Computation Network," Proceedings of the 1984 International Symposium on
Noise and Clutter Rejection in Radars and Imaging Sensors, October 1984, pp.633{
638.

[135] T. Ohkami, \A Uni�ed Approach to Debugging and Performance Evaluation of Paral-
lel Programs," Proceedings of the Programming Languages Meeting of the IPS Japan,
February 1988, Paper No.15-1.

[136] T. Ohkami, \Experience with Chrysalis/Buttery," Proceedings of the Operating Sys-
tems Meeting of the IPS Japan, December 1987, Paper No.37-5.

[137] T. Ohkami, N. Iijima, T. Sakamoto, T. Hirai, A. Iwase, and C. Tanaka, \A Dy-
namically Recon�gurable Computation Network for Flexible and High-Speed Signal
Processing," Proceedings of the IEEE International Concerence on Circuits and Com-
puters, September-October 1982, pp.52{55.

[138] T. Ohkami and A. Iwase, \An Architecture of a Small Control Processor for High-
Speed Real-Time Signal Processing," Digest of Papers, IEEE COMPCON Fall '84,
September 1984, pp.255{262.

[139] T. Ohkami, A. Iwase, and C. Tanaka, \Pipelined FFT Processing," Proceedings of
the 1982 Fall IPS Japan Conference, October 1982, pp.161{162. (in Japanese)

[140] T. Okada, K. Kobayashi, T. Kawabe, and S. Nagashima, \Supercomputer HITAC
S-810 Featuring 630 MFLOPS (Maximum Performance) and 1G-Byte Semiconduc-
tor Extended Storage," Nikkei Electronics, No.314, April 11, 1983, pp.159{184. (in
Japanese)

[141] A. Padegs, \System/370 Extended Architecture: Design Considerations," IBM Jour-
nal of Research and Development, Vol.27, No.3, May 1983, pp.198{205.

[142] A. Padegs, B. B. Moore, R. M. Smith, and W. Buchholz, \The IBM System/370 Vec-
tor Architecture: Design Considerations," IEEE Transactions on Computers, Vol.37,
No.5, May 1988, pp.509{520.

[143] D. A. Padua, D. J. Kuck, and D. H. Lawrie, \High-Speed Multiprocessors and Com-
pilation Techniques," IEEE Transactions on Computers, Vol.29, No.9, September
1980, pp.763{776.

[144] D. A. Padua and M. J. Wolfe, \Advanced Compiler Optimizations for Supercomput-
ers," Communications of the ACM, Vol.29, No.12, December 1986, pp.1184{1201.

145

[145] D. A. Patterson and C. H. S�equin, \A VLSI RISC," IEEE Computer, Vol.15, No.9,
September 1982, pp.8{22.

[146] D. A. Patterson and D. R. Ditzel, \The Case for the Reduced Instruction Set Com-
puter," ACM SIGARCH Computer Architecture News, Vol.8, No.6, October 15, 1980,
pp.25{33.

[147] D. A. Patterson, \Reduced Instruction Set Computers," Communications of the
ACM, Vol.28, No.1, Janurary 1985, pp.8{21.

[148] P. C. Patton, \Multiprocessors: Architecture and Applications," IEEE Computer,
Vol.18, No.6, June 1985, pp.29{40.

[149] A. Pedar and V. V. S. Sarma, \Architecture Optimization of Aerospace Computing
Systems," IEEE Transactions on Computers, Vol.32, No.10, October 1983, pp.911{
922.

[150] A. Peled, \The Next Computer Revolution," Scienti�c American, October 1987,
pp.34{42.

[151] G. F. P�ster, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P.
McAuli�e, E. A. Melton, V. A. Norton, and J. Weiss, \The IBM Research Parallel
Processor Prototype (RP3): Instroduction and Architecture," Proceedings of the 1985
International Conference on Parallel Processing, August 1985, pp.764{771.

[152] G. F. P�ster and V. A. Norton, \Hot Spot Contention and Combining in Multi-
stage Interconnection Networks," IEEE Transactions on Computers, Vol.34, No.10,
October 1985, pp.943{948.

[153] K. E. Plambeck, \Concepts of Enterprise Systems Architecture," IBM Systems Jour-
nal, Vol.28, No.1, 1989, pp.39{61.

[154] J. L. Potter (Ed.), The Massively Parallel Processor, The MIT Press, 1985.

[155] G. Radin, \The 801 Minicomputer," IBM Journal of Research and Development,
Vo.23, No.3, May 1983, pp.237{246.

[156] C. V. Ramamoorthy and H. F. Li, \Pipeline Architecture," ACM Computing Surveys,
Vol.9, No.1, March 1977, pp.61{102.

[157] T. Riordan, G. P. Grewal, S. Hsu, J. Kinsel, J. Libby, R. March, M. Mills, P. Ries,
and R. Sco�eld, \System Design Using the MIPS R3000/3010 RISC Chipset," Digest
of Papers, COMPCON Spring 89, February/March 1989, pp.494{498.

146

[158] M. G. Rodd, \Real-Time Issues in Distributed Data Bases for Real-Time Control,"
Proceedings of the IFAC/IFIP Workshop on Distributed Databases in Real-Time Con-
trol, October 1989, pp.1{7.

[159] V. P. Roychowdhury, J. Bruck, and T. Kailath, \E�cient Algorithms for Recon�gu-
ration in VLSI/WSI Arrays," IEEE Transactions on Computers, Vol.39, No.4, April
1990, pp.480{489.

[160] A. Rushton, Recon�gurable Processor-Array: A Bit-Sliced Parallel Computer, The
MIT Press, 1989.

[161] R. M. Russell, \The CRAY-1 Computer System," Communications of the ACM,
Vol.21, No.1, January 1978, pp.63{72.

[162] K. Sapiecha and R. Jarocki, \Modular Architecture for High Performance Imple-
mentation of the FFT Algorithm," IEEE Transactions on Computers, Vol.39, No.12,
December 1990, pp.1464{1468.

[163] M. Satyanarayanan, \Commercial Multiprocessing Systems," IEEE Computer,
Vol.13, No.5, May 1980, pp.75{96.

[164] R. G. Scarborough and H. G. Kolsky, \A Vectorizing Fortran Compiler," IBM Jour-
nal of Research and Development, Vol.30, No.2, March 1986, pp.163{171.

[165] G. E. Schmidt, \The Buttery Parallel Processor," Proceedings of the 2nd Interna-
tional Conference on Supercomputing, Vol.1, 1987, pp.362{365.

[166] J. D. Schoe�er, \Distributed Computer Systems for Industrial Process Control,"
IEEE Computer, Vol.17, No.2, February 1984, pp.11{18.

[167] C. L. Seitz, \The Cosmic Cube," Communications of the ACM, Vol.28, No.1, January
1985, pp.22{33.

[168] H. J. Siegel, \Interconnection Networks for SIMD Machines," IEEE Computer,
Vol.12, No.6, June 1979, pp.57{65.

[169] V. P. Srini, Dynamically Recon�gurable Systems Research, Technical Report
UCB/CSD 88/441, Computer Science Division, University of California at Berke-
ley, August 1988.

[170] J. A. Stankovic, \Real-Time Computing Systems: The Next Generation," in J. A.
Stankovic and K. Ramamritham (Eds.), Tutorial: Hard Real-Time Systems, IEEE
Computer Society, 1988, pp.14{37.

147

[171] J. A. Stankovic, \A Serious Problem for Next-Generation Systems," IEEE Computer,
Vol.21, No.10, October 1988, pp.10{19.

[172] J. A. Stankovic and K. Ramamritham (Eds.), Tutorial: Hard Real-Time Systems,
IEEE Computer Society Press, 1988.

[173] H. R. Strong, \Vector Execution of Flow Graphs," Journal of the ACM, Vol.30, No.1,
January 1983, pp.186{196.

[174] Y. Tanakura, M. Takiuchi, and S. Kamiya, \A Fortran Compiling System That
Can Derive the Full Performance of the Supercomputer," Nikkei Electronics, No.387,
January 27, 1986, pp.201{226. (in Japanese)

[175] S. Thakkar, P. Gi�ord, and G. Fielland, \The Balance Multiprocessor System," IEEE
Micro, Vol.8, No.1, February 1988, pp.57{69.

[176] Tran-Thong, \Algebraic Formulation of the Fast Fourier Transform," IEEE Circuits
and Systems, Vol.3, No.2, June 1981, pp.9{19.

[177] P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins, \Data-Driven and Demand-
Driven Computer Architecture," ACM Computing Reviews, Vol.14, No.1, March
1982, pp.93{143.

[178] S. Tsujimichi, T. Ohkami, and Y. Shimazu, \A Next-Generation 32-Bit VLSI Sig-
nal Processor," Proceedings of the IEEE-IECEJ-ASJ International Conference on
Acoustics, Speech, and Signal Processing, April 1986, pp.413{416.

[179] S. G. Tucker, \The IBM 3090 System: An Overview," IBM Systems Journal, Vol.25,
No.1, 1986, pp.4{19.

[180] L. W. Tucker and G. G. Robertson, \Architecture and Applications of the Connection
Machine," IEEE Computer, Vol.21, No.8, August 1988, pp.26{38.

[181] S. Uchida et al., \Microprogram Control for High-Speed Pipeline Signal Processor,"
Transactions of IECE Japan, Vol.58-D, No.6, June 1975, pp.328{335.

[182] D. W. Wall, \Limits of Instruction-Level Parallelism," Proceedings of the 4th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, April 1991, pp.176{188.

[183] P. Wallich, \Toward Simpler, Faster Computers," IEEE Spectrum, August 1985,
pp.38{45.

[184] W. H. Ware, \The Ultimate Computer," IEEE Stepctrum, Vol.9, No.3, March 1972,
pp.84{91.

148

[185] W. J. Watson, \The TI ASC|A Highly Modular and Flexible Super Computer
Architecture," Proceedings of the AFIPS 1972 Fall Joint Computer Conference, 1972,
pp.221{228.

[186] H. Weberpals, \Architectural Approach to the IBM 3090E Vector Performance,"
Parallel Computing, Vol.13, No.1, January 1990, pp.47{59.

[187] J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P. M. Melliar-
Smith, R. E. Shostak, C. B. Weinstock, \SIFT: Design and Analysis of a Fault-
Tolerant Computer for Aircraft Control," Proceedings of the IEEE, Vol.66, No.11,
November 1978, pp.1240{1255.

[188] L. C. Widdoes, Jr., \The S-1 Project: Developing High-Performance Digital Com-
puters," Digest of Papers, COMPCON Spring 80, 1980, pp.282{291.

[189] W. R. Wittmayer, \Array Processor Provides High Throughput Rates," Computer
Design, March 1978, pp.93{100.

[190] M. Wolfe, \Vector Optimization vs Vectorization," Journal of Parallel and Dis-
tributed Computing, Vol.5, No.5, October 1988, pp.551{567.

[191] M. Wolfe and U. Banerjee, \Data Dependence and Its Application to Parallel Pro-
cessing," International Journal of Parallel Programming, Vol.16, No.2, April 1987,
pp.137{178.

[192] P. Woodbury, A. Wilson, B. Shein, L. Gernter, P. Y. Chen, J. Barttlet, and Z.
Aral, \Shared MemoryMultiprocessors: The Right Approach to Parallel Processing,"
Digest of Papers, COMPCON Spring 89, February/March 1989, pp.72{80.

[193] J. Worlton, A Philosophy of Supercomputing, Technical Report LA-8849-MS, Los
Alamos National Laboratory, June 1981.

[194] C.-L. Wu and T.-Y. Feng, Tutorial: Interconnection Networks for Parallel and Dis-
tributed Processing, IEEE Computer Society Press, 1984.

[195] Y. S. Wu, \Architectural Considerations of a Signal Processor Under Microprogram
Control," Proceedings of the 1972 Spring Joint Computer Conference, 1972, pp.675{
683.

[196] W. A. Wulf and S. P. Harbison, \Reections in a Pool of Processors | An Experience
Report on C.mmp/Hydra," Proceedings of the National Computer Conference, 1978,
pp.939{951.

149

[197] W. A. Wulf, R. Levin, and S. P. Harbison, HYDRA/C.mmp: An Experimental Com-
puter System, McGraw-Hill, 1981.

[198] S. Yalamanchili and J. K. Aggarwal, \Recon�guration Strategies for Parallel Archi-
tectures," IEEE Computer, Vol.18, No.12, December 1985, pp.44{61.

[199] N. Yasumura, Y. Tanaka, Y. Kanada, and A. Aoyama, \Compiling Algorithms and
Techniques for the S-810 Vector Processor," Proceedings of the 1984 International
Conference on Parallel Processing, August 1984, pp.285{290.

150

	Title Page
	Title Page
	page 2

	Dynamically Reconfigurable Architecture for a Class of Real-Time Applications
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154

