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This paper summarizes our experience in the Program-
mer's Apprentice project [1, 2] in applying knowledge rep-
resentation and automated reasoning to support software
development. Our basic conclusion is that there currently
exists a collection of knowledge representation and auto-
mated reasoning facilities that are both feasible and useful
to support the next generation of software development
tools.
We support the claim that the facilities presented here

are feasible by describing their implementation in a pro-
totype knowledge representation and reasoning system
called Cake. We support the claim that the facilities are
useful by describing how Cake has been used in the con-
struction of two demonstrations of the next generation of
software tools: the Requirements Apprentice and the De-
bugging Assistant. We do not believe that the facilities
presented here are the only ones that will be needed; how-
ever, they are a good starting point.
The organization of this paper is as follows. The rest

of the introduction discusses general characteristics of fu-
ture software development tools that motivate Cake, fol-
lowed by an overview of the system and the key issues in
its architecture. Section II presents sessions with two ex-
perimental tools implemented on top of Cake, illustrating
the need for particular knowledge representation and au-
tomated reasoning capabilities. Sections III through IX,
which comprise the bulk of the paper, describe each of the
seven layers of Cake in detail. Section X concludes with a
discussion of future directions.

A. Software Development Tools

Cake was developed to support research toward an in-
telligent, interactive software development tool, called the
Programmer's Apprentice, which will assist software en-
gineers in all phases of the programming process. The
following are three key characteristics of such a tool and
their implications for knowledge representation and rea-
soning.

� Knowledge-Intensive: Software engineers, like engi-
neers in other disciplines, seldom reason from �rst
principles. Rather, they rely whenever possible on
their experience with similar problems. In particular,
good software engineers try to reuse parts of solutions
with which they are already familiar (either �rst hand
or learned in school). Thus a systems analysis tool
that is nothing more than an electronic \blank slate"
for box-and-arrow diagrams is not as good as one that
comes with a well-thought-out library of generic di-
agrams for various applications at various levels of
abstraction plus knowledge about how to choose the
appropriate diagram and adapt it to the problem at
hand.

Supporting knowledge-intensive tools will require
powerful facilities for representing structured arti-
facts, such as programs, speci�cations, and require-
ments, at various levels of abstraction

� Intelligent Assistance: Rather than simply accept-
ing and executing commands, an intelligent assistant
checks the reasonableness of decisions, �lls in missing
details, and requests advice about how to carry out
complex operations. These abilities can contribute to
both a software engineer's productivity and the reli-
ability of the �nal product. Another hallmark of an
intelligent assistant is the ability to explain its actions
and decisions in terms that the user can understand.
This allows the user to check what the tool has done.
It also allows the tool to describe the problems it has
encountered when it requires advice.

Supporting intelligent assistance requires 
exible and
powerful automated reasoning over a wide range of
mathematical domains that arise in software develop-
ment, such as boolean logic, types, and algebra. How-
ever, many apparently simple reasoning problems,
such as checking whether a set of boolean propositions
is consistent, are completely solved only by exponen-
tial algorithms. What this means, in our view, is
that the appropriate role for automated deduction is
not as the \main engine" of software tools (as for ex-
ample, in the programs-as-proofs/deductive synthe-
sis approach [3]), but rather as a supporting function
that increases productivity and reliability.

� Evolutionary: Every aspect of software development
is colored by the need for continual evolution. Re-
quirements change because the world changes and be-
cause it is not possible for requirements analysts or
end users to foresee all of the opportunities for a sys-
tem's use. Designs change because requirements and
technology change. Implementations change because
designs change and bugs have to be �xed.

The representations required for knowledge-intensive
tools are large and the automated reasoning required
for intelligent assistance is expensive. Supporting evo-
lution therefore requires special attention to issues of
incremental computation.

B. Overview of Cake

The architecture of Cake comprises the seven layers
shown in Fig. 1. The bottom six layers provide the fol-
lowing \generic" knowledge representation and automated
reasoning facilities:

� The truth maintenance layer stores and maintains de-
pendencies between facts the system has been told or
has deduced. It supports incremental recomputation
of results and simple explanation (using the depen-
dencies as a trace of the system's reasoning).

� The boolean constraint propagation layer performs an
e�cient but incomplete form of general-purpose log-
ical deduction. It also detects \shallow" contradic-
tions.
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Plan Calculus 6%

Frames 16%

Algebra 22%

Types 20%

Equality 6%

Boolean Constraint Propagation 19%

Truth Maintenance 11%

Fig. 1. Seven layer architecture of Cake showing the approximate per-
centage of the total 17,000 lines of code in each layer.

� The equality layer provides a complete reasoner1 for
equality. Full dependency information is recorded so
that equalities can be asserted and retracted.

� The types layer implements a very 
exible version of
typed logic. New types can be de�ned by specializa-
tion, intersection, union, and complement.

� The algebra layer contains special-purpose decision
procedures for common algebraic properties of opera-
tors, such as commutativity, associativity, and transi-
tivity. It also provides limited reasoning facilities for
sets and quanti�ers.

� The frames layer implements the standard frame
notions of inheritance and slot retrieval within a
dependency-directed framework. It also has the ca-
pability of reasoning symbolically using frame con-
straints.

The top layer of Cake, the Plan Calculus, is an exam-
ple of the use of these generic facilities to implement a
specialized formalism for software development. The Plan
Calculus supports representation and reasoning about pro-
gramming concepts, such as input-output speci�cations,
data 
ow, and control 
ow, in a programming-language
independent form.
Each layer in Cake is implemented using only facilities in

the layers below. The order of the layers is an outgrowth of
attempting to maximize the reuse of already implemented
facilities to implement the next layer.
The original kernel of Cake was a truth maintenance sys-

tem with boolean constraint propagation and equality (the
bottom three layers in Fig. 1) developed by McAllester [4]
in 1982. This was modi�ed and extended by the authors
resulting in a system called (for \ asic soning
evice") completed in 1984. The next three layers of

Cake were built on top of between 1984 and 1987
to provide an additional range of broadly applicable fa-
cilities, such as frames and algebraic reasoning. These
six layers together are called (for \ mes in a
ro ositional nvironment") [5, 6].
Cake is implemented in Common Lisp. Each question-

response interaction in the various examples below takes

1A complete reasoner is a procedure that can prove any true theorem
in its language. For an incomplete reasoner, there are true theorems that
cannot be proved.

from a fraction of a second to several minutes on a Sun-4
workstation.

C. Control of Reasoning

Cake presents itself to a software tool developer as an
\active database," i.e., a database that monitors certain
integrity constraints and automatically invokes certain
reasoning processes whenever relevant data appears. A
key architectural issue throughout Cake, therefore, is what
kinds of reasoning should happen spontaneously (i.e., in
immediate response to the appearance of data) as opposed
to being explicitly invoked and controlled by some higher-
level process. The need for this division stems from the
combinatorially explosive nature of many automated rea-
soning algorithms coupled with the fact that an intelligent
assistant must not \go away" for long and upredictable pe-
riods of time.
In general, we restrict the spontaneous reasoning in

Cake to algorithms that have linear or close to linear cost.
Examples of spontaneous reasoning in Cake include main-
tenance of well-founded support in the truth maintenance
layer (linear time) and the congruence closure algorithm
(n logn) in the equality layer. The �nal tuning of what
is done spontaneously depends of course on the comput-
ing resources available to the system and needs to be re-
evaluated whenever new algorithms are discovered. How-
ever, we expect the basic need for this division to exist for
the forseeable future.
It is also desirable for the spontaneous reasoning algo-

rithms to always give the same answer independent of the
order in which information appears. All of the sponta-
neous reasoning in Cake has this property.
Sometimes, if the complete algorithm for some kind of

reasoning is too expensive to be done spontaneously, it
makes sense to break it into two parts: one part that
solves a limited part of the problem e�ciently, and another
part that can solve the complete problem under explicit
control. The intuition underlying this strategy is that an
intelligent assistant should be able to make \obvious" de-
ductions spontaneously, whereas you are willing to wait
for the answer to more a di�cult question. (The general
question of what deductions are \obvious" and how to tai-
lor a reasoning procedure to e�ciently produce only those
deductions is a deep and interesting one.)
The best example of this approach in Cake is the way

propositional reasoning is handled. A complete decision
procedure for propositional logic is exponential in the
worst case. The boolean constraint propagation layer pro-
vides an e�cient (linear time) but incomplete kind of spon-
taneous propositional reasoning, together with a special
procedure (Ask|see Section IV.B) that can be used to ex-
plicitly request more complete reasoning when desired. A
similar approach is taken to reasoning about types.
When explicit control of reasoning is required, it can

come from several sources. Sometimes there is enough
context in the application task that the tool developer
can forsee where to insert the appropriate calls to control
procedures such as Ask (this is true in a number of places
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in the two experimental tools described below). Alter-
natively, context-dependent heuristics may be used. For
example, Section VIII.B describes a heuristic for expand-
ing frame type de�nitions based on the appearance of slot
expressions. At worst, responsibility for explicit control
of expensive reasoning can be passed through to the end
user, in which case a tool degrades into a \guided proof"
mode of use.

D. Hybrid Representation and Reasoning

A hybrid knowledge representation and reasoning sys-
tem is one in which two or more fundamentally di�erent
algorithms and data abstractions are used. In this sense,
it is fair to say that all practical knowledge representation
and reasoning systems are in fact hybrid. For example,
no practical system tries to deduce that 2+2=4 from the
axioms of arithmetic; instead, systems like Cake call the
addition procedure of the underlying programming lan-
guage. The motivation for a hybrid architecture is thus
to take advantage of specialized methods for many com-
mon kinds of reasoning that are much more e�cient than
a single universal method can ever be.
Each layer of Cake introduces new data abstractions and

algorithms. The major lesson we learned from the hybrid
architecture of the system is the di�culty of debugging
all of the interactions between reasoners on a case-by-case
basis. For example, for some pairs of complete reason-
ers (e.g., equality and transitivity), we wanted to make
sure that the resulting combination was a complete rea-
soner for the union theory. This analysis was complicated
by the fact that the relevant facts may come and go in
any order via the truth maintenance system. In the case
of combining a complete reasoner with an incomplete rea-
soner, (e.g., equality and boolean constraint propagation),
we had di�culty giving a principled description of the re-
sulting incomplete reasoner. We also spent a lot of e�ort
on the interaction between equality and pattern-directed
invocation [7]. (A subsidiary moral here is that equality
interacts with everything!)
A strong solution to the problems of hybrid architec-

tures would be a simple interface speci�cation that guar-
anteed completeness whenever a new reasoner was added.
Examples of such interfaces exist in restricted settings,
such as combining decision procedures for disjoint theo-
ries [8] and the addition of sort reasoners to uni�cation-
based systems [9]. Neither of these frameworks, however,
deals with combining complete and incomplete reasoners,
or includes dependencies and changing beliefs as part of
the interface.
Barring the invention of a general hybrid architec-

ture with strong completeness guarantees, the only other
promising approach for a system like Cake is a frame-
work that provides a standard protocol for inference within
each reasoner [10] and for communication between reason-
ers [11].

E. Retraction and E�ciency

When we �rst started to implement Cake, we embraced
evolution and incremental computation to the fullest ex-
tent possible: every fact in Cake was retractable and fully
supported by dependencies. This led to a system that,
although it was very \clean," was also unbearably slow.
Upon further re
ection, we realized that a lot of the sys-
tem's resources (time and memory) were being expended
on making it possible to retract, for example, the commu-
tativity of addition, or the fact that integers are a subtype
of numbers.
The current implementation of Cake therefore has in

many places two parallel mechanisms for the same kind
of reasoning: an e�cient non-retractable version and a
more expensive retractable one. For example (see Sec-
tion VII.A), an operator can either be permanently (i.e.,
non-retractably) de�ned to be commutative, or its com-
mutativity can be asserted as a fact that can later be re-
tracted.
The availability of two parallel mechanisms with small

granularity (individual facts) provides the tool developer
with a spectrum of choices in the trade-o� between re-
traction and e�ciency, which we have found very useful.
However, it also led to a signi�cant increase in the com-
plexity of the implementation of Cake, since it is really a
kind of hybridization|not two mechanisms for two di�er-
ent theories as discussed above, but two mechanisms for
the same theory under di�erent conditions. In addition to
the e�ort of implementing all the extra mechanism for the
non-retractable version, we also had to bear the cost of
making sure that the retractable and the non-retractable
versions interact properly.

To illustrate the kind of software development tools that
motivate Cake, this section presents sessions with two ex-
perimental tools that have been implemented as part of the
Programmer's Apprentice project using Cake. See [12, 13]
for a description of a third tool based on Cake (the Design
Apprentice), which was only partially implemented.
The typographic conventions used in this section and

the rest of the paper are as follow. What the user types
is shown following the > prompt. What the system prints
back is shown indented below. (If what the system prints
back is unimportant in the current context, it is omitted
to save space.) Editorial comments are shown in italics.

A. The Requirements Apprentice

The Requirements Apprentice ( ) is an intelligent as-
sistant for software requirements acquisition and analysis.
The focus of the is on the formalization phase of soft-
ware requirements, i.e., the process by which informal de-
scriptions become formal ones. The kinds of informality
the deals with include: abbreviation, ambiguity, poor
ordering, contradiction, incompleteness, and inaccuracy.
The motivation and technical contributions of the

are well described elsewhere [14]. In this section, we will
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Fig. 2. Architecture of the Requirements Apprentice showing the role of Cake.

concentrate instead on the knowledge representation and
automated reasoning facilities upon which it relies. To
avoid distraction with the syntactic details of the 's in-
put language, what the user types in the session below has
been replaced by editorial paraphrases. The correspond-
ing literal transcript can be found in [14].
Fig. 2 shows the role of the in relation to other agents

involved in the requirements process. Note that the
does not interact directly with an end user, but is an as-
sistant to a requirements analyst.
The produces three kinds of output. Interactive out-

put noti�es the analyst of conclusions drawn and problems
detected as information is being entered. A requirements
knowledge base represents everything the knows about
the evolving requirement. Finally, the can create a
more or less traditional requirements document summa-
rizing the current state of the knowledge base.
Internally, the is composed of three parts: Cake pro-

vides the basic knowledge representation and automated
reasoning facilities. The executive (Exec) contains algo-
rithms and data structures that are speci�c to the and
provides explicit control of reasoning for Cake. The clich�e
library contains reusable fragments of requirements and
associated domain models, represented as a frame hierar-
chy. This demonstration system does not emphasize the
user interface.
The example session below is based on a requirements

benchmark [15] dealing with the speci�cation of a univer-
sity library database. Although the 's clich�e library con-
tains many concepts that will be relevant, the doesn't
know anything about libraries per se at the start of the
session.

1>``University Library Database" is a system.

2>``University Library" is an instance of ``library".
is part of the environment.

The distinction between the system being speci�ed and
the environment (which cannot be changed) is part of the

's basic epistemology.
The simple initial statement of the requirement is that

the database \track" the state of the (actual) library.
There are several di�erent versions of tracking speci�ca-
tions in the clich�e library. The type of tracking system
being speci�ed will be re�ned as the session progresses.

3> tracks .
ULDB Is-Instance-Of Tracking-System.

At this point, a number of issues are pending. The
must accept information in any order presented by the

analyst (e.g., uses of words before their de�nition) and
come to the same conclusions. The third pending issue
below says that the needs to know the possible states
of the library.

4>Show pending issues.
1- Need-Further-Disambiguation of Tracks.
2- Need-Definition of "Library".
3- Need-Definition (Item-States UL).

A central concept in the remainder of this session is
repository, represented as a frame in the 's clich�e library
with the following slots: the type of items stored in it, the
patrons that utilize it, and the sta� that manages it. Two
key operations on a repository are adding and removing

items.

5>``Library" is a kind of repository, with items of
type ``book."

Notice that the new type book is introduced above. The
analyst now speci�es some properties of this type.

6>``Book" is a kind of physical object, with slots ``title,"
``author," and `` ."

7>`` " is a kind of integer. uniquely identi�es
a book.

The analyst now begins to de�ne various types of trans-
actions on the database. As more information is accumu-
lated, the is able to further re�ne the type of to
be a tracking information system (because it records in-
formation about the history of the tracked object, rather
than just providing the current state).

8>``Check out" is a transaction that records removing
books from the library.
ULDB Is-Instance-Of Tracking-Information-System.

9>``Check in" is the inverse of check out.
"Check-In" Is-Instance-Of Action-Tracking-Opn.

Using simple algebraic reasoning, the is able to de-
duce quite a lot of information from the statement that
check in is the inverse of check out (i.e., it tracks the in-
verse state change).
The �rst serious problem detected by the in this

session arises when the analyst de�nes two further trans-
actions below.

10>``Unshelf" is a transaction that records removing
books from the library.

11>``Unshelf all" is a transaction that records removing
books from the library. Unshelf all removes the set of
all books with a given .

**Conflict #1
**Colliding-Definitions Unshelf And Unshelf-All

Based on what it has been told so far, the is able
deduce that the unshelf transaction and the unshelf all
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transaction are identical: Since uniquely identi�es a
book, there can never be two books with the same .
Therefore the set of books removed by unshelf all must
contain exactly one book. The has a built-in expecta-
tion that terms should not be synonymous unless they are
explicitly de�ned to be synonyms.
In response to the analyst's request for an explanation

of the problem, the prints out a listing (mostly elided
below) of the dependency tree underlying the problematic
conclusion. In the part of the tree shown, we can see
boolean logic and equality reasoning; the full tree includes
deductions from all layers of Cake. Unfortunately, the full
tree is much too large and hard to understand to be useful
to the analyst in raw form.

12>Explain.
1. (Equal-Defs Unshelf Unshelf-All) is True

by Implication from:
1. (Implies

(And (Tracking-Operation Unshelf)
(Tracking-Operation Unshelf-All)
(= Frame-I4 Frame-I5))

(Equal-Defs Unshelf Unshelf-All))
2. (And (Tracking-Operation Unshelf)

(Tracking-Operation Unshelf-All)
(= Frame-I4 Frame-I5)) is True

by Conjunction from:
1. (= Frame-I4 Frame-I5) is True

by Equality from:
: : :

**Premises:
1. (= (Records Unshelf-All) Remove)
2. (= (Objects Unshelf-All)

(!The-Set-Of-All (?B)
Such-That (= (ISBN ?B) $Input)))

3. (= (Records Unshelf) Remove)
4. (Default 23

(= (Objects Unshelf)
(!The (?O) Such-That

(= (ISBN ?O) $Input)))
: : :

A slight improvement over the full dependency tree is
the list of premises shown above. Premises correspond-
ing to statements made by the analyst are printed �rst,
followed by assumptions that come from the clich�e li-
brary. Unfortunately, even the premise list can become
quite long. (In this example, the untruncated list has over
twenty entries.)
It is often a good idea to ignore a con
ict or contradic-

tion for a while until clarifying information comes along. If
the analyst chooses to ignore this con
ict, it will be added
to the list of pending issues.
At this point, however, the analyst realizes that the re-

quirement thus far re
ects a token/type confusion between
the notion of a physical copy of a book and the notion
of a book as a class|i.e., a set of copies with the same

. (This confusion actually appears in the benchmark
on which this session is based.) To �x the problem, a new
term denoting \copy of book" must be introduced. In ad-
dition, something has to be done about the fact that some
uses of \book" in the statements above refer to the old
concept and some refer to the new concept.
The provides the Reformulate command demon-

strated below to assist with this kind of incremental
change. The command displays all the statements that
contained the term in question and asks the analyst to

choose where substitution should occur. The then re-
tracts the obsolete statements and asserts the new ones,
relying on Cake's truth maintenance facilities to preserve
all of the appropriate deductions.

13>Reformulate using ``copy of book" in place of book.

5.``Library" is a kind of repository, with items of
type ``book."
**Reformulate? >Yes

6.``Book" is a kind of physical object, with slots ``title,"
``author," and `` ."
**Reformulate? >Yes

7.`` " is a kind of integer. uniquely identi�es
a book.
**Reformulate? >No

In the interests of brevity, the session is truncated at
this point.

B. The Debugging Assistant

The Debugging Assistant ( ) is an experimental
tool that helps a programmer localize a bug, i.e., identify
a particular procedure call or section of code that needs
to be changed.
As in the previous section, the session presented here

is extracted from a longer document [16], omitting most
of the motivation and technical details not relating specif-
ically to the use of Cake's facilities. In particular, the
localization algorithm, which is the key contribution of

from the standpoint of research in debugging, is
only super�cially described here.
Fig. 3 shows 's overall architecture. 's

main input is source code. As shown in the lower left
corner of the �gure, a program analyzer translates the
source code into the Plan Calculus by analyzing the data
and control 
ow. In addition, may have access
to some incomplete speci�cation information, either in the
form of explicitly provided test cases or as a byproduct of
earlier requirements and design activities using tools like
the Requirements Apprentice and the Design Apprentice.
A program bug manifests itself in Cake as a contradic-

tion between the behavior of the program and its speci�-
cations. commences bug localization when such
a contradiction arises. generates an initial set of
suspects (procedure calls) by retrieving the premises un-
derlying the contradiction in Cake's dependency structure.
Some of the suspects will typically be conditionals, or

\splits" in control 
ow. attempts to exoner-
ate splits by performing a special kind of reasoning-by-
cases using Cake's facilities for asserting and retracting
premises. (This is an example of explicitly controlled rea-
soning.)
Dependency analysis and split analysis will usually ex-

onerate some, but not all, of the suspects. At this
point requires more speci�cation information, so
it queries the user about one of the remaining suspects
(heuristics are used to choose which one). The new infor-
mation obtained in the query will typically result in new
deductions in Cake and therefore a changed dependency
structure. Analysis of the new dependencies may exoner-
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Fig. 3. Architecture of the Debugging Assistant showing the role of Cake.

ate further suspects.
iterates through the steps of dependency anal-

ysis, split analysis, and querying until it �nds itself with
one suspect or no suspects. If one suspect remains and
it represents a call to a system primitive (such as Car in
Lisp), then concludes that the bug is due to an
incorrect use of that primitive.
If one suspect remains and it represents a call to a user-

de�ned procedure, then attempts to further lo-
calize the bug. \zooms in" on the procedure call
by expanding its de�nition, and continues debugging the
expanded de�nition. If is unable to localize the
bug after zooming in (it ends having no suspects), then
it concludes that the bug is at some undetermined place
within the enclosing procedure call.
Unlike the Requirements Apprentice, is not

a knowledge-intensive tool|there is no reusable library
component in . Much other work in this area (e.g.,
[17, 18]) has explored the use of prede�ned bug patterns.

is an attempt to support the kind of general-
purpose bug localization that people do in unfamiliar sit-
uations.
The following transcript illustrates the use of

to �nd the bug in the uni�cation program in Fig. 4. A
much better user interface, which displays the code being
debugged with helpful highlighting and underlining was
designed for (see [16]), but is omitted here to
save space.
The toplevel procedure in Fig. 4 is Unify. Its inputs

are two patterns and an environment (an initial list of
bindings). Patterns are represented as lists. Variables in

(Defun Unify (P1 P2 Env)
(Cond ((Eq Env 'NoMatch) 'NoMatch)

((VariableP P1)
(If (VariableP P2)

(Var-Var-Match P1 P2 Env)
(Extend-If-Possible P1 P2 Env)))

((VariableP P2)
(Extend-If-Possible P2 P1 Env))

((ConstantP P1)
(If (ConstantP P2)

(If (Same-Constant P1 P2)
Env

'NoMatch)
'NoMatch))

((ConstantP P2) 'NoMatch)
(T (Unify (Cdr P1)

(Cdr P2)
(Unify (Car P1) (Car P2) Env)))))

(Defun Var-Var-Match (V1 V2 Env)
(If (Eq V1 V2)

Env
(Let ((B1 (Lookup V1 Env))

(B2 (Lookup V2 Env)))
(If (Null B1)

(If (Null B2)
(Extend V1 V2 Env)

(Unify V1 (Binding-Val B2) Env))
(Unify (Binding-Val B1)

(If (Null B2)
V2

(Binding-Val B2))
Env)))))

(Defun Extend-If-Possible (Var Val Env)
(Let ((Value-Cell (Lookup Var Env)))
(If (Null Value-Cell)

(If (Freeof Var Val Env)
(Extend Var Val Env)

'NoMatch)
(Unify (Binding-Val Value-Cell) Val Env))))

(Defun Freeof (Var E Env)
(Cond ((ConstantP E) T)

((VariableP E)
(If (Equal Var E)

Nil
(Let ((B (Lookup E Env)))
(If (Null B)

T
(Freeof Var (Binding-Val B) Env)))))

((Freeof Var (Car E) Env)
(Freeof Var (Cdr E) Env))))

(Defun Lookup (Var Env)
(Cond ((Null Env) Nil)

((Equal Var
(Binding-Var (Car Env))) (Car Var))

(T (Lookup Var (Cdr Env)))))

(Defun Extend (Var Val Env)
(Cons (New-Binding Var Val) Env))

(Defun ConstantP (X) (Atom X))

(Defun Same-Constant (X Y) (Eq X Y))

(Defun VariableP (X)
(And (ConsP X) (Eq (Car X) '?)))

(Defun New-Binding (Var Value) (Cons Var Value))

(Defun Binding-Var (Cell) (Car Cell))

(Defun Binding-Val (Cell) (Cdr Cell))

Fig. 4. Common Lisp source code for uni�cation program with bug.

patterns are represented as lists whose �rst element is a
question mark. Unify is supposed to return either a list
of bindings that unify the two given patterns, or the atom
NoMatch if the patterns are incompatible. A binding is
represented as a dotted pair whose Car is a variable. No
speci�cation information is provided to prior to
the session below.
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The following are three examples of correct test cases
for Unify.

>(Unify '(F (? X) (? Y)) '(F 3 4) Nil)
(((? X) . 3) ((? Y) . 4))

>(Unify '(F (? X)) '(G 3) Nil)
NoMatch

>(Unify '(F 1) '(F 1) Nil)
Nil

However, the following test case reveals the presence of a
bug.

>(Unify '((? X)) '((? X)) Nil)
((? X) . (? X))

The correct output here is Nil. To appreciate the assis-
tance provided by in the transcript below, the
reader at this point is encouraged to examine the code in
Fig. 4 to try to �nd the cause of the incorrect output.

is invoked by informing it of the correct output
for the preceding test case.

1>(Correct-Output-Is Nil)

translates the code in Fig. 4 into the Plan Cal-
culus and discovers that the (incorrect) output value in
this test case depends (among other things) on the under-
lined recursive call to Unify. To allocate blame, it must
ask if the arguments to this call to Unify are correct (for
this test case). If the arguments are correct, then this pro-
cedure is to blame. If they are not, then the problem is
earlier in the code.

**Within UNIFY,
procedure call (Unify Nil Nil '(((? X) . (? X))))
returned incorrect value: (((? X) . (? X)))

Was UNIFY called correctly here?

Since the correct environment to be returned in this
test case is Nil, a non-Nil environment list, such as the
third argument above, should never be created. Therefore
the procedure call above is incorrect. The user informs

of this fact as shown below.

2>No
Enter violated condition:

3>(Not (Eq Arg3 Actual3))

The incorrect environment list above was produced by
the other (non-underlined) recursive call to Unify.

therefore queries about whether it was called cor-
rectly.

**Within UNIFY,
procedure call (Unify '(? X) '(? X) Nil)
returned incorrect value: (((? X) . (? X)))

Was UNIFY called correctly here?
4>Yes

The arguments to this procedure call are correct, so
expands Unify again (this time with di�erent ar-

guments). In this expansion, is able to elimi-
nate (using split analysis) all of the suspects except for
Var-Var-Match.

There is a bug within UNIFY.
Zooming in...

There is a bug within VAR-VAR-MATCH.
Zooming in...

therefore expands the call to Var-Var-Match

and then queries about one of the procedure calls on which
its output depends in this test case, namely Extend.

**Within VAR-VAR-MATCH,
procedure call (Extend '(? X) '(? X) Nil)
returned incorrect value: (((? X) . (? X)))

Was EXTEND called correctly here?

Since Extend is the procedure that builds a bigger en-
vironment list, it should never be called in this test case.
The user informs of this fact as shown below.

5>No
Enter violated condition:

6>(Not (Executed Extend))

Without any further input from the user, lo-
calizes the bug to the call to Eq in Var-Var-Match.

Dependency analysis exonerates: Extend.

**Within VAR-VAR-MATCH,
procedure call (Eq '(? X) '(? X))
returned incorrect value: Nil

EQ is primitive; localization complete.

An experienced Lisp programmer would now immedi-
ately recognize the problem: Since variables are repre-
sented as lists, two variables need to be compared using
Equal, not Eq. Notice that required only six small
pieces of information from the user to help �nd this bug.
Because of the way is implemented on top

of Cake, the localization algorithm demonstrated above
works equally well for debugging designs (mixtures of in-
complete code and partial speci�cations) as it does for
debugging fully completed code.

After this introductory material, we now begin the layer-
by-layer description of Cake.

The bottommost layer of Cake is a simple, monotonic
truth maintenance system [19]. Truth maintenance is the
foundation of Cake in the sense that the reasoning proce-
dures in all layers are required to record their dependencies
in the single uniform network provided by this layer. Fa-
cilities are also provided so that further extensions to Cake
can obey this discipline. This architecture is motivated by
the evolutionary nature of software development and the
need to support intelligent assistance.
The fundamental data abstraction in the truth mainte-

nance layer is a fact (also called a node). Every fact is in
one of two states: in (believed) or out (not believed).2

Examples of facts in the Requirements Apprentice are:
\check in is the inverse of check out" (a user-provided
fact|see Section II.A, line 9) and \check out takes an

as input" (a deduced fact).
Dependencies form a network with the facts as nodes.

Each dependency speci�es a set of facts (the supports) that
has been used to deduce some other fact (the conclusion).
Each dependency may also include an arbitrary documen-
tation string.

2This is a white lie. In order to support the propositional inference
algorithm more e�ciently, facts in Cake have three states, as described
in Section IV.
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The truth maintenance system ensures that all (and
only) facts with well-founded support are in. A fact has
well-founded support if it is either a premise (a distin-
guished class of facts whose belief state is set externally)
or the conclusion of a dependency all of whose supports
have well-founded support.
The truth maintenance system maintains this invariant

incrementally whenever a premise is asserted or retracted
(state set to in or out), or when a dependency is added
(dependencies may not be removed). The algorithm visits
each node in the network at most once (dependency cycles
are prohibited). This is therefore an example of a kind of
reasoning that is inexpensive enough to run spontaneously.
Another important service provided by the truth main-

tenance layer is the triggering of attached procedures
(demons) whenever the state of a fact changes. This fa-
cility is used by other layers to implement various kinds
of specialized processing, such as searching for an alter-
native proof when a fact goes out. It is also used in the
Requirements Apprentice to monitor when certain impor-
tant facts come in (such as when two de�nitions are proved
equal|see Section II.A, line 11).

A. Using Dependencies

In addition to supporting the incremental processing de-
scribed above, dependencies are useful for two other pur-
poses.
First, dependencies have been an invaluable aid to us as

developers of Cake for debugging it and the tools built on
top of it. Because Cake is a highly data-directed system,
the 
ow of control through its procedures is not obvious.
When an undesirable conclusion is reached through a long
chain of deductions, it can therefore be quite di�cult to
�nd the error. By convention, whenever a specialized rea-
soner (such as equality) records a dependency, it identi�es
itself in the associated documentation string. The proce-
dure for printing support trees includes these documenta-
tion strings in its output, (e.g., \: : : by Equality from : : :"
in Section II.A, line 12). We have also developed a graph-
ical tool for inspecting support trees.
Second, dependency information can be used to provide

explanations to the end user of a software tool built on
top of Cake. From our experience with Requirements Ap-
prentice, however, the dependency network is best viewed
as only the \raw material" for such explanations. This
is partly because of the sheer size of the dependency tree
supporting a typical fact. Also, most of the internal steps
in these machine generated proofs refer to formal mathe-
matical theories rather than the application domain.

B. Problems

Signi�cant research issues remain regarding how to ab-
stract and present dependency information in a form that
is useful to an end user (for related research, see [20]).
Another major problem with the truth maintenance

layer has been the lack of a methodology for \garbage col-
lection." In the current implementation, nodes can only
be added to the dependency network, never removed. It

is clear that this approach will not scale up to large appli-
cations, since it leads to the accumulation of useless de-
pendency network, which takes up memory and eventually
slows down the system due to paging. (Useless network
does not directly slow down the truth maintenance algo-
rithm, since it is not looked at during normal processing.)
The lack of garbage collection is especially problematical
when a software tool explores many hypotheticals (such as
when the Debugging Assistant considers alternative con-
trol paths through a program). Recent research on com-
bining e�cient context switching mechanisms with truth
maintenance may be helpful in a future version of the this
layer.
In the �nal analysis, the most dramatic architectural im-

pact of the truth maintenance layer has been indirect. The
necessity of recording correct dependencies caused us to
re-implement a number of standard reasoning algorithms
in Cake rather than being able to use implementations
already written by others. Truth maintenance is not a
feature that is easily added to existing code.

The second layer of Cake provides limited propositional
reasoning. Propositional reasoning makes conclusions con-
cerning boolean combinations of facts (i.e., using ^, _,
and :), in which the individual facts are considered to be
atomic objects. This form of deduction underlies all of the
behavior presented in Section II.
Unfortunately, a complete decision procedure for propo-

sitional logic requires time in the worst case exponential
in the number of propositions (facts), which would be un-
acceptable as spontaneous reasoning. Instead, Cake spon-
taneously performs only unit propositional resolutions, in
which one of the inputs is a single fact and the other is a
clause|a disjunction of facts. For example, from :A and
A _ :B _C, Cake can conclude :B _C. This incomplete
inference rule seems to correspond reasonably well with
what users consider to be \obvious" conclusions when us-
ing a tool such as the Requirements Apprentice.
The fundamental data abstraction introduced by the

boolean constraint propagation layer is the clause, repre-
sented as a list of (possibly negated) nodes. Clauses may
be added to Cake, but not removed (and are therefore sub-
ject to the same garbage collection problem as nodes and
dependencies).
The concrete data structures for the boolean constraint

propagation layer and the truth maintenance layer have
been merged to achieve improved e�ciency. Nodes in Cake
therefore have three states, called truth values: true, false,
and unknown, corresponding respectively to a fact being
believed, its negation being believed, or neither.
The constraint propagation algorithm implements unit

resolution by repeatedly performing the following basic
step: Suppose exactly one of the nodes in a clause is un-
known, the others being either true or false. Furthermore,
suppose that each true node is negated in the clause and
each false node is not negated. The state of the unknown
node may then be set to false (if the node is negated in
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the clause) or true (if it is not negated). This algorithm
requires time in the worst case linear in the number of
clauses and requires no additional space for new clauses.
This basic algorithm was developed by McAllester [21]

and can be thought of as a kind of constraint propaga-
tion network [22] (hence the name of the layer: boolean
constraint propagation); it is also related to achieving arc
consistency in boolean constraint satisfaction [23].

A. Contradictions

The propositional inference algorithm described above
also detects \obvious" contradictions. A contradiction has
been detected whenever all the nodes in a clause are set to
the wrong truth value (i.e., all the negated nodes are true
and all the non-negated nodes are false). Contradictions
are handled in Cake through the Common Lisp condition
system [24]. If the contradiction condition is not trapped
by a higher-level control mechanism (as, for example, in
reasoning with simplifying assumptions [25] or in refuta-
tion proofs as shown in the next section), the user is asked
what to do:

>(Assert3 P) ;make premise

>(Assert (Implies P Q))

>(Assert (Not Q))
**Contradiction**
There is a conflict between the premises:

1. P is True.
2. (Implies P Q) is True.
3. (Not Q) is True.

1: Retract one of the premises
2: Ignore this contradiction
3: Return to Common Lisp Top Level

Select option: >1
Premise to retract: >3
Retracting (Not Q) being True...

It is important to note that one of the options above
is to ignore the contradiction. (The user can come back
to deal with it later later). In many conventional theo-
rem proving systems, it is not possible to continue making
sound deductions when there is a contradiction present.
In Cake, however, (due to keeping track of dependencies)
reasoning that does not involve the contradiction can con-
tinue without di�culty. This is particularly important for
tasks such as requirements acquisition where it is imprac-
tical to demand that the user resolve each problem as soon
it is discovered.

B. Explicit Control

Cake can be requested to \try harder" to deduce that
a given unknown node is true (or false) by temporarily
setting the truth value of the node to false (or true). If
the propagation of this temporary state leads to a contra-
diction, then the opposite truth value is deduced (this is
called a refutation proof). In the limit, this approach can
be used to achieve a complete (and therefore exponen-
tial) decision procedure for propositional logic by trying
all combinations of values for all unknown nodes.

3We assume in this paper that procedures such as Assert appropri-
ately quote their arguments. In fact, for building tools on top of Cake,
these procedures will normally pass around internal node (and other)
data structures.

This feature is made available to the implementor of
a software tool on top of Cake through use of the Ask

procedure illustrated below.

>(Assert (Implies R S))

>(Assert (Implies (Not R) S))

>(Truth S) ;retrieve truth value
:Unknown ;constraint propagation is incomplete

>(Ask S) ;try refutation if necessary
:True

>(Why S) ;show immediate support
S is True by Refutation from:
1. (Implies R S) Is True as a premise.
2. (Implies (Not R) S) is True as a premise.

Ask is used throughout the Requirements Apprentice
and the Debugging Assistant whenever the task context
suggests it is worth trying harder for a particular conclu-
sion.

Reasoning about equality is particularly important for
the Programmer's Apprentice, because the formal seman-
tics of the Plan Calculus (Section IX) makes heavy use
of equality; for example, data 
ow arcs in plans denote
equalities between terms representing the source and des-
tination points. Equality reasoning is also at the heart
of the main error-detection heuristic illustrated in the Re-
quirements Apprentice session.
In the preceding two layers, a fact was an atomic

object with no internal structure. The equality layer
introduces the term data abstraction. A term is
a hierachical expression of operators and arguments,
down to the primitive terms at the leaves. Ex-
amples of terms are: 5, (< X (Plus Y 5)), Check-In,
(Inverse Check-Out Check-In), and so on (terms are writ-
ten here in the Lisp pre�x notation used by Cake). Start-
ing with this layer, every node in Cake has a corresponding
term, but not vice versa. Only terms that are \boolean
valued", i.e., that express facts, have corresponding nodes.
Other terms, such as 5 and (Plus Y 5) are the building
blocks of facts. (Cake's internal data structure for terms
prints out in the form #<Term : : :>.)
The equality layer also introduces the equality opera-

tor, =. Equality is an equivalence (transitive, re
exive,
antisymmetric) relation on terms satisfying the congru-
ence closure property: If term t1 equals term t2, then any
term T containing t1 is equal to the term obtained by
substituting t2 for t1 in T .
An equality in Cake is a fact that may be asserted, re-

tracted, and proved like any other. For example:

>(Assert (= Y Z))

>(Why (= (F Y) (F Z)))
(= (F Y) (F Z)) is True by Equality from:
1. (= Y Z) is True as a premise.

Using a number of specially designed internal data
structures, the equality layer of Cake provides a complete
ground reasoner for equality. What this means is that
Cake is guaranteed to spontaneously assign true to an
equality node (a node associated with a term of the form
(= : : : )) if the equality follows from other true equality
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nodes in the system using (only) the semantics of equality
speci�ed above.4

Congruence closure of equivalence relations is a well
studied problem (see, for example, [26]), for which quite
e�cient (n logn average time complexity) algorithms have
been developed. The algorithm used in Cake is somewhat
less than optimal due to some tradeo�s that have been
made to facilitate incremental assertion and retraction of
equalities and the recording of dependencies.

A. Hybrid Reasoning

The interaction between propositional reasoning (as im-
plemented by boolean constraint propagation) and equal-
ity reasoning is a good example of some of the di�culties
that arise in building a hybrid system like Cake.
When you combine a complete reasoner for theory T

(e.g., equality) with an incomplete reasoner for theory U

(e.g., propositional logic), you end up with an incomplete
reasoner for the union theory (the set of all true facts
statable using the symbols of T and/or U). This can be
illustrated simply in Cake by the following example:

>(Assert (= U V))

>(Assert (Or P (= V W)))

>(Assert (Or (Not P) (= V W)))

>(Truth (= (F U) (F W))) ;desired conclusion
:Unknown

>(Truth (= V W)) ;the missing link
:Unknown

The problem here is that the incompleteness in propo-
sitional reasoning has \interrupted" the 
ow of equality
reasoning. Unfortunately, asking the system to try harder
(using Ask) to prove the desired conclusion above doesn't
help, because the equality layer doesn't have any special
algorithms for reasoning with disequalities:

>(Ask (= (F U) (F W)))
:Unknown

The only way to get the desired conclusion is to identify
the missing link and try refutation on it:

>(Ask (= V W))
:True

>(Truth (= (F U) (F W)))
:True

Although the appropriate node on which to try harder
is obvious in this contrived example, it can be di�cult to
identify in practice. This illustrates the general conclusion
that even if the behaviors of two reasoners are relatively
easy to understand individually, it can be hard to under-
stand the net behavior when they are combined.

B. Pattern-Directed Invocation

Another important facility associated with the intro-
duction of terms in the equality layer is pattern-directed
invocation: a procedure (demon) is automatically exe-
cuted whenever a term matching a given pattern is cre-
ated. Pattern-directed invocation is used heavily to im-

4Note that a complete ground reasoner for theory T is not the same
as a complete decision procedure for the quanti�er-free theory of T ,
since the quanti�er-free theory of T includes propositional logic as a
sub-theory. See the discussion of hybrid reasoning below.

plement the algebra, types, and frames layers of Cake, as
well as by tools built on top of Cake.
Pattern-directed invocation also interacts strongly with

equality reasoning. In the presence of equality, the proper
conditions for invoking a demon become more compli-
cated. However, in this instance, we were able to come
up with a very satisfactory hybrid solution.
The following is a simple example of the incompleteness

problem that arises when you naively combine pattern-
directed invocation with equality. Suppose there is a de-
mon with the pattern (G 0 *), i.e., it is waiting for the
creation of a term with operator G, �rst argument 0, and
any second argument.5 (This demon might have some spe-
cial knowledge about the behavior of the function G when
its �rst argument is zero.) Now suppose that the term
(G A B) is created and then A is asserted equal to zero.
The knowledge embodied in the demon above is now rele-
vant, but unfortunately the demon is not invoked because
the term (G 0 B) has not been created.
A brute-force approach to this problem would be to

automatically close the set of terms in the system un-
der substitution of equals (i.e., to create all terms such
as (G 0 B)). This approach is not feasible, however, be-
cause the numbers of terms generated grows quickly with
the number of equalities, and is in�nite in the case of re-
cursively de�ned equalities.
We have developed an algorithm [7] that solves this com-

pleteness problem by generating just the subset of all pos-
sible substitutions necessary to invoke all relevant demons.
Furthermore, the algorithm is incremental. New demons,
new terms, and new equalities can be added in any order.
Equalities can also be retracted.

Types, type hierarchies, and type signatures are a com-
mon feature of modern software from requirements speci�-
cations down to programming languages. It was therefore
natural to provide facilities in Cake for reasoning about
types. A powerful way of doing this is to introduce types
directly into the syntax of the logical language in which
reasoning takes place.
A type6 in Cake is a predicate on terms. The central

algorithm of the types layer assigns a type to every term
at the time it is created using a type inference algorithm
similar to the one used in typed programming languages,
such as [27]. (The type is computed recursively based
on the type signature of each operator and the types of its
arguments.) This type, called the \syntactic type" of the
term, is a permanent and unchangeable property of the
term. (However, as we will see below, it is also possible to
assert and retract additional type information).
There are two advantages to using a typed as opposed

to untyped reasoning language. The �rst is e�ciency. Ax-

5Cake also supports pattern variables and nested patterns.
6In logic, what we have called a \type" is more properly called a

\sort." The language used by Cake is therefore a \many sorted logic."
In this paper, however, we will continue to use the more software-oriented
terminology of \type."
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iomatizations and proofs in a typed language are typically
smaller than the corresponding untyped axiomatizations
and proofs. Furthermore, in a typed system, much of the
taxonomic reasoning in a given problem can be achieved
by specialized reasoning mechanisms operating on the type
structure, rather than by general purpose deduction.
A second advantage of using a typed language is more

incidental. It has generally been the experience of reason-
ing system builders (con�rmed by our work with Cake)
that including taxonomic information in the syntax of the
language helps to catch errors and manage complexity in
the formalization task.

A. A Typed Logic

In Cake we have implemented a very expressive form of
typed logic, similar to [28]. Its main features (each
discussed brie
y below) are:

� boolean lattice of types
� polymorphic type signatures
� overlapping argument types
� retractable type assertions

A boolean lattice of types means that in addition to
specifying the usual subtype hierarchy, (e.g., Integer is
a subtype of Number, which is a subtype of Any), we can
also use intersection, union, and complement operators
(*And, *Or, and *Not) to form new types. For example,
(*Or List Null) is the type of an implementation object
that is either a list or nil. (*And Male Student) might be
the type of a requirements object.
The type lattice in Cake is non-retractable. New sub-

types may be added dynamically (i.e., extending the lat-
tice \downward"), but the existing subtype relationships
may not be changed.
Complete type inference on a boolean lattice is expo-

nential in the worst case. Because type inference in Cake
is a spontaneous reasoning process, we intentionally im-
plemented an incomplete version of type inference, which
may fail to compute the most speci�c type when com-
plements are involved. This has not turned out to be a
problem in practice.
Polymorphic type signatures are a kind of operator

\overloading," in which each operator is assigned a set of
functionalities. This allows quite sophisticated reasoning
to be performed entirely within the type inference algo-
rithm. For example, assuming Even and Odd are subtypes
of Number, the type signature for the function Plus might
include, among others, the functionalities shown below.

(Defunction Plus (Number Number Number)
(:From Odd Odd Even) ;odd � odd ! even
(:From Even Odd Odd)) ;even � odd ! odd

Using this information, Cake can, through type infer-
ence alone, deduce the parity of complex expressions, such
as the following (assuming that the syntactic type of N1
through N5 is Odd):

>(Type-Of (Plus (Plus N1 N2)
(Plus (Plus N3 N4) N5)))

Odd

In Cake's type inference algorithm, we compute a result
type for an expression as long as the type of each argument
overlaps (i.e., has a non-empty intersection) with the type
of the corresponding position in the operator's signature.
(In more restrictive logics, the type of the argument is re-
quired to be a subtype of the argument position.) Several
examples of the utility of this feature are given in [28].

B. Retractable Type Assertions

In addition to the �xed syntactic type of a term, further
facts about a term's type may be asserted, retracted, and
proved like any others. This has certain advantages and
costs.
The main advantage of supporting retractable type as-

sertions is that it allows us to derive type information from
non-type information and vice versa using general-purpose
deduction. For example, the type Even can be de�ned to
be subtype of (in Cake, specialize) Number as shown below.

(Deftype Even (:Specializes Number)
(:Constraints (= (Remainder ?Even 2) 0)))

Given this de�nition, one can prove that a number M is
less than zero depending on the fact that its type is Even:

>(Assert (Even M))

>(Expand-Defn (Even M)) ;discussed below

>(Why (= (Remainder M 2) 0))
(= (Remainder M 2) 0) is True
by Definition of Operator from:
1. (Even M)

Conversely, one can prove that a number N is of type
Even by establishing that it is less than zero:

>(Assert (= (Remainder N 2) 0))

>(Show (Even N)) ;expand de�nition if necessary
:True

Retractable type assertions are very useful for exploring
requirements or design options. However, this 
exibility
comes at signi�cant cost. For instance, Cake can conclude
that the compound Plus term above is of type Odd based on
retractable type assertions for N1 through N5 (i.e., assum-
ing now that their syntactic type is just Number). However,
performing this deduction with retractable type assertions
instead of at term creation time would require roughly an
order of magnitude more computational resources (for the
extra data structures and processing associated with the
extra terms created and the appropriate incremental rea-
soning).
Given that there is a choice between retractable and

non-retractable type reasoning, what we have typically
done in using Cake is to set some basic syntactic type infor-
mation at term creation time, and then to use retractable
type assertions to explore options that are natural to the
task. For example, at the requirements level, basic dis-
tinctions such as whether a term refers to an object, a
transaction, or a report would be syntactically �xed. More
particular properties, such as whether a particular report
is weekly or monthly, would be explored incrementally.
If an error is made in the basic syntactic types, one must

re-initialize the system and start again. Typically, there
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is a text �le of de�nitions (such as the de�nition of Even
above), which one can edit and then re-evaluate.
The type assertion example above also illustrates an-

other kind of reasoning in Cake (in addition to refutation)
that needs to be explicitly controlled, namely de�nition
expansion. Cake does not automatically expand all de�-
nitions, because this can lead to an explosion of terms (an
in�nite explosion in the case of recursive de�nitions). The
procedure Expand-Defn, given a term, expands the de�ni-
tion of the operator of that term (with the appropriate
if-and-only-if logical connection between the term and its
expansion), unless it has already been expanded. In the
frame layer (Section VIII.B), a heuristic is introduced that
automatically calls Expand-Defn under certain conditions.
The Show procedure illustrated above tries even harder

than Ask to prove a given node true or false by (in addition
to trying refutation) expanding the de�nition of operators
appearing in the corresponding term. Show also invokes
special backward-chaining proof procedures that can be
associated with particular operators.

Simple algebraic properties, such as associativity and
commutativity, appear everywhere in the formal model-
ing of data structures and application domains. We have
therefore included special-purpose decision procedures in
Cake for various of these common algebraic theories. The
algebra layer also contains limited inference procedures for
sets, partial orders, and total orders (these are built on top
of the mechanisms already used in the types layer).
Any operator symbol in Cake can be given (either as its

syntactic type or as a retractable assertion) one or more
of the following simple algebraic properties: transitivity,
associativity, commutativity, re
exivity, symmetry, anti-
symmetry, involution, idempotency. E�cient (worst case
linear or n logn) complete ground reasoners have been im-
plemented for each of these theories using a variety of
special-purpose data structures.
The algebra layer also introduces special mechanisms

associated with the type Undefined to support reasoning
about partial functions and strictness7 (see [6] for further
details).

A. Commutativity

To illustrate the tradeo� between retraction and e�-
ciency that occurs throughout the algebra layer, let us
consider commutativity. The commutativity of a function
is a fact that can be asserted, retracted, and proved like
any other. For example:

>(Assert (Commutative G))

>(Ask (= (G A B) (G B A)))
:True

>(Retract (Commutative G)) ;retract premise

>(Ask (= (G A B) (G B A)))
:Unknown

7A function is strict if and only if its value is unde�ned whenever its
argument is unde�ned.

However, for many algebraic properties|commu-
tativity being one|it is possible to implement some very
e�cient special-purpose technique if the property is non-
retractable. For example, since the users of Cake are not
likely to want to explore the possibility of Plus not being
commutative, Commutative is part of syntactic type of the
function Plus.
Setting the syntactic type of a function to include

Commutative installs a special procedure that runs during
the interning of expressions with that function in the oper-
ator position. Interning in Cake, by analogy with interning
in Lisp, is the process by which an external Lisp expres-
sion is mapped to an internal Cake term data structure
such that any two Equal (i.e., printing the same) expres-
sions map to the identical term. This can be thought of
as a generalization of symbol tables from symbols to the
uniqueization of tree structures.
The special interning procedure for non-retractably

commutative functions sorts its arguments according to
a �xed (e.g., lexicographic) term order. The e�ect of this
procedure can be seen below:

>(Intern '(Plus A B))
#<Term (Plus A B)>

>(Intern '(Plus B A))
#<Term (Plus A B)>

Thus the distinction between (Plus A B) and
(Plus B A) is permanently lost. Declaring a function to
be non-retractably commutative prevents the creation of
many terms plus all of the extra structures and processing
to make terms with di�erent arguments equal under the
correct conditions.

B. Language Extensions

Special interning procedures are also used in Cake as a
way of extending the reasoning language. The interning
procedure associated with an operator has the power in-
terpret the arguments to an expression in a non-standard
fashion, if desired. For example, one can de�ne a special
interning procedure for the operator !Infix that parses
its string argument as an expression in standard mathe-
matical notation. (By convention, operators in Cake that
take special argument syntax begin with an exclamation
point.) Thus the expression (!Infix "X+Y=Z") would be
interned as #<Term (= (Plus X Y) Z)>.
The special interning facility plays the same role in Cake

as a macro facility in a programming language, i.e., it
makes it possible to embed an arbitrary sublanguage. This
has turned out to be extremely useful both for extending
Cake in various ad hoc ways and also for building systems
on top on Cake.
For example, although Cake is basically a propositional

reasoner, we found it useful to add some limited capabili-
ties for reasoning with expressions having bound variables,
such as lambda expressions and quanti�cations.
Most of the reasoning procedures in the algebra layer

can be viewed as special-purpose implementations of spe-
ci�c quanti�ed statements. For example, asserting the
commutativity of G above is equivalent to asserting the
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statement 8xy G(x; y) = G(y; x). However, it is also some-
times useful to be able to assert and retract arbitrary
quanti�ed statements. For this purpose we introduced the
special operators !Forall and !Exists. The special in-
terning procedures associated with these operators parse
the syntax of quanti�ed expressions to extract the (typed)
bound variables and build the appropriate data structures
to support instantiation and various proof procedures us-
ing quanti�ers.
For example, in the following interaction with Cake, the

quanti�ed fact 8n :number F(n+1)> F(n) is asserted and
then used to prove a proposition by universal instantiation
on 5.

>(Assert (!Forall (?N Number)
(> (F (Plus ?N 1)) (F ?N))))

>(Instantiate-Universal : : : 5)

>(Why (> (F 68) (F 5)))
(> (F 6) (F 5)) is True
by Universal Instantiation from:
1. (!Forall (?N Number)

(> (F (Plus ?N 1)) (F ?N)))
is True as a premise.

Similar language extensions were made during the con-
struction of the Requirements Apprentice, such as the
\(!The : : : Such-That : : : )" construction used in line 12,
premise 4 (Section II.A).
The use of Instantiate-Universal above is another ex-

ample of where explicit control of reasoning is required in
Cake. Reasoning with quanti�ers is inherently explosive.
We cannot a�ord to spontaneously instantiate all quanti�-
cations in Cake on all applicable terms (applicable terms
are those whose syntactic type overlaps with the syntactic
type of the bound variable). Instead, it is the responsibil-
ity of the tool developer to explicitly instantiate quanti�-
cations on individual terms that are of interest.
In building the demonstration of the Requirements Ap-

prentice, there were adequate heuristics within the task
at hand to choose appropriate individuals on which to in-
stantiate quanti�cations. It was not necessary to make
control over quanti�cation instantiation visible to the end
user.
In summary, the algebraic layer, together with types and

equality provide a speci�cation language that, although
far from complete, has made it possible to state and reason
about a wide range of important properties of software.

Frame representation has evolved (and some might
say mutated) greatly since Minsky's introduction of the
term \frame" to describe a prototypical concept in com-
mensense reasoning [30]. In current usage, a frame is ba-
sically a convenient data structure, similar to a Lisp prop-
erty list, that is used to represent taxonomically organized,
structured objects. Since software development is replete
with such objects, the next layer of Cake introduces frames
as a data abstraction.

8A special interning procedure on Plus makes (Plus 5 1) intern as
#<Term 6>, and similarly for other arithmetic functions. This use of
special interning procedures was introduced in FOL [29] as \semantic
attachment."

The major di�erence between frames in Cake and frames
in current expert system shells is that in Cake in addition
to inserting and removing values from slots, it is possible
to reason abstractly about the properties of frames and
slots. This gives Cake a great deal of additional power
(with of course, additional cost). This power is used, for
example, in the Debugging Assistant to reason about the
behavior of a program given a class of input data, rather
than just speci�c input values.

A. Implementing Frames as Types

A frame in Cake is a type. Accessors for the slots (roles)
of a frame are functions with the frame type as their do-
main. As we will see below, this implementation of frames
takes maximum advantage of reasoning facilities already
implemented in the algebra and types layers, such as spe-
cialization, operator type signatures, and strictness (slot
functions are strict).
Multiple-valued slots are represented in Cake by making

the range of the accessor function be a set. In our expe-
rience, single-valued slots are much more common than
multiple-valued ones. Making slot accessors be functions
rather than binary relations leads to much more e�cient
reasoning for single-valued slots at a small increase in com-
plexity for multiple-valued ones.9

The frame de�nition example below de�nes the type
predicate Pair and two functions, Left and Right, with
domain Pair.

(Deframe Pair (:Parts Left Right))

In Cake unlike conventional frame systems, a distinc-
tion is made between the set of slots that uniquely deter-
mine a frame (called the parts in Cake) and other slots
(called properties). The parts of a frame obey an exten-
sionality axiom: Two instances are equal if all of their
parts are equal. We have found this notion of extensional-
ity to be very important for reasoning about mathematical
objects, such as data structures (and in the next section,
plans), but less useful for modelling real-world domains.
One way to specialize a frame (create a subtype) is to

restrict the types of the slots. For example, the following
de�nes a subtype of Pair in which both parts are numbers.

(Deframe Pair-Of-Numbers
(:Specializes Pair)
(:Parts (Left Number) (Right Number)))

Among other things, this de�nition adds the functionality
pair-of-numbers ! number to the signature of the func-
tions Left and Right (taking advantage of the overloading
feature described in Section VI.A).
The Pair-Of-Numbers frame can be further specialized

by adding the constraint that the parts be sorted from
left to right, as shown below.

(Deframe Sorted-Pair-Of-Numbers
(:Specializes Pair-Of-Numbers)
(:Constraints (< ?Left ?Right)))

9For example, if slots are functions, the semantics of path expres-
sions involving only single-valued slots does not require an existential
quanti�er.
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This de�nes a new type in essentially the same manner
that Even is de�ned in Section VI.B.

B. Symbolic Frame Reasoning

Given the way that frames and slots are implemented
as types and functions, symbolic reasoning about slots
is provided without the need for additional mecha-
nism. To illustrate, suppose we create the new term
My-Pair to be an instance of (i.e., having syntactic type)
Sorted-Pair-Of-Numbers as shown below. (Cake proce-
dures that operate on frames start with F.)

>(FInstantiate Sorted-Pair-Of-Numbers My-Pair)
#<Term My-Pair>

Now, for example, if we assert that the value of the
Right slot of My-Pair is less than zero, Cake can conclude
that the value of the Left slot must also be less than zero.

>(Assert (< (Right My-Pair) 0))

>(Ask (< (Left My-Pair) 0))
:True

Symbolic reasoning of this kind is a powerful extension to
conventional frame systems, in which reasoning can only
take place when a slot is assigned a speci�c value.
This example also introduces a useful heuristic for

automatically expanding type de�nitions. In or-
der to make the conclusion above, the de�nition of
Sorted-Pair-Of-Numbers needs to be expanded (to get the
constraints), just as the de�nition of Even needed to be
expanded in Section VI.B. It is hard to know in gen-
eral which occurrences of a de�ned operator are use-
ful to expand. However, frame type de�nitions have
more structure, which supports the following heuristic:
If a term representing one of the parts or properties of
a frame instance is created during the reasoning pro-
cess (e.g., (Right My-Pair)), it is likely to be useful
to expand the corresponding frame type assertion (i.e.,
(Sorted-Pair-Of-Numbers My-Pair)).
This heuristic is implemented using the pattern-directed

invocation facility described in Section V.B: De�ning a
frame installs demons that are triggered by the creation of
any term whose operator is one of the parts or properties
of the frame. When the demon executes, it creates the
corresponding frame type assertion (if necessary) and calls
Expand-Defn on it.

C. Slot Values and Literals

In Cake assigning a value to a slot is logically equivalent
to asserting an equality between the term representing the
slot and the term representing the value. Thus, the fol-
lowing procedure call, which sets the value of the Left slot
of My-Pair to -5,

>(FPut (Left My-Pair) -5)

is logically equivalent to

>(Assert (= (Left My-Pair) -5)) .

To retrieve stored values, however, Cake must have some
way of distinguishing the value of a slot from other terms
that may be equal to the slot term. (For example, if
(Left My-Pair) was equal to (Left Your-Pair), you would

not want to retrieve either term as a slot value.) This prob-
lem is solved by introducing a syntactically distinguished
class of terms called literals. The key logical property of
literals is that they are mutually disequal, i.e., every literal
is disequal to every other literal. Numbers and strings are
provided in Cake as literals (a set of literals is also a lit-
eral). Developers can add their own kinds of literals (e.g.,
the colors red, green, blue, etc.).
The procedure for retrieving slot values, FGet, searches

through the set of terms equal to the given slot term (there
is a data structure in the equality layer of Cake that makes
this search e�cient). If it �nds a literal (there can be at
most one if there is no contradiction), it returns the literal
term as the value; otherwise Nil is returned to indicate no
value (contradictory values are considered to be no value
by this procedure). When FGet �nds a slot value, it also
returns the truth maintenance node corresponding to the
equality between the slot term and the literal, as shown
below.

>(FGet (Left My-Pair))
-5
#<Node (= (Left My-Pair) -5)>

D. Dependency-Directed Frame Programming

A tool developer may simply ignore the node returned
by FGet, and use the frame layer of Cake to store and re-
trieve values much like a conventional frame system. (FGet
uses the multiple return value feature of Lisp. The second
return value is ignored unless it is captured with a special
form.) However, the integration of the frame layer with
truth maintenance provides the option of a more disci-
plined, dependency-directed methodology.
To illustrate, suppose that a tool retrieves a value (us-

ing FGet) from some slot (e.g., (Left My-Pair) above) and
then, based on the results of a test applied to that value,
stores some value (using FPut) in another slot. In Cake, the
stored value can be made to depend on the retrieved value
by providing the node returned by FGet as an (optional)
argument to FPut. If this is done, then when the value of
the retrieved slot is later retracted, the stored value will be
automatically retracted by the truth maintenance system.
(The tool can also arrange for other arbitary processing
to occur at this time by installing a demon on the node
returned by FGet that �res when its truth value changes.)
Although we found (for example, in the Requirements

Apprentice) that using this style of dependency-directed
programming with frames led to a conceptually cleaner
handling of incremental change, it unfortunately also led
to a lot of syntactic clutter in the code due to the introduc-
tion of temporary variables and special forms to capture
and accumulate the nodes returned by FGet and then pro-
vide them as arguments to FPut. Cake therefore provides a
special scoping macro, With-Dependencies, that simpli�es
the code written in the common case in which all FPut's
depend on all the (dynamically) preceding FGet's. Using
this macro, dependency-directed frame code can be writ-
ten in the simple form below.

14



(With-Dependencies
(Setq X (FGet : : : ))
: : :

(If : : : X: : : (FPut : : : ) (FPut : : : )))

A notable omission from Cake's frame layer is automatic
classi�cation: many frame systems automatically place
any newly de�ned (or updated) frame at the appropri-
ate location in the taxonomic hierarchy. The usefulness of
this service for software development is well demonstrated,
for example, in the system [31]. A special-purpose
form of classi�cation was implemented as part of the Re-
quirements Apprentice. In the future, it would make sense
to add classi�cation as a generic service in the frame layer
of Cake.

The �rst six layers of Cake provide knowledge repre-
sentation and automated reasoning facilities which, al-
though motivated in choice and implementation details
by the software development application, are in fact quite
generic. This section describes a layer of Cake speci�cally
targetted toward a software development need: represent-
ing and reasoning about the algorithmic structure of pro-
grams. More important than the details of the Plan Calcu-
lus itself, this section illustrates how the generic facilities
of the six layers can be brought together to implement a
new specialized formalism.
The Plan Calculus is central to the operation of the De-

bugging Assistant and the Design Apprentice (it is not
used in the Requirements Apprentice). For example, the
�rst step the Debugging Assistant takes when it begins
to help a programmer (see the architecture in Fig. 3) is
to make an internal representation shift from source code
(e.g., Lisp) to the Plan Calculus. (The Plan Calculus rep-
resentation of the �rst procedure in the Debugging As-
sistant example is shown in Fig. 5.) As a result of this
representation shift, the dependency information needed
by the localization algorithm falls out as a by-product of
straightforward test case evaluation.
A key goal of the Plan Calculus is to represent algorith-

mic structure in an abstract and programming-language
independent fashion. A plan is therefore a hierarchical

owchart-like graph composed of test and input/output
speci�cation boxes connected by data 
ow and control 
ow
arcs. Data 
ow is indicated in plan diagrams by plain ar-
rows; control 
ow is indicated by cross-hatched arrows.
Data 
ow arcs serve to abstract away from the details of
programming language mechanisms for achieving the 
ow
of data from producer to consumer, such as nesting of
expressions, and the use of intermediate variables. Con-
trol 
ow arcs abstract away from the variety of control

ow mechanisms in programming languages, such as goto
statements, conditionals, and looping constructs. For a
complete description of the Plan Calculus, see [2].

A. History

The �rst implementation of the Plan Calculus sup-
ported a demonstration of knowledge-based program edit-
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Fig. 5. Plan for the Unify program in Fig. 4.

ing, called [32]. This implementation was essen-
tially a direct translation of the diagrammatic notation il-
lustrated in Fig. 5 into convenient internal data structures
for manipulating nodes and arcs in a directed graph. All
of the \reasoning" in was achieved by special-
purpose procedures that operated on these internal data
structures.
When we considered extending to add error

detection and more automation of design decisions, we re-
alized that the ad hoc procedural approach had reached its
limits|each new feature required too much new code to
be written. Since a formal semantics for the Plan Cal-
culus [33] had just been completed, we decided to try
the approach of (re-)implementing the Plan Calculus by
\macroexpanding" a plan diagram into its logically equiv-
alent facts and then using automated reasoning (i.e., Cake)
on those facts.
We feel this experiment has been very successful. The

Plan Calculus layer is actually a very thin veneer on the
top of the rest of Cake (about six percent of the code).
This is much less code than was required to implement
plans in with less functionality.
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Fig. 6(a). Plan diagram for Negate-If-Negative.

(Deftest Minusp
(:Inputs (Input Number))
(:Condition (< ?Input 0)))

(Defio Negate
(:Inputs (Input Number))
(:Outputs (Output Number))
(:Postconditions (= ?Output (- 0 ?Input))))

(Defplan Negate-If-Negative
(:Roles (Check Minusp)

(Action (*Or Negate Undefined))
(End Join))

(:Dflow ((Input ?Check) (Input ?Action))
((Input ?Check) (Fail ?End))
((Output ?Action) (Succeed ?End)))

(:Cflow ((Succeed ?Check) (Succeed ?End))
((Fail ?Check) (Fail ?End))))

Fig. 6(b). Cake de�nition of Negate-If-Negative.

.

>(Expand-Defn (Minusp (Check My-Plan)))
(And ;slot type restrictions
(Number (Input (Check My-Plan)))
;implicit situation slots
(Situation (In (Check My-Plan)))
((*Or Situation Undefined) (Succeed (Check My-Plan)))
((*Or Situation Undefined) (Fail (Check My-Plan)))
(Implies (Defined (Succeed (Check My-Plan)))

(Precedes (In (Check My-Plan))
(Succeed (Check My-Plan))))

(Implies (Defined (Fail (Check My-Plan)))
(Precedes (In (Check My-Plan))

(Fail (Check My-Plan))))
;test condition
(Iff (< (Input (Check My-Plan)) 0)

(Defined (Succeed (Check My-Plan))))
(Iff (Not (< (Input (Check My-Plan)) 0))

(Defined (Fail (Check My-Plan)))))

>(Expand-Defn (Negate (Action My-Plan)))
(And ;slot type restrictions
(Number (Input (Action My-Plan)))
(Number (Output (Action My-Plan)))
;implicit situation slots
(Situation (In (Action My-Plan)))
(Situation (Out (Action My-Plan)))
(Precedes (In (Action My-Plan))(Out (Action My-Plan)))
;postconditions
(= (Output (Action My-Plan))

(- 0 (Input (Action My-Plan)))))

>(Expand-Defn (Join (End My-Plan)))
(And ((*Or Situation Undefined) (Succeed (End My-Plan)))
((*Or Situation Undefined) (Fail (End My-Plan)))
(Data (Output (End My-Plan)))
(Or (Defined (Succeed (End My-Plan)))

(Defined (Fail (End My-Plan)))))

>(Expand-Defn (Negate-If-Negative My-Plan))
(And ;slot type restrictions
(Minusp (Check My-Plan))
((*Or Negate Undefined) (Action My-Plan))
(Join (End My-Plan))
;data 
ow constraints
(Implies (Defined (Input (Action My-Plan)))

(= (Input (Check My-Plan))
(Input (Action My-Plan))))

(Implies (Defined (Fail (End My-Plan)))
(= (Input (Check My-Plan))

(Output (End My-Plan))))
(Implies (Defined (Succeed (End My-Plan)))

(And (= (Output (Action My-Plan))
(Output (End My-Plan)))

(Precedes (Out (Action My-Plan))
(Succeed (End My-Plan)))))

;control 
ow constraints
(Implies (Defined (Succeed (End My-Plan)))

(And (Defined (Succeed (Check My-Plan)))
(Precedes (Succeed (Check My-Plan))

(Succeed (End My-Plan)))))
(Implies (Defined (Fail (End My-Plan)))

(And (Defined (Fail (Check My-Plan)))
(Precedes (Fail (Check My-Plan))

(Fail (End My-Plan))))))

Fig. 6(c). Terms created for instance My-Plan of Negate-If-Negative.

(= (Output (End My-Plan)) 3) is True by Equality from:
1. (= (Input (Check My-Plan)) 3) is True as a premise.
2. (= (Input (Check My-Plan)) (Output (End My-Plan))) is True by Implication from:

1. (Implies (Defined (Fail (End My-Plan)))
(= (Input (Check My-Plan)) (Output (End My-Plan)))) is True by Conjunction from:

1. (And (Minusp (Check My-Plan)) : : :) is True by Definition of Operator from:
1. (Negate-If-Negative My-Plan) is True by Syntactic Type.

2. (Defined (Fail (End My-Plan))) is True by Disjunction from:
1. (Or (Defined (Succeed (End My-Plan))) (Defined (Fail (End My-Plan))))

is True by Conjunction from:
1. (And ((*Or Situation Undefined) (Succeed (End My-Plan))) : : : )

is True by Definition of Operator from:
1. (Join (End My-Plan)) is True by Conjunction from 2.1.1.

2. (Defined (Succeed (End My-Plan))) is False by Implication from:
1. (Implies (Defined (Succeed (End My-Plan)))

(And (Defined (Succeed (Check My-Plan)))
(Precedes (Succeed (Check My-Plan))(Succeed (End My-Plan)))))

is True by Conjunction from 2.1.1.
2. (And (Defined (Succeed (Check My-Plan)))

(Precedes (Succeed (Check My-Plan))(Succeed (End My-Plan))))
is False by Conjunction from:
1. (Defined (Succeed (Check My-Plan))) is False by Biconditional from:

1. (Iff (< (Input (Check My-Plan)) 0)
(Defined (Succeed (Check My-Plan)))) is True by Conjunction from:

1. (And (Situation (In (Check My-Plan))) : : :) is True by Definition of Operator from:
1. (Minusp (Check My-Plan)) is True by Conjunction from 2.1.1.

2. (< (Input (Check My-Plan)) 0) is False by Equality from 1.

Fig. 6(d). Complete support tree showing how output of Negate-If-Negative depends on its roles and constraints when input is 3.
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B. Implementing Plans as Frames

Rather than illustrating the implementation of the Plan
Calculus with the plan in Fig. 5, we will instead use the
small pedagogical example in Fig. 6, which will allow us
to exhibit the macroexpansion in full.
Fig. 6(a) shows the diagram for Negate-If-Negative, a

plan for computing the absolute value of a number: If
the number is less than zero, then negate it; otherwise do
nothing. Negate-If-Negative includes one of each of the
three kinds of boxes in plan diagrams: a test speci�ca-
tion (Minusp), an input-output speci�cation (Negate), and
a join. Each box in a plan has a unique name (indicated
preceding the colon) so that boxes of the same type may
be distinguished. (In Fig. 5, only the type of each box was
indicated.)
Fig. 6(b) shows the notation used in Cake to de�ne

Negate-If-Negative and its two component speci�cations
(Join is a special builtin type). Both plans and speci-
�cations are implemented as frames in Cake; data 
ow,
control 
ow, preconditions, postconditions, and test con-
ditions are translated into constraints on those frames.
Rather than going into the syntactic details of the

notation in Fig. 6(b), let us create an instance of
Negate-If-Negative, called My-Plan, and then examine the
semantic content of the terms created when the frame def-
initions are expanded, paying particular attention how fa-
cilities in the six layers of Cake come into play.

>(FInstantiate Negate-If-Negative My-Plan)

Starting at the top of Fig. 6(c), we see that a test spec-
i�cation frame, such as Minusp, has in addition to slots for
its inputs and outputs three implicit situation-valued slots
called In, Succeed, and Fail.
The type Situation is introduced in the Plan Calculus

layer to represent the following three phenomena:

� Temporal Order: Constraints on the temporal order of
program steps are speci�ed via the Precedes relation,
which is a partial order [algebra layer] on situations.

� Conditional Behavior: Situation is a subtype of
Defined and therefore disjoint [types layer] with
Undefined. Whether a test succeeds or fails is repre-
sented by which of the Succeed or Fail slots is de�ned.
Constraints guarantee that exactly one of the Succeed
or Fail slots is de�ned and that the In situation of the
test precedes it.

� Side E�ects: A mutable object is represented as a
strict function [algebra layer] from situations to data
values.

Returning to Fig. 6(c), we see that an input-output
speci�cations, such as Negate, has two implicit situation-
valued slots, called In and Out, neither of which is con-
ditional. The pre- and postconditions of an input-output
speci�cation translate directly into the obvious constraints
on the frame.
Joins in the Plan Calculus are best thought of as part of

the description of data and control 
ow|a join box does
not represent any computation. A join has two situation-

valued slots, Succeed and Fail, and one data-valued slot,
called Output. The constraints on these slots �t with the
data and control 
ow constraints of the larger plan (see
below).

Negate-If-Negative has three slots, one for each of its
component boxes. Notice that since the Action slot is
conditional, its type is a disjunction with Undefined.

C. Data and Control Flow

The basic idea of data 
ow in the Plan Calculus is to
specify equality [equality layer] between slots (and slot
paths) in a plan. The most general form of a data 
ow
constraint from some slot to some slot is:

(Implies (Defined to)
(And (= from to)

(Precedes from-situation to-situation)))

This constraint says that if the data is needed at the to
location (typically an input), then it is equal to the data
at the from location (typically an output). Furthermore,
to preserve causality, the situation in which the data is
produced must precede the situation in which it used.
The three data 
ow constraints in Fig. 6(c) are degener-

ate versions of the general form above. The �rst constraint
ties together two inputs and therefore does not include
Precedes. The second constraint is also from an input and
involves a join, whose slots are specially handled. The
third data 
ow constraint is from an output to a join.
Control 
ow constraints are similar in general form to

data 
ow constraints. The di�erence is that, instead of
specifying an equality, control 
ow requires that the from-

situation be de�ned.
As an exercise, the reader may verify that, using propo-

sitional reasoning [boolean constraint propagation layer],
equality, and the strictness of slot functions [algebra layer],
the data 
ow and control 
ow constraints in Fig. 6 guar-
antee that the Action is de�ned (i.e., executed) whenever
the Check succeeds.10

D. Reasoning with Plans

Given an instance of Negate-If-Negative, boolean con-
straint propagation alone is adequate to spontaneously
compute the �nal output value for a given input, as shown
below. In more complex plans, however, some explicit con-
trol of reasoning is usually necessary to execute a test case.

>(FPut (Input (Check My-Plan)) -3)

>(FGet (Output (End My-Plan)))
3

Of course, this is the hard way of computing absolute
value! The important thing about implementing plans as
above, from the standpoint of the Debugging Assistant,
is that all the correct logical dependencies [truth mainte-
nance layer] are established. To illustrate, consider instead
putting the value 3 at the input:

10Notice that the Action is not prevented from executing more often
than needed, nor is it prevented from preceding the Check. This is a
choice made by the person de�ning this plan in order to make it more
general.
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>(FRemove (Input (Check My-Plan)))

>(FPut (Input (Check My-Plan)) 3)

>(Why* (= (Output (End My-Plan)) 3))
;show full support tree|see Fig. 6(d)

Fig. 6(d) shows the complete dependency tree support-
ing the output value in this test case.11 Notice that the
output in this case depends on the speci�cations of the
Check and End slots (underlined), but does not depend on
the speci�cations of the Action slot. Thus, to obtain the
initial suspects for a failing test case, the Debugging Assis-
tant simply retrieves the premises underlying the output
fact.12

Notice also that the documentation strings appearing in
the support tree record the participation of the equality,
boolean constraint propagation, and types layers.
Since plans are implemented as frames, the symbolic

reasoning illustrated in Section VIII.B also works for
plans. For example, removing the input value 3, let us
just assume below that the input to Negate-If-Negative

is positive. From this assumption Cake can conclude that
the output is equal to the input:

>(FRemove (Input (Check My-Plan)))

>(Assert (Not (< (Input (Check My-Plan)) 0)))

>(Ask (= (Output (End My-Plan))
(Input (Check My-Plan))))

:True

This kind of reasoning about the abstract properties of a
plan (program) can be very useful in software design. For
example, the Debugging Assistant [16] has demonstrated
debugging a partially implemented program, i.e., one in
which there is a mixture of code and unimplemented spec-
i�cations. (The sooner one can �nd problems, the better.)

We have described our experience in building and us-
ing a knowledge representation and reasoning system,
called Cake, to support two experimental software devel-
opment tools. Our overall conclusion is that the facili-
ties demonstrated in Cake are both feasible and useful to
support knowledge-intensive, evolutionary, intelligent as-
sistants for software development.
Three key architectural issues in this work are: control

of reasoning, hybrid representation and reasoning, and the
tradeo� between retraction and e�ciency.
Our approach to the control of reasoning was to iden-

tify a portion of the reasoning which was e�cient and to
let that portion execute spontaneously (without explicit
control). The remaining reasoning was subject to explicit
control by the tool developer or end user.
Our approach to hybrid representation and reasoning

was to divide Cake into separately implemented layers and
to analyze their interactions on a case-by-case basis. This
was only moderately successful in controlling the complex-
ity of a highly hybrid system.

11A special interning procedure interns (< 3 0) as #<Term False>.
12A small techicality: In order for this to work, rather than calling

FInstantiate to create an instance of the plan to test, the Debugging
Assistant must strip the And from the front of the plan de�nition and
assert each constraint as a separate premise.

Our approach to the tradeo� between retraction and
e�ciency was to provide the tool developer with the choice
between the two. This required a lot of implementation
e�ort, but made the performance of the system acceptable
(at least for demonstration purposes).
We also came to appreciate through the building of Cake

both the power and the curse of a highly data-directed ar-
chitecture. (In Cake, most things happen not because of
one procedure calling another, but because of the appear-
ance of certain terms in the database.) We believe that
this approach has allowed us to reap a lot of behavior rela-
tive to the amount of code. However, we also had to learn
with some pain how to develop various kinds of clever trac-
ing tools to cope with the di�culty of debugging in such
an environment.
At the time we began implemented Cake, there was no

existing research or commercial system that came any-
where near providing all the capabilities we foresaw need-
ing for the Programmer's Apprentice. Today, the system
that is most similar in capabilities to Cake is [34],
which is also a research tool. Commercial knowledge rep-
resentation and reasoning systems are still far from pro-
viding the needed facilities, though they are moving in the
right direction. For example, most frame-based expert-
system shells now incorporate a truth maintenance sys-
tem.
If we were starting again today to build Cake, we would

be tempted to start with a system like [10], be-
cause of its emphasis on modularity and extensibility.
From our experience thus far, there is no facility in the
current Cake system that we would leave out if we were
starting again. There are several capabilities we would
want to add, such as classi�cation and more powerful (but
still not totally general) techniques for quanti�ed reason-
ing, such as those in [35].
Finally, on the topic of research methodology, we would

like to observe that, even though Cake was motivated en-
tirely by the needs of an application task rather than any
speci�c set of research questions in knowledge represen-
tation and reasoning systems, it has turned out to be an
interesting step in the evolution of such systems. For ex-
ample, the �rst two architectural issues discussed above,
which emerged naturally out of trying to build Cake, are
in fact central to current research in knowledge representa-
tion and reasoning. We believe there is a moral here, and
it is that there is much to be gained by trying to attack
real and di�cult problems with these techniques.

This article describes research primarily done at the Ar-
ti�cial Intelligence Laboratory of the Massachusetts In-
stitute of Technology supported in part by the follow-
ing organizations: National Science Foundation under
grants IRI-8616644 and CCR-898273, Advanced Research
Projects Agency of the Department of Defense under
Naval Research contract N00014-88-K-0487, IBM Corpo-
ration, NYNEX Corporation, and Siemens Corporation.
The views and conclusions contained in this document are
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those of the authors and should not be interpreted as rep-
resenting the policies, expressed or implied, of these orga-
nizations.
The Requirements Apprentice was the doctoral thesis

of Howard Reubenstein supervised by Richard C. Waters,
with Charles Rich as reader. was the master's
thesis of Ron Kuper, supervised by Charles Rich. We
thank them for permission to use material from their re-
ports. We also wish to thank Richard Waters for his tech-
nical advice and moral support throughout the develop-
ment of Cake, as well as his thoughtful suggestions on this
paper.
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