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ABSTRACT This paper presents a novel scheme to efficiently compress Light Detection and Ranging (Li-

DAR) point clouds, enabling high-precision 3D scene archives, and such archives pave the way for a detailed

understanding of the corresponding 3D scenes. We focus on 2D range images (RIs) as a lightweight format

for representing 3D LiDAR observations. Although conventional image compression techniques can be

adapted to improve compression efficiency for RIs, their practical performance is expected to be limited

due to differences in bit precision and the distinct pixel value distribution characteristics between natural

images and RIs. We propose a novel implicit neural representation (INR)–based RI compression method

that effectively handles floating-point valued pixels. The proposed method divides RIs into depth and mask

images and compresses them using patch-wise and pixel-wise INR architectures with model pruning and

quantization, respectively. Experiments on the KITTI dataset show that the proposed method outperforms

existing image, point cloud, RI, and INR-based compression methods in terms of 3D reconstruction and

detection quality at low bitrates and decoding latency.

INDEX TERMS LiDAR, Point Clouds, Range Image INR.

I. INTRODUCTION

L
IDAR sensors have gained significant attention not only

in online applications but also in offline applications.

In such offline applications, memory-efficient and precise

three-dimensional (3D) scenes should be stored in advance

and the 3D scenes should be smoothly retrieved from the

storage based on the user demand for applications of 3D

scene understanding such as digital archiving, environmental

monitoring, navigation, and geological surveying [1]–[3].

LiDAR sensors scan the physical space with the ego-centric

coordinate and measure the distance to the closest point on

surrounding objects for each angle, allowing the creation of a

point cloud with 3D points corresponding to the intersection

of laser beams with objects ahead. As the resolution of

LiDAR sensors increases, effectively storing and transmitting

LiDAR scans becomes a significant challenge, primarily due

to the substantial volume of each LiDAR sequence.

Although LiDAR scans are typically represented as 3D

point clouds, they can also be expressed as a single-channel

image, referred to as a two-dimensional (2D) range image

(RI) [4], where point clouds captured in an ego-centric spher-

ical coordinate system are projected onto a panoramic image.

The x-y axes of the RI image correspond to the azimuth and

elevation angles in the 3D spherical coordinate system, while

each pixel value represents the distance to the corresponding

point in that direction. Whereas 3D point clouds require 3N
values to represent the locations of N point measurements,

RIs require only N pixels at most, thus demonstrating their

compactness.

We can pursue methods to further compress RIs. One

potential solution is to adapt conventional lossy image com-

pression techniques, such as Joint Photographic Experts

Group (JPEG) [5] and Joint Photographic Experts Group

2000 (JPEG2000) [6]. However, these methods are based

on integer precision for pixel values, which is incompatible

for RIs whose pixels are represented by single or double

precision floating-point numbers to precisely express the

distance to the corresponding point measurements. We can

still utilize these compression methods by adjusting the bit

precision of RIs to align with them, but this naturally leads

to degradation in 3D point cloud reconstruction performance

due to inadequate distance resolution. Another drawback of
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conventional compression methods lies in their strategy: they

use block-based discrete cosine transform (DCT) and apply

coarse quantization to high-frequency components based on

human visual perception. This approach leads to significant

degradation in the decoding performance of RIs, as RIs

are characterized by large and sudden changes in the pixel

value between foreground objects and distant backgrounds

or pixels without any assigned point measurement.

To effectively compress RIs while preserving their fine

precision and high-frequency changes in pixel value, this

paper presents a novel RI compression method inspired by

implicit neural representation (INR)-based image compres-

sion technique [7]. INR [8], [9] is a lightweight representa-

tion of multidimensional signals by compressing them into

shallow neural networks (NNs). Specifically, INR overfits

NNs with a limited number of parameters to the signals of

interest through supervised learning, and the trained parame-

ters become the compressed signal representation by provid-

ing the mapping function from signal indices, for example,

coordinates on the image plane, to the corresponding sig-

nals. A primary challenge for INR-based signal compression

is to ensure the precision of high-frequency details while

simultaneously managing the constraints imposed by the

limited model size. To address this challenge, we propose

an extended INR training approach that incorporates both

a mask image and an RI for point depth information. The

mask image is a binary map that indicates whether each pixel

corresponds to a projected 3D point (one) or not (zero). We

begin by generating a mask image from the RI, followed

by learning two separate coordinate-to-value mappings using

distinct INR architectures: one for depth INR and one for the

mask INR. During decoding, these trained INRs reconstruct

both the depth and mask images, and the final reconstructed

RI is obtained by applying the mask to the depth image. Al-

though the reconstructed depth image may contain values for

pixels that do not correspond to any 3D points, applying the

mask enforces hard thresholding, effectively removing these

artifacts. This process ensures a high-quality reconstructed

RI, with sharp edges accurately preserved.

The contributions of our study are three-fold:

• To the best of our knowledge, this is the first paper

to propose an INR-based intra RI compression method

specifically designed for LiDAR measurements pro-

jected onto high-precision floating-point images.

• We extend the INR compression approach to incorpo-

rate the mask INR that explicitly represents whether

any point measurements are assigned to each pixel on

the RI or not, allowing efficient elimination of false

point estimation on reconstructed depth images in the

decoding process.

• We evaluate our proposed method using KITTI

dataset [10] and compare its performance with existing

baselines including conventional image compression,

point cloud compression (PCC) [11], and RI-based and

INR-based image compression, and show the better

rate-distortion (R-D) performance and downstream task

quality of our method than the baselines, especially at

low bitrates.

II. RELATED WORK

A. POINT CLOUD COMPRESSION

The measured distance from LiDAR sensors is usually repre-

sented as a 3D point cloud. Each point cloud consists of a set

of 3D points, and each point is defined by 3D coordinates,

i.e., (X, Y, Z). The graph-based and tree-based compres-

sion methods have been proposed to compress coordinate

information, that is, geometry information. The graph-based

methods regard the 3D points as graph signals and define

graph Fourier transform (GFT) for frequency conversion in

the graph domain. [12]–[14] utilized GFT for the geometry

compression. Other studies [15], [16] reduce the storage

and transmission costs for graph signal reconstruction. The

tree-based compression method is another popular strategy

for compressing geometry information. The typical way

is octree-based representation, such as point cloud library

(PCL) and geometry-based point cloud compression (G-

PCC) [11], [17]. Some recent studies have been proposed

to improve the efficiency of geometry compression using

traditional signal processing [18] and deep neural network

(DNN) [19], [20] solutions, respectively. For example, the

study in [18] adaptively adopts the quad-tree (QT) and

binary-tree (BT) block partitions in addition to those of

octrees to improve the efficiency of the coding.

B. LIDAR RANGE IMAGE COMPRESSION

Many recent works consider projecting the measured LiDAR

information onto 2D RI to represent the measured distance

information in a compact format. There are two types of

input LiDAR information to obtain the corresponding RIs: 1)

raw packet containing the LiDAR laser IDs [21], the rotation

angle of the LiDAR sensors and the distance values, and

2) 3D point clouds [22]–[24]. Our study utilizes 3D point

clouds. The obtained RIs are then intra-coded [22] or inter-

coded [23], [24] in lossless and lossy manners. Here, intra-

coding reduces the spatial redundancy in each RI, whereas

inter-coding reduces the temporal redundancy across RIs. In

R-PCC [22], which is an intra-coding method, each RI can

be coded by using a lossless coding method, such as LZ4

and Deflate, to compress the floating-point format. Our study

is designed for RI intra-coding and exploits the INR-based

compression to represent LiDAR measurements in small

storage and transmission costs.

C. IMPLICIT NEURAL COMPRESSION

Since the concept of INR overfits multi-dimensional signals

to a small NN architecture, recent studies exploit INR ar-

chitectures for image compression. Specifically, each INR

architecture takes a spatial/time index of the target signals

and/or the corresponding feature vector to reconstruct the

corresponding attribute values, such as color information.

The overfitted weights of the INR architecture are shared

with the receiver’s side for signal reconstruction.
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FIGURE 1: Overview of the proposed scheme.

The existing INR-based compression can be classified

into pixel-wise, patch-wise, and frame-wise architectures.

The frame-wise architectures realized inter-coding between

multiple video frames to remove temporal redundancy. They

feed the frame index and/or the corresponding embeddings

to the NNs to generate each frame. Neural Representations

for Videos (NeRV) [25] is the first work on frame-wise video

compression, and various extensions [26]–[35] are proposed

to improve the quality of reconstruction. However, NeRV

architectures are large models when used for intra-coding

each image.

The pixel-wise INR architecture [7], [36] takes the pixel

index as input and reconstructs the corresponding pixel value.

The patch-wise INR architecture was first proposed in [37].

Specifically, each image is divided into multiple patches, and

the INR architecture takes the patch index as input to exploit

the similarity of local adjacent pixels for high-quality recon-

struction under the same model size. A key issue in such INR

architectures is the lack of precision in high-frequency details

with a small NN architecture. To represent high-frequency

details under a small NN architecture, SIREN in [8] argues

that sinusoidal activations work better than Rectified Linear

Unit (ReLU) networks because sinusoidal activations can fit

signals contained in higher-order derivatives. To address the

same problem, our paper extends the training process of INRs

by separating RIs into depth and mask images.

III. PROPOSED SCHEME

A. OVERVIEW

Fig. 1 shows an end-to-end architecture of the proposed

scheme. Fig. 1 (a) specifically shows the procedure to obtain

RI and corresponding depth and mask images from the

LiDAR 3D point cloud. We consider that the LiDAR mea-

surement to be compressed is a 3D point cloud consisting of

N points, denoted as P = {pi = [xi, yi, zi] | i = 1, · · · , N},

where xi, yi, zi ∈ R represent the Cartesian coordinates

of the i-th point. The point cloud is first transformed into

the spherical coordinate system. Subsequently, each point is

projected onto a 2D image plane by mapping it to a pixel

in a single-channel image I ∈ R
W×H , producing an RI.

Here, W and H represent the width and height of the range

image, respectively. The RI is then divided into a depth image

ID ∈ R
W×H and a mask image IM ∈ {0, 1}W×H . The

depth image ID is further segmented into small rectangular

regions, or patches, with a resolution of W
Np

× H
Np

, where Np

is the scaling factor.

Fig. 1 (b) shows the sequential operations of the encoder

and decoder. In the encoder, two distinct INRs, namely

the mask INR Φ(·;ψ) and the depth INR Ψ(·;ω) with

learnable parameters ψ and ω, are trained to be overfitted

to the depth image and the mask image, respectively. This

training process is a pixel-wise process, which means that

the parameters are trained to obtain a mapping from the

pixel coordinates or patch indices on the images to their

corresponding pixel values. This is achieved by sequentially

providing a pair of indices to the networks. The well-trained

parameters ψ and ω are subsequently pruned and quantized

as ψ̂ and ω̂ to enhance their compactness, and we assume

that these parameters are stored in storage or transmitted to

content receivers as the lightweight format of the LiDAR

measurements. In the decoding process, the decoder uses

compressed parameters to reconstruct a mask image ÎM and

a depth image ÎD from individual INR architectures Φ(·; ψ̂)
and Ψ(·; ω̂), respectively. Similarly to the encoding process,

the images are reconstructed by sequentially feeding a pair

of coordinates and indices to the INRs and collecting all

estimated values to form the shape of the image. We obtain

the final result of RI, Î , by applying the mask image to the

depth image to mask out any values of the pixels in the

depth image corresponding to the pixels with a mask value
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of 0, indicating “no point”. Finally, the LiDAR point cloud is

reconstructed as P̂ from Î via a reverse coordinate projection

process from the 2D image plane, through the spherical

coordinate system, to the Cartesian coordinate system.

B. 3D-TO-2D MAPPING

Our proposed method first performs a coordinate transfor-

mation for all points in the 3D point cloud P measured by

LiDAR sensors to obtain a 2D RI I . Specifically, the 3D-

to-2D mapping consists of two steps: 1) mapping points in

the 3D Cartesian coordinate system x-y-z to the spherical

coordinate ρ-φ-θ, and 2) mapping points in the spherical

coordinate ρ-φ-θ to an image coordinate system u-v.

Each 3D point in the point cloud p ∈ P consists of the 3D

Cartesian coordinate (x, y, z) first. This point is transformed

into a point in the spherical coordinate p′ = (ρ, φ, θ), where

ρ, φ, θ denotes the length, pitch, and yaw of the coordinate

system, as follows:

ρ =
√
x2 + y2 + z2, φ = arcsin

(
z

ρ

)
, θ = arctan

(y
x

)
.

(1)

The point in the spherical coordinate is further transformed to
the image coordinate (u, v) to generate 2D RI I as follows:

u =

⌊
W

2
×

(
θ

π
+ 1

)⌋
,

v =

⌊
H ×

(
1−

φ+ |φdown|

φup + |φdown|

)⌋
, (2)

where φup and φdown are the maximum and minimum value

of φ in the dataset, | · | is the absolute value, and ⌊·⌋ is a

floor function. H and W in Eq. (2) are the height and width

of RI, and they are determined by the angular resolution of

the LiDAR sensor for the elevation and azimuth axes. In this

study, we set H = 64 and W = 1024. The value of each

pixel I(u, v) on the RI is the measured distance ρ, derived in

Eq. (1), with arbitrary unit for physical length.

Due to the sparsity of LiDAR measurements, not all pixels

on the RI are guaranteed to be assigned to any 3D point.

Therefore, if a pixel on (u′, v′) remains unassigned after

performing the 3D-to-2D mapping for all points, we set

I(u′, v′) = ρnull where ρnull is the arbitrary value indicating

that no 3D point is assigned to the pixel. In practice, ρnull
should be selected to be greater than the maximum value of

ρ in the LiDAR measurements or a negative value.

C. DEPTH/MASK IMAGE CONSTRUCTION

After 3D-to-2D mapping, the RI is then divided into a mask

image IM ∈ {0, 1}W×H and a depth image ID ∈ R
W×H .

The mask image IM is to indicate whether any 3D point is

assigned to each pixel on the RI or not and is defined as:

IM (u, v) =

{
1 if I(u, v) ̸= ρnull,

0 otherwise.
(3)

Given the mask image, we construct a dataset DM for train-
ing the mask INR Φ(·;ψ) which consists of pairs of the
coordinates of pixels and corresponding binary values as

DM = {((u, v), IM (u, v)) | u ∈ {1, . . . ,W}, v ∈ {1, . . . , H}}.
(4)

The depth image ID is the masked version of the RI. Pixels

without any 3D point assignment are considered as “Do not

care” (∅) and are defined as such.

ID(u, v) =

{
∅ if I(u, v) = ρnull,

I(u, v) otherwise.
(5)

In addition, we divide the depth image into small rectan-

gular areas, or patches, inspired by recent works [37] to

improve the decoding performance and the quality of the

reconstructed depth image. Specifically, the RI is evenly

segmented into patches I ′D(i) ∈ R
W
Np

× H
Np , where Np is a

scaling factor and i = 1, · · · , N2
p . Each patch is assigned a

patch index, allowing us to specify a pixel in the patched RI

as I ′D(i, iu, iv), where i represents the patch index and iu, iv
denotes the in-patch pixel coordinates whose origin is the top

left pixel in the i-th patch. Similarly to the mask image, we

also construct a dataset DD for training depth INR Ψ(·;ω)
which consists of pairs of a patch index, in-patch coordinates,

and the corresponding depth values, excluding unassigned

pixels, as follows:

DD = {((i, iu, iv), ID(i, iu, iv)) | i ∈ {1, . . . , N2
p},

iu ∈ {1, . . . ,W/Np},

iv ∈ {1, . . . , H/Np},

ID(i, iu, iv) ̸= ∅} (6)

D. INR-BASED RI ENCODER

In the encoding process, the mask INR Φ(·;ψ) and the

depth INR Ψ(·;ω) are trained to obtain good parameters to

express the coordinate-to-value relationships contained in the

mask dataset DM and DD. Figs. 2 (a) and (b) show the

detailed architecture of the proposed depth INR and mask

INR, respectively.

1) Mask INR

Regarding the mask image, we assume the existence of a

function ΦM , which maps each coordinate on the image to

a binary value as

ΦM : R2 −→ {0, 1}, (7)

and the objective of the mask INR is to obtain param-

eters ψ that well approximate that mapping function as

Φ(·;ψ) ≈ ΦM through supervised learning with the dataset

DM . Fig. 2 (a) shows the detailed architecture of the pro-

posed mask INR. The mask INR is a multi-layer percep-

tron (MLP) with L hidden layers and V nodes, and after

each hidden layer, a sinusoidal function layer is used as the

activation function. The network sequentially receives the

coordinate (u, v) from the mask dataset DM and regresses

4 VOLUME 4, 2016



Kuwabara et al.: Range Image-Based Implicit Neural Compression for LiDAR Point Clouds

… … …

Input:
Coordinates

Output:
Binary 

Classification

L hidden layers
V nodes in each layer

with sine activation function 

(a) Mask INR

… … …

Input:
Patch ID and 

Pixel coordinates
Output:

Pixel value

L hidden layers
V nodes in each layer

with sine activation function 

(b) Depth INR

FIGURE 2: Architectures of the proposed mask and depth

INRs.

a binary value as its output. Regression loss is computed

using binary cross entropy (BCE) loss function between all

output values Φ((u, v);ψ) and the corresponding true values

IM (u, v) as follows:

LBCE(ψ) = −
1

HW

H∑

u

W∑

v

[IM (u, v) log (Φ((u, v);ψ))

+(1− IM (u, v)) log (1− Φ((u, v);ψ))].
(8)

2) Depth INR

Similar to the mask INR, we also assume the existence of

another function ΨD regarding the depth image, which maps

the pair of a patch index and an in-patch pixel coordinate to

a depth value as

ΨD : R3 −→ R
1. (9)

and the objective of the depth INR is to obtain parameters ω

for good approximation of ΨD as Ψ((i, iu, iv);ω) ≈ ΨD.

Figs. 2 (b) shows the detailed architecture of the proposed

depth INR. The depth INR shares its structure with the mask

INR, with the exception of the input layer, which accepts

3 values. In the training process, pairs of patch index i and

an in-patch coordinate (iu, iv) are sequentially passed to

the depth INR network from the depth dataset DD, and the

corresponding depth values are regressed. We employ mean

squared error (MSE) loss as a regression loss function for the

depth INR as

LMSE(ω) =
1

HW

N2

p∑

i

W/Np∑

iu

H/Np∑

iv

∥Ψ((i, iu, iv);ω)− ID(i, iu, iv)∥
2.

(10)

E. MODEL COMPRESSION

Parameters ψ and ω become effectively compressed repre-

sentations of the depth and mask images after a thorough

training. We introduce a series of parameter compression

processes for both to further improve their compactness.

1) Model Pruning

As an initial step in our parameter compression procedure,

we implement global unstructured pruning for parameters in

both depth and mask INRs. Given a threshold wq for the

magnitude of parameters, each parameter w is determined to

be retained or pruned based on the following criteria:

ω̂ =

{
ω ω ≥ ωq,

0 otherwise.
(11)

To guarantee that the pruned parameters are of good ex-

pression, we subsequently retrain the parameters to fine-tune

using the same dataset DM and DD.

2) Model Quantization and Encoding

The pruned and fine-tuned parameters are uniformly quan-

tized to a bit depth of Nb. This quantization is layer-wise,

meaning that given a parameter set corresponding to each

layer in the depth and mask INRs as µ ∈ ω̂, a quantized

parameter set µq is obtained as follows:

µq = round

(
µ− µmin

2Nb

)
s+ µmin, s =

µmax − µmin

2Nb
,

(12)

where round(·) is a rounding function to the nearest inte-

ger and µmax and µmin are the maximum and minimum

values in µ. The quantized tensor µq is finally coded into

a binary sequence using Huffman coding. It is noteworthy

that the quantized parameters µq are likely to assume values

near zero, particularly for smaller bit depths. Consequently,

Huffman coding demonstrates its effectiveness in reducing

the overall size of encoded parameters.

F. RI DECODER

The decoding process of RI is a simple feedforward process

involving the mask INR and depth INR with optimized

parameters ψ̂ and ω̂. The mask image is reconstructed by

feeding the coordinate sets {(u, v) | u ∈ {1, · · · ,W}, v ∈
{1, · · · , H}} to the mask INR. The resulting binary values

are then reshaped to construct the W ×H mask image ÎM .

The depth image reconstruction is in a two-stage manner.

Each patch is first reconstructed by feeding the sets of pairs

of a patch index and an in-patch coordinate {(i, iu, iv) | i ∈

VOLUME 4, 2016 5
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{1, · · · , N2
p}, iu ∈ {1, · · · ,W/Np}, iv ∈ {1, · · · , H/Np}}

to the depth INR. The reconstructed patches are then gathered

to build the complete depth image ÎD. Finally, the recon-

structed RI Î is obtained as

Î(u, v) =

{
ÎD(u, v) ÎM (u, v) = 1,

ρnull otherwise.
(13)

G. 2D-TO-3D MAPPING

The concluding phase of our decoding procedure is the recon-

struction of a 3D point cloud through a 2D-to-3D mapping

against the reconstructed RI. When the pixel (u, v) on the RI

has a valid point depth, i.e., is not ρnull, the corresponding

point in the spherical coordinate p̂′ = (ρ̂, φ̂, θ̂) is obtained as

follows:

ρ̂ = Î(u, v),

φ̂ =
(
1−

v

H

)
(φup + |φdown|)− |φdown|,

θ̂ = −
(
2
u

W
− 1

)
π. (14)

Finally, the 3D points in the spherical coordinate are trans-

formed into the 3D Cartesian coordinate p̂ = (x̂, ŷ, ẑ) as

x̂ = ρ̂ cos φ̂ cos θ̂, ŷ = ρ̂ cos φ̂ sin θ̂ , ẑ = ρ̂ sin φ̂. (15)

IV. EXPERIMENTS

A. SETTINGS

Dataset: We use the KITTI dataset [10] as our source of

3D point cloud data. For R-D performance, we evaluate the

KITTI Odometry dataset, using frames 00, 25, 50, 75, and

100 from sequences 00 to 06. For downstream tasks, we

use the KITTI 3D Object Detection dataset. We split the

official training set into 3,712 training samples and 3,769

validation samples, and evaluate detection performance on

the validation split to quantify the impact of compression.

We use OpenPCDet [38] v0.6.0 to train and evaluate three

representative detectors: PointPillars [39], SECOND [40],

and PointRCNN [41].

All data were collected with a Velodyne 64 scanner that

features 64 laser scan lines and an azimuth resolution of 0.09

degrees. In the proposed scheme, these 3D point clouds are

projected into an RI for compression. Note that projecting

points into a range image may cause point loss. We evaluate

the point retention ratio defined as rN = |P̂|/|P|, where P
is the original input point cloud and P̂ is the reconstructed

point cloud via RI projection and back-projection. On the

KITTI odometry dataset, we observe rN = 41.02%± 0.38%
using 35 selected frames from sequences 00–06. Similarly,

we observe rN = 74.33% ± 0.69% on the KITTI object

detection validation split of 3,769 frames, measured on the

cropped point clouds used as inputs for 3D object detectors.

Metric: Regarding the metrics for the decoded 3D point

clouds, we follow the common practice in the community

using chamfer distance (CD). CD has been widely adopted

as a distortion measure for 3D point cloud reconstruction and

sensing [42].

CD is defined as:

CD =
1

2

{
1

|P|

∑

p∈P

min
p̂∈P̂

∥p− p̂∥2 +
1

|P̂|

∑

p̂∈P̂

min
p∈P

∥p− p̂∥2

}
,

(16)

where P is the set of 3D points in the original point cloud

and P̂ is the set of 3D points in the decoded point set.

For the R-D performance assessment between the pro-

posed method and the baselines, we use the Bjøntegaard

delta chamfer distance (BD-CD) [43] for calculating average

CD improvement between R-D curves for the same bitrate,

where positive values denote CD improvement compared to

the baselines. For downstream tasks, we evaluate 3D object

detection accuracy using the Car 3D bounding-box average

precision (AP).

Network Architecture Details: Both INR architectures are

designed to effectively approximate the coordinate-to-value

mappings in the mask and depth images derived from RI.

The mask INR is an MLP with a fixed depth of L = 6
layers. We experimented with varying the number of nodes

V in each hidden layer to evaluate the impact on performance

and compression efficiency. The values of V considered are

{10, 19, 24, 28, 31, 34, 37, 40}.

The network takes as input the pixel coordinates (u, v) ∈
R

2 from the mask dataset DM and outputs a scalar value

representing the mask at that coordinate. The architecture is

structured as follows:

• Input Layer: The coordinates of the pixels (u, v).
• Hidden Layers: It consists ofL = 6 hidden layers, each

with V nodes. Each hidden layer employs the sinusoidal

activation function to introduce periodicity and enable

the network to model high-frequency variations in the

mask image.

• Output Layer: A single node with the sigmoid acti-

vation function produces an output in the range (0, 1),
suitable for binary classification of mask values.

The Depth INR is also implemented as an MLP with a

fixed depth of L = 6 layers. We also consider the dif-

ferent number of nodes V in each hidden layer, choosing

{28, 31, 34, 37, 40, 42, 45} to evaluate the trade-off between

model capacity and compression.

The input to the depth INR is a concatenation of the patch

index i and the in-patch pixel coordinates (iu, iv) ∈ R
2,

resulting in a 3-dimensional input vector. Since we set the

patch scaling factor to Np = 16, the patch index i ranges

from 0 to 255. The architecture of the depth INR is as

follows:

• Input Layer: The concatenated input vector (i, iu, iv).
• Hidden Layers: It contains L = 6 hidden layers, each

with V nodes. Similarly to the mask INR, the sinusoidal

activation function is applied to each hidden layer to

capture the complex variations in the depth image.

• Output Layer: A single node with a linear activa-

tion function (identity function) to output the estimated

depth value ÎD(i, iu, iv) ∈ R.
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FIGURE 3: Chamfer distance as a function of bitrate across different sequences of the KITTI LiDAR point clouds, where

the bitrate is measured in bits per point (bpp). From left to right: (left) performance in frame 00 of sequence 00, (middle)

performance in frame 25 of sequence 00, and (right) performance in frame 50 of sequence 00.

Hyperparameter Details: We use separate hyperparameter

settings for mask and depth INRs. The general settings for

both INRs include the Adam optimizer, an initial learning

rate of 1×10−3, 3,000 training epochs, and a batch size of 1.

For depth INR, we adopt the cosine annealing scheduler with

a warmup phase. The initial learning rate is set to 1 × 10−4,

and the warmup period lasts for 300 epochs. The minimum

learning rate is set to 1× 10−12.

Model Compression Details: A global unstructured pruning

is used for model pruning. The pruning ratio (sparsity) was

varied from 0 to 1 to adjust the sparsity of the model parame-

ters. For each pruning ratio, we determined the corresponding

threshold ωq to control which parameters were pruned. A

higher pruning ratio results in more parameters being set to

zero. After pruning, we fine-tuned the model using the same

dataset to recover any potential performance loss.

To further compress the pruned and fine-tuned model,

we perform uniform quantization to the parameters. The

quantization bit depth Nb was varied from 4 to 32 bits

to balance compression performance and model precision.

The quantized parameters were then encoded using Huffman

coding to further reduce the model size.

Baselines: We evaluate our proposed method by comparing

it with existing baselines in both geometric 3D point cloud

compression and 2D image compression.

1) As baselines for 3D point cloud compression, we select

G-PCC within the PCC family. We refer to the MPEG

reference implementation TMC13-v14.0 for octree ge-

ometry compression.

2) We also select Draco [44] as the 3D point cloud com-

pression baseline which also belongs to the PCC fam-

ily. We use the official implementation of the Draco en-

coder that performs KD-tree-based compression [45].

3) OctAttention [19] is an octree-based autoencoder

within the PCC family. This method improves the con-

ventional octree structure by incorporating attention

mechanisms for better context modeling. To evaluate

its performance across different compression levels, we

set the octree depth to values from 8 to 13.

4) As conventional image compression baselines, we se-

lect JPEG, JPEG2000, High-Efficiency Image File

Format (HEIF), and AV1 Image File Format (AVIF).

We convert floating-point valued RIs into 8-bit preci-

sion in advance when using these methods.

5) R-PCC [22] is an RI based LiDAR compression base-

line. It maps LiDAR point clouds to RIs and performs

intra-coding using floating-point lossless coding meth-

ods. Here, we use LZ4 and Deflate for coding methods

due to their fast decompression.

6) COmpression with Implicit Neural representations

(COIN) [7] is an INR–based image compression base-

line. The INR architecture is trained to obtain a direct

mapping of the pixel coordinate to each pixel value of

RI. We assume that COIN serves as a reliable indicator

of the efficiency of our depth/mask separation strategy,

as it does not employ the process.

Implementation Detail: All the evaluations exhibited in this

paper are performed with CPUs of Intel Core i9-10850K

and i9-13900KF and with GPUs of NVIDIA GeForce RTX

3080 and 4070. NNs for COIN and our proposed method

are implemented, trained, and evaluated using PyTorch 2.2.0

with Python 3.10.

B. COMPARISON WITH BASELINES

1) RATE-DISTORTION PERFORMANCE

We show the R-D performance of our proposed method and

baselines. Figs. 3 show the CD between the original and

reconstructed LiDAR point clouds against various bitrates,

i.e., bit per point (bpp). We observe the following findings:

• The proposed method achieves higher 3D reconstruc-

tion quality than G-PCC, Draco, image compression,

and RI compression methods across the bpp range up

to 3.0 for frame 00.

• OctAttention achieves the best R-D performance in

frames 00, 25 and 50, whereas it requires long decoding

latency, as will be detailed in Table 2.

• Image compression methods suffer from quality satura-

tion due to the precision disparity between RI and the
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(a) Original
Seq: 00
Frame: 00

(b) JPEG
bpp:1.46
CD:1.32

(c) JPEG2000
bpp:1.33
CD:0.662

(d) HEIF
bpp:1.49
CD:0.355

(e) AVIF
bpp:1.10
CD:0.324

(f) COIN
bpp:1.33
CD:1.13

(g) G-PCC
bpp:1.46
CD:0.152

(h) Draco
bpp:1.10
CD:0.226

(i) OctAttention
bpp:1.36
CD:0.070

(j) R-PCC (Deflate)
bpp:1.52
CD:0.147

(k) R-PCC (LZ4)
bpp:2.84
CD:0.229

(l) Proposed
bpp:1.54
CD:0.077

(m) Original
Seq: 00
Frame: 25

(n) JPEG
bpp:1.93
CD:1.01

(o) JPEG2000
bpp:1.99
CD:0.441

(p) HEIF
bpp:2.09
CD:0.323

(q) AVIF
bpp:1.18
CD:0.308

(r) COIN
bpp:1.33
CD:1.01

(s) G-PCC
bpp:1.89
CD:0.109

(t) Draco
bpp:1.98
CD:0.128

(u) OctAttention
bpp:2.44
CD:0.036

(v) R-PCC (Deflate)
bpp:2.24
CD:0.082

(w) R-PCC (LZ4)
bpp:2.90
CD:0.235

(x) Proposed
bpp:2.16
CD:0.058

FIGURE 4: Snapshot of the reconstructed LiDAR point clouds in proposed and baseline methods. Here, (b)-(l) and (n)-(x)

show the reconstructed point clouds of frames 00 and 25 of sequence 00, respectively.

TABLE 1: The list of BD-CD ↑ for the KITTI dataset across the different sequences. Note that BD-CD is evaluated for each

baseline using the proposed method as the reference. Positive values indicate that the proposed method achieves a lower chamfer

distance than the corresponding baseline.

Seq. JPEG† JPEG2000† HEIF† AVIF† COIN‡ G-PCC§ Draco§
Oct

Attention
§

R-PCC

(Deflate)
¶

R-PCC

(LZ4)
¶

00 1.393 0.801 0.535 0.256 1.103 0.081 0.157 -0.025 0.023 0.110
01 1.234 0.686 0.515 0.259 1.095 0.097 0.234 -0.017 0.019 0.097
02 1.120 0.612 0.447 0.254 1.039 0.083 0.226 -0.026 0.006 0.094
03 1.322 0.733 0.497 0.232 1.074 0.059 0.176 -0.045 -0.007 0.078
04 1.343 0.748 0.515 0.237 1.092 0.074 0.192 -0.039 0.010 0.097
05 1.484 0.877 0.576 0.248 1.041 0.065 0.153 -0.040 0.008 0.095
06 1.324 0.785 0.527 0.224 0.993 0.053 0.153 -0.070 -0.024 0.062

Average 1.317 0.749 0.516 0.244 1.063 0.073 0.185 -0.037 0.005 0.090

†: Image based method(s), ‡: INR based method, §: Point Cloud based method(s), ¶: Range Image based method(s).

typical 8-bit precision image.

• PCC methods do not have saturation since they com-

press the geometry information with 10-bit precision.

• In R-PCC, R-D performance highly depends on the

lossless coding method.

• The INR-based method requires a large model size for

reconstructing high-quality RI.

Figs. 4 (a)-(x) show the snapshots of the original and

reconstructed LiDAR point clouds in each method Here,

Figs. 4 (a)-(l) and (m)-(x) use frames 00 and 25 of sequence

00, respectively. The proposed method can reconstruct a

clean point cloud at the same bitrate. However, some PCC,

image compression, and INR-based compression methods

contain circular noises and/or decrease the number of 3D

points in the reconstructed LiDAR point clouds. A circular

noise still remains in R-PCC methods as well.

Table 1 lists the average BD-CD performance of the

proposed method against the baselines in each sequence of

LiDAR point clouds. Here, BD-CD is evaluated for each

baseline using the proposed method as the reference. It shows

that the proposed method achieves the best 3D reconstruction

quality in the same bitrate range against G-PCC, Draco,

image compression, and INR-based compression methods

irrespective of LiDAR sequences. For OctAttention and R-
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(a) PointPillars (b) SECOND (c) PointRCNN

FIGURE 5: Quantitative results of 3D object detection on the KITTI detection dataset. Car 3D bounding-box AP@0.7, 0.7, 0.7

as a function of bitrate (bits per point), for three downstream detectors (left to right): PointPillars, SECOND, and PointRCNN.

TABLE 2: Average decoding latency ↓

Method Latency per frame

JPEG 0.49 ms

JPEG2000 0.54 ms

HEIF 0.51 ms

AVIF 0.48 ms

COIN 0.71 ms

G-PCC 2.00 ms

Draco 3.00 ms

OctAttention 10.6 s

R-PCC (Deflate) 11.5 ms

R-PCC (LZ4) 10.3 ms

Proposed 0.69 ms

TABLE 3: Average encoding latency ↓

Method Latency per frame

JPEG 9 ms

JPEG2000 10 ms

HEIF 55 ms

AVIF 94 ms

COIN 30 min

G-PCC 65 ms

Draco 10 ms

OctAttention 134 ms

R-PCC (Deflate) 20 ms

R-PCC (LZ4) 60 ms

Proposed 180 min

PCC (Deflate), the proposed method can be comparable or

slightly worse in some cases. In addition, the performance

gap between R-PCC and the proposed methods depends

on the lossless coding method. When R-PCC uses a low-

efficiency coding method, such as LZ4, for fast decoding, the

proposed scheme achieves better R-D performance than R-

PCC.

2) DOWNSTREAM TASK

We then discuss the impact of our RI compression method

on the performance of downstream tasks on the LiDAR

point cloud. We selected 3D object detection as a represen-

tative example of downstream tasks. To evaluate robustness

across different perception architectures, we consider three

representative LiDAR detectors: PointPillars (BEV-based),

SECOND (voxel-based), and PointRCNN (point-based).

Fig. 5 shows the Car 3D bounding-box AP@0.7, 0.7, 0.7 as

a function of bitrate for the original and reconstructed point

clouds, evaluated with PointPillars, SECOND, and PointR-

CNN. The dashed line indicates the detection accuracy on the

uncompressed point clouds. The results demonstrate that the

proposed method achieves higher detection accuracy than the

baselines across all three detectors in low-bpp regimes, i.e.,

bpp from 1.0 to 2.0.

3) DECODING LATENCY

Table 2 shows the average decoding latency of the proposed

and baseline methods for LiDAR frame 00 of sequence 00.

The decoding latency values for the proposed method and

the baselines are the total time required from RI decoding to

the 2D-to-3D mapping. The decoding latency of the proposed

method is comparable to that of image compression methods

and has more than 65.5% and 93.3% reduction compared to

G-PCC, Draco and R-PCC methods, respectively. In addi-

tion, the proposed scheme achieves a speedup of over four

orders of magnitude compared to OctAttention. This means

that the proposed method approaches the decoding latency of

image compression methods and achieves 3D reconstruction

quality comparable to PCC/R-PCC methods.

4) ENCODING LATENCY

Table 3 lists the average encoding latency of the proposed

and baseline methods for LiDAR frame 00 of sequence 00.

Here, the encoding latency for the RI-based schemes contains

the conversion time from the point cloud to the RI. It can

be seen that INR-based approaches, including the proposed

one, involve significantly longer encoding time than both 3D

point cloud and 2D image compression methods. However, as
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(a) R-D performance.

(b) Convergence speed.

FIGURE 6: Patch-wise vs. pixel-wise.

shown in Table 2, INR-based compression drastically reduces

decoding latency, which is advantageous for on-demand,

quality-driven services.

We note that the proposed scheme has a trade-off between

reconstruction quality and encoding latency depending on the

learning rate schedule. Here, we use initial and minimum

learning rates of 1 × 10−4 and 1 × 10−12 for quality-

sensitive users. When we use initial and minimum learning

rates of 1 × 10−6 and 1 × 10−8 for encoding, the encoding

latency is reduced to 30 minutes with a slight degradation

in reconstruction quality. This means the proposed scheme

can select quality-oriented or latency-oriented configurations

based on application requirements.

C. ABLATION STUDY

(a) Pixel-wise
bpp:1.83
CD:0.123

(b) Patch-wise
bpp:2.14
CD:0.056

(c) Pixel-wise
bpp:2.02
CD:0.107

(d) Patch-wise
bpp:2.14
CD:0.058

FIGURE 7: Snapshot of the reconstructed LiDAR point

clouds in pixel-wise and patch-wise proposed methods. Here,

(a)-(b) and (c)-(d) show the reconstructed point clouds of

frames 00 and 25 of sequence 00, respectively.

1) IMPACT OF PATCH-WISE INR ARCHITECTURE

The proposed depth INR exploits the patch-wise architecture,

whereas the pixel-wise architecture can be used for the depth

INR. Fig. 6 (a) shows the CD of the proposed patch-wise

INR and pixel-wise INR architectures as a function of bitrates

under the different sequences of KITTI’s LiDAR point cloud.

We can see that the patch-wise depth INR achieves better

CD than the pixel-wise architecture at large bitrate regimes

in every LiDAR sequence. Specifically, BD-CD between the

patch-wise and pixel-wise architectures is 0.047, 0.031, and

0.028 in frames 00, 25, and 50 of sequence 00, respectively.

The effects on the visual quality are shown in Figs. 7 (a)–(d),

respectively.

Fig. 6 (b) shows the CD performance of INR-based image

compression methods as a function of the learning epochs.

Our patch-wise architecture boosts the convergence speed by

up to 13× compared to the pixel-wise architecture, and the

fast convergence results in a short encoding delay.

2) IMPACT OF MODEL COMPRESSION

After the encoder trains the depth and mask INR archi-

tectures, the trained weights are pruned and quantized for

compression. Here, the proposed method can set different

pruning ratios and bit depths for the depth and mask INRs.

This section discusses the impact of model pruning and

quantization on both INR model compression.

Figs. 8 (a) and (b) show the effect of model pruning and

quantization for the depth and mask architectures. In pruning,

the mask INR is similar in performance to the full model, al-

though the sparsity is approximately 70%. However, pruning

the model for the depth INR causes quality degradation even

though the sparsity is only 10%. For quantization, a 16-bit

model still retains almost the same CD as the original 32-

bit model in depth INR, while the mask INR can reduce the
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(a) CD for different pruning sparsity.

(b) Quantization with different Nb.

FIGURE 8: Model compression performance.

number of bits to 11.

3) IMPACT OF NETWORK ARCHITECTURE

This section discusses the effect of the configurations for

the depth INR architecture, specifically the patch size Np

and layer size L, on the quality of the reconstructed LiDAR

point cloud. The proposed depth INR uses the patch-wise

architecture, and thus the depth image is divided into patches

of size Np × Np. Here, a small patch size increases the

complexity of intra-patch learning, while a large patch size

increases the complexity of inter-patch learning.

Fig. 9 shows CD performance varying Np, and Fig. 10

demonstrates the corresponding snapshots of the recon-

structed point cloud. We consider all the variants using the

same model size in Fig. 8 with a sparsity of 0.0 and Nb of

32. The evaluation results demonstrated that the patch size

of Np = 16 yields the best CD performance. However, using

FIGURE 9: Chamfer distance under the different patch sizes.

(a) Seq: 00, Frame: 00 (b) Np: 2, CD: 0.104

(c) Np: 4, CD: 0.094 (d) Np: 8, CD: 0.078

(e) Np: 16, CD: 0.056 (f) Np: 32, CD: 0.067

(g) Np: 64, CD: 0.089

FIGURE 10: Snapshots of the reconstructed LiDAR point

clouds in proposed methods under the different patch sizes

Np × Np. Here, (b)-(g) show the reconstructed point clouds

of frame 00 of sequence 00.

larger or smallerNp values leads to performance degradation.

While a large Np reduces the effectiveness of patch-wise

modeling due to the limited pixel count, a small Np requires

covering a wider area. This makes it challenging to capture

sharp depth transitions and preserve geometric details near

boundaries.

Similarly, Fig. 11 and 12 show the 3D reconstruction qual-

ity of the proposed scheme and the corresponding snapshots
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FIGURE 11: Chamfer distance under the different layer

sizes.

(a) Seq: 00, Frame: 00 (b) L: 2, CD: 0.173

(c) L: 4, CD: 0.085 (d) L: 6, CD: 0.056

(e) L: 8, CD: 0.084

FIGURE 12: Snapshots of the reconstructed LiDAR point

clouds in proposed methods under the different layer sizes

L. Here, (b)-(e) show the reconstructed point clouds of frame

00 of sequence 00.

for different layer sizes L. The results indicate that a layer

size of L = 6 is the most effective for CD performance.

V. CONCLUSION AND FUTURE WORK

We proposed a novel RI-based LiDAR point cloud compres-

sion method. The proposed method is designed to efficiently

compress floating-point RIs using INR-based techniques and

features a sophisticated architecture that combines separated

learning for mask and depth images, patch-wise learning

for depth images, and model compression. Experiments on

the KITTI dataset show that the proposed method improves

3D reconstruction quality at low bitrates compared with

conventional image codecs and representative baselines such

as G-PCC, Draco, and COIN, and it also achieves strong 3D

object detection accuracy in the low-bpp regime.

The proposed method has two limitations: encoding delay

and transformation loss from RIs to 3D point clouds. While

existing baselines require only a few milliseconds for en-

coding, implicit neural compression, including the proposed

method, takes from tens of minutes to several hours. In sum-

mary, the proposed method’s long encoding delay and short

decoding delay make it well-suited for offline applications

of LiDAR point clouds. To further reduce encoding latency,

recent findings on learned initializations for coordinate-

based neural representations [46] and meta-learned sparse

INRs [47] can be integrated into our depth/mask INR archi-

tecture. We leave the implementation and evaluation of such

integration as future work.

In addition, RIs with limited spatial resolution will lead to

irreversible point loss during 2D-to-3D decoding, potentially

degrading the performance of downstream tasks. In future

work, we will consider integrating a point cloud genera-

tor [48] to obtain a denser point cloud from the limited

resolution of RIs.

APPENDIX

This appendix provides further details for Table 1. Table 4

shows the detailed BD-CD performance across the different

LiDAR frames.
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TABLE 4: The list of BD-CD ↑ for the KITTI dataset across the different frames. Note that BD-CD is evaluated for each

baseline using the proposed method as the reference. Positive values indicate that the proposed method achieves a lower

chamfer distance than the corresponding baseline.

Seq. Frame JPEG† JPEG2000† HEIF† AVIF† COIN‡ G-PCC§ Draco§
Oct

Attention
§

R-PCC

(Deflate)
¶

R-PCC

(LZ4)
¶

00

00 1.197 0.661 0.465 0.260 1.039 0.099 0.146 -0.022 0.023 0.108

25 1.277 0.719 0.490 0.237 0.969 0.071 0.146 -0.032 0.028 0.118

50 1.588 0.923 0.607 0.266 1.264 0.081 0.153 -0.025 0.050 0.136

75 1.696 1.036 0.661 0.270 0.983 0.068 0.153 -0.021 0.016 0.100

100 1.208 0.667 0.450 0.247 1.261 0.088 0.189 -0.027 0.000 0.085

01

00 1.118 0.630 0.474 0.258 1.072 0.084 0.265 -0.036 -0.005 0.074

25 1.040 0.581 0.462 0.285 1.073 0.091 0.292 -0.013 0.005 0.082

50 1.128 0.624 0.485 0.271 1.113 0.121 0.238 -0.011 0.019 0.088

75 1.411 0.754 0.546 0.244 0.969 0.115 0.177 -0.005 0.021 0.080

100 1.472 0.842 0.606 0.239 1.250 0.075 0.199 -0.018 0.057 0.159

02

00 1.248 0.704 0.497 0.229 0.970 0.082 0.217 -0.056 -0.014 0.137

25 1.037 0.561 0.419 0.250 0.986 0.063 0.215 -0.031 0.002 0.070

50 1.039 0.558 0.418 0.266 0.996 0.099 0.272 -0.022 0.006 0.076
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