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Abstract

This paper presents a novel scheme to efficiently compress Light Detection and Ranging (Li-
DAR) point clouds, enabling high-precision 3D scene archives, and such archives pave the way
for a detailed understanding of the corresponding 3D scenes. We focus on 2D range images
(RIs) as a lightweight format for representing 3D LiDAR observations. Although conventional
image compression techniques can be adapted to improve compression efficiency for Rls, their
practical performance is expected to be limited due to differences in bit precision and the
distinct pixel value distribution characteristics between natural images and RIs. We propose
a novel implicit neural representation (INR)-based RI compression method that effectively
handles floating-point valued pixels. The proposed method divides RlIs into depth and mask
images and compresses them using patch-wise and pixel-wise INR architectures with model
pruning and quantization, respectively. Experiments on the KITTI dataset show that the
proposed method outperforms existing image, point cloud, RI, and INR-based compression
methods in terms of 3D reconstruction and detection quality at low bitrates and decoding
latency.

IEEE Access 2026

© 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139






IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Range Image-Based Implicit Neural
Compression for LiDAR Point Clouds

AKIHIRO KUWABARA', (Non Member, IEEE), SORACHI KATO', TOSHIAKI KOIKE-AKINO?,

and TAKUYA FUJIHASHI', (Member, IEEE)

! Graduate School of Information Science and Technology, The University of Osaka, Japan (e-mail: kuwabara.akihiro @ist.osaka-u.ac.jp)

2Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02139, USA

CORRESPONDING AUTHOR: AKIHIRO KUWABARA (e-mail: kuwabara.akihiro @ist.osaka-u.ac.jp).

This work was supported by JST-ASPIRE Grant Number JPMJAP2432.

ABSTRACT This paper presents a novel scheme to efficiently compress Light Detection and Ranging (Li-
DAR) point clouds, enabling high-precision 3D scene archives, and such archives pave the way for a detailed
understanding of the corresponding 3D scenes. We focus on 2D range images (RIs) as a lightweight format
for representing 3D LiDAR observations. Although conventional image compression techniques can be
adapted to improve compression efficiency for Rls, their practical performance is expected to be limited
due to differences in bit precision and the distinct pixel value distribution characteristics between natural
images and RIs. We propose a novel implicit neural representation (INR)-based RI compression method
that effectively handles floating-point valued pixels. The proposed method divides RIs into depth and mask
images and compresses them using patch-wise and pixel-wise INR architectures with model pruning and
quantization, respectively. Experiments on the KITTI dataset show that the proposed method outperforms
existing image, point cloud, RI, and INR-based compression methods in terms of 3D reconstruction and
detection quality at low bitrates and decoding latency.

INDEX TERMS LiDAR, Point Clouds, Range Image INR.

. INTRODUCTION

IDAR sensors have gained significant attention not only

in online applications but also in offline applications.
In such offline applications, memory-efficient and precise
three-dimensional (3D) scenes should be stored in advance
and the 3D scenes should be smoothly retrieved from the
storage based on the user demand for applications of 3D
scene understanding such as digital archiving, environmental
monitoring, navigation, and geological surveying [1]-[3].
LiDAR sensors scan the physical space with the ego-centric
coordinate and measure the distance to the closest point on
surrounding objects for each angle, allowing the creation of a
point cloud with 3D points corresponding to the intersection
of laser beams with objects ahead. As the resolution of
LiDAR sensors increases, effectively storing and transmitting
LiDAR scans becomes a significant challenge, primarily due
to the substantial volume of each LiDAR sequence.

Although LiDAR scans are typically represented as 3D
point clouds, they can also be expressed as a single-channel
image, referred to as a two-dimensional (2D) range image
(RI) [4], where point clouds captured in an ego-centric spher-
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ical coordinate system are projected onto a panoramic image.
The x-y axes of the RI image correspond to the azimuth and
elevation angles in the 3D spherical coordinate system, while
each pixel value represents the distance to the corresponding
point in that direction. Whereas 3D point clouds require 3N
values to represent the locations of N point measurements,
RIs require only N pixels at most, thus demonstrating their
compactness.

We can pursue methods to further compress RIs. One
potential solution is to adapt conventional lossy image com-
pression techniques, such as Joint Photographic Experts
Group (JPEG) [5] and Joint Photographic Experts Group
2000 (JPEG2000) [6]. However, these methods are based
on integer precision for pixel values, which is incompatible
for RIs whose pixels are represented by single or double
precision floating-point numbers to precisely express the
distance to the corresponding point measurements. We can
still utilize these compression methods by adjusting the bit
precision of RIs to align with them, but this naturally leads
to degradation in 3D point cloud reconstruction performance
due to inadequate distance resolution. Another drawback of
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conventional compression methods lies in their strategy: they
use block-based discrete cosine transform (DCT) and apply
coarse quantization to high-frequency components based on
human visual perception. This approach leads to significant
degradation in the decoding performance of Rls, as Rls
are characterized by large and sudden changes in the pixel
value between foreground objects and distant backgrounds
or pixels without any assigned point measurement.

To effectively compress RIs while preserving their fine
precision and high-frequency changes in pixel value, this
paper presents a novel RI compression method inspired by
implicit neural representation (INR)-based image compres-
sion technique [7]. INR [8], [9] is a lightweight representa-
tion of multidimensional signals by compressing them into
shallow neural networks (NNs). Specifically, INR overfits
NNs with a limited number of parameters to the signals of
interest through supervised learning, and the trained parame-
ters become the compressed signal representation by provid-
ing the mapping function from signal indices, for example,
coordinates on the image plane, to the corresponding sig-
nals. A primary challenge for INR-based signal compression
is to ensure the precision of high-frequency details while
simultaneously managing the constraints imposed by the
limited model size. To address this challenge, we propose
an extended INR training approach that incorporates both
a mask image and an RI for point depth information. The
mask image is a binary map that indicates whether each pixel
corresponds to a projected 3D point (one) or not (zero). We
begin by generating a mask image from the RI, followed
by learning two separate coordinate-to-value mappings using
distinct INR architectures: one for depth INR and one for the
mask INR. During decoding, these trained INRs reconstruct
both the depth and mask images, and the final reconstructed
RI is obtained by applying the mask to the depth image. Al-
though the reconstructed depth image may contain values for
pixels that do not correspond to any 3D points, applying the
mask enforces hard thresholding, effectively removing these
artifacts. This process ensures a high-quality reconstructed
RI, with sharp edges accurately preserved.

The contributions of our study are three-fold:

o To the best of our knowledge, this is the first paper
to propose an INR-based intra RI compression method
specifically designed for LiDAR measurements pro-
jected onto high-precision floating-point images.

o We extend the INR compression approach to incorpo-
rate the mask INR that explicitly represents whether
any point measurements are assigned to each pixel on
the RI or not, allowing efficient elimination of false
point estimation on reconstructed depth images in the
decoding process.

o We evaluate our proposed method using KITTI
dataset [10] and compare its performance with existing
baselines including conventional image compression,
point cloud compression (PCC) [11], and RI-based and
INR-based image compression, and show the better
rate-distortion (R-D) performance and downstream task

quality of our method than the baselines, especially at
low bitrates.

Il. RELATED WORK

A. POINT CLOUD COMPRESSION

The measured distance from LiDAR sensors is usually repre-
sented as a 3D point cloud. Each point cloud consists of a set
of 3D points, and each point is defined by 3D coordinates,
i.e., (X, Y, Z). The graph-based and tree-based compres-
sion methods have been proposed to compress coordinate
information, that is, geometry information. The graph-based
methods regard the 3D points as graph signals and define
graph Fourier transform (GFT) for frequency conversion in
the graph domain. [12]-[14] utilized GFT for the geometry
compression. Other studies [15], [16] reduce the storage
and transmission costs for graph signal reconstruction. The
tree-based compression method is another popular strategy
for compressing geometry information. The typical way
is octree-based representation, such as point cloud library
(PCL) and geometry-based point cloud compression (G-
PCC) [11], [17]. Some recent studies have been proposed
to improve the efficiency of geometry compression using
traditional signal processing [18] and deep neural network
(DNN) [19], [20] solutions, respectively. For example, the
study in [18] adaptively adopts the quad-tree (QT) and
binary-tree (BT) block partitions in addition to those of
octrees to improve the efficiency of the coding.

B. LIDAR RANGE IMAGE COMPRESSION

Many recent works consider projecting the measured LiDAR
information onto 2D RI to represent the measured distance
information in a compact format. There are two types of
input LiDAR information to obtain the corresponding Rls: 1)
raw packet containing the LiDAR laser IDs [21], the rotation
angle of the LiDAR sensors and the distance values, and
2) 3D point clouds [22]-[24]. Our study utilizes 3D point
clouds. The obtained RIs are then intra-coded [22] or inter-
coded [23], [24] in lossless and lossy manners. Here, intra-
coding reduces the spatial redundancy in each RI, whereas
inter-coding reduces the temporal redundancy across Rls. In
R-PCC [22], which is an intra-coding method, each RI can
be coded by using a lossless coding method, such as LZ4
and Deflate, to compress the floating-point format. Our study
is designed for RI intra-coding and exploits the INR-based
compression to represent LiDAR measurements in small
storage and transmission costs.

C. IMPLICIT NEURAL COMPRESSION

Since the concept of INR overfits multi-dimensional signals
to a small NN architecture, recent studies exploit INR ar-
chitectures for image compression. Specifically, each INR
architecture takes a spatial/time index of the target signals
and/or the corresponding feature vector to reconstruct the
corresponding attribute values, such as color information.
The overfitted weights of the INR architecture are shared
with the receiver’s side for signal reconstruction.
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FIGURE 1: Overview of the proposed scheme.

The existing INR-based compression can be classified
into pixel-wise, patch-wise, and frame-wise architectures.
The frame-wise architectures realized inter-coding between
multiple video frames to remove temporal redundancy. They
feed the frame index and/or the corresponding embeddings
to the NN to generate each frame. Neural Representations
for Videos (NeRV) [25] is the first work on frame-wise video
compression, and various extensions [26]-[35] are proposed
to improve the quality of reconstruction. However, NeRV
architectures are large models when used for intra-coding
each image.

The pixel-wise INR architecture [7], [36] takes the pixel
index as input and reconstructs the corresponding pixel value.
The patch-wise INR architecture was first proposed in [37].
Specifically, each image is divided into multiple patches, and
the INR architecture takes the patch index as input to exploit
the similarity of local adjacent pixels for high-quality recon-
struction under the same model size. A key issue in such INR
architectures is the lack of precision in high-frequency details
with a small NN architecture. To represent high-frequency
details under a small NN architecture, SIREN in [8] argues
that sinusoidal activations work better than Rectified Linear
Unit (ReLU) networks because sinusoidal activations can fit
signals contained in higher-order derivatives. To address the
same problem, our paper extends the training process of INRs
by separating RIs into depth and mask images.

lll. PROPOSED SCHEME

A. OVERVIEW

Fig. 1 shows an end-to-end architecture of the proposed
scheme. Fig. 1 (a) specifically shows the procedure to obtain
RI and corresponding depth and mask images from the
LiDAR 3D point cloud. We consider that the LiDAR mea-
surement to be compressed is a 3D point cloud consisting of
N points, denoted as P = {p; = [z;,y;, 2] | i =1,--- ,N},
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where x;,y;,2; € R represent the Cartesian coordinates
of the ¢-th point. The point cloud is first transformed into
the spherical coordinate system. Subsequently, each point is
projected onto a 2D image plane by mapping it to a pixel
in a single-channel image I € RW># producing an RI.
Here, W and H represent the width and height of the range
image, respectively. The Rl is then divided into a depth image
Ip € RW>H and a mask image Ip; € {0,1}W*H . The
depth image Ip is further segmented into small rectangular
regions, or patches, with a resolution of NE,, X Niy where N,
is the scaling factor.

Fig. 1 (b) shows the sequential operations of the encoder
and decoder. In the encoder, two distinct INRs, namely
the mask INR ®(-;2)) and the depth INR ¥(-;w) with
learnable parameters 1 and w, are trained to be overfitted
to the depth image and the mask image, respectively. This
training process is a pixel-wise process, which means that
the parameters are trained to obtain a mapping from the
pixel coordinates or patch indices on the images to their
corresponding pixel values. This is achieved by sequentially
providing a pair of indices to the networks. The well-trained
parameters 1) and w are subsequently pruned and quantized
as 1/3 and w to enhance their compactness, and we assume
that these parameters are stored in storage or transmitted to
content receivers as the lightweight format of the LiDAR
measurements. In the decoding process, the decoder uses
compressed parameters to reconstruct a mask image I and
a depth image Ip from individual INR architectures ®(-; 1))
and U(-; w), respectively. Similarly to the encoding process,
the images are reconstructed by sequentially feeding a pair
of coordinates and indices to the INRs and collecting all
estimated values to form the shape of the image. We obtain
the final result of RI, 1, by applying the mask image to the
depth image to mask out any values of the pixels in the
depth image corresponding to the pixels with a mask value
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of 0, indicating “no point”. Finally, the LiDAR point cloud is
reconstructed as P from I via a reverse coordinate projection
process from the 2D image plane, through the spherical
coordinate system, to the Cartesian coordinate system.

B. 3D-TO-2D MAPPING

Our proposed method first performs a coordinate transfor-
mation for all points in the 3D point cloud P measured by
LiDAR sensors to obtain a 2D RI I. Specifically, the 3D-
to-2D mapping consists of two steps: 1) mapping points in
the 3D Cartesian coordinate system x-y-z to the spherical
coordinate p-¢-0, and 2) mapping points in the spherical
coordinate p-¢-6 to an image coordinate system wu-v.

Each 3D point in the point cloud p € P consists of the 3D
Cartesian coordinate (x,y, z) first. This point is transformed
into a point in the spherical coordinate p’ = (p, ¢, 6), where
p, @, 0 denotes the length, pitch, and yaw of the coordinate
system, as follows:

p=+vz2+y?+ 22, ¢ =arcsin (z) , 0 = arctan (g) i
p T
(1)

The point in the spherical coordinate is further transformed to
the image coordinate (u, v) to generate 2D RI T as follows:

(2

_ _ ¢+‘¢down|
= {H g (1 Bup + \¢down|)J ’ @

where ¢y, and @gown are the maximum and minimum value
of ¢ in the dataset, | - | is the absolute value, and || is a
floor function. H and W in Eq. (2) are the height and width
of RI, and they are determined by the angular resolution of
the LiDAR sensor for the elevation and azimuth axes. In this
study, we set I = 64 and W = 1024. The value of each
pixel I(u, v) on the RI is the measured distance p, derived in
Eq. (1), with arbitrary unit for physical length.

Due to the sparsity of LIDAR measurements, not all pixels
on the RI are guaranteed to be assigned to any 3D point.
Therefore, if a pixel on (u',v’) remains unassigned after
performing the 3D-to-2D mapping for all points, we set
I(u',v") = ppui where pp, is the arbitrary value indicating
that no 3D point is assigned to the pixel. In practice, ppui
should be selected to be greater than the maximum value of
p in the LiDAR measurements or a negative value.

C. DEPTH/MASK IMAGE CONSTRUCTION

After 3D-to-2D mapping, the RI is then divided into a mask

image I € {0,1}">*# and a depth image Ip € RW>#,
The mask image [, is to indicate whether any 3D point is

assigned to each pixel on the RI or not and is defined as:

Tar(,0) = {1 if I(u,v) # P, )

0 otherwise.

Given the mask image, we construct a dataset Dy, for train-
ing the mask INR ®(-; 1) which consists of pairs of the
coordinates of pixels and corresponding binary values as

Dar = {((u,v), Int (w,0)) |w € {1,...,W}oe{l,...,H}}.
4

The depth image Ip is the masked version of the RI. Pixels
without any 3D point assignment are considered as “Do not
care” (()) and are defined as such.

Ip(u,v) = {?(u v)

if I(u,v) = ppur,
otherwise.

&)

In addition, we divide the depth image into small rectan-
gular areas, or patches, inspired by recent works [37] to
improve the decoding performance and the quality of the
reconstructed depth image. Speciﬁcva‘l/lly,che RI is evenly
segmented into patches I},(i) € R™» s, where N, is a
scaling factorand ¢ = 1, - -- ,Ng. Each patch is assigned a
patch index, allowing us to specify a pixel in the patched RI
as I, (4, 4y, iy ), Where ¢ represents the patch index and iy, i,
denotes the in-patch pixel coordinates whose origin is the top
left pixel in the i-th patch. Similarly to the mask image, we
also construct a dataset Dp for training depth INR ¥(-; w)
which consists of pairs of a patch index, in-patch coordinates,
and the corresponding depth values, excluding unassigned
pixels, as follows:

Dp = {((4,1u,iv), Ip (3,7, 1v)) | i € {1,..., N2},
iy € {1,...,W/N,},
iy € {1,...,H/Np},
Ip(i,iy,iy) # 0} (6)

D. INR-BASED RI ENCODER

In the encoding process, the mask INR ®(-;4)) and the
depth INR ¥(-;w) are trained to obtain good parameters to
express the coordinate-to-value relationships contained in the
mask dataset Dy, and Dp. Figs. 2 (a) and (b) show the
detailed architecture of the proposed depth INR and mask
INR, respectively.

1) Mask INR

Regarding the mask image, we assume the existence of a
function ®,,, which maps each coordinate on the image to
a binary value as

®y:R?2 — {0,1}, (7

and the objective of the mask INR is to obtain param-
eters 1) that well approximate that mapping function as
®(-;1) =~ P, through supervised learning with the dataset
Dys. Fig. 2 (a) shows the detailed architecture of the pro-
posed mask INR. The mask INR is a multi-layer percep-
tron (MLP) with L hidden layers and V nodes, and after
each hidden layer, a sinusoidal function layer is used as the
activation function. The network sequentially receives the
coordinate (u,v) from the mask dataset Dj; and regresses
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FIGURE 2: Architectures of the proposed mask and depth
INRs.

a binary value as its output. Regression loss is computed
using binary cross entropy (BCE) loss function between all
output values ®((u, v); 1)) and the corresponding true values
Ips(u,v) as follows:

, AW
Lece(¥) =~y D0 i (u,v) log (@((u,v); )

+(1 = In(u, 0)) log (1 — @ ((u, v); 9))]-
®)

2) Depth INR
Similar to the mask INR, we also assume the existence of
another function ¥ p, regarding the depth image, which maps
the pair of a patch index and an in-patch pixel coordinate to
a depth value as

Uy RS — RL 9)

and the objective of the depth INR is to obtain parameters w
for good approximation of Up as U((4,4y,1,);w) ~ ¥p.
Figs. 2 (b) shows the detailed architecture of the proposed
depth INR. The depth INR shares its structure with the mask
INR, with the exception of the input layer, which accepts
3 values. In the training process, pairs of patch index ¢ and
an in-patch coordinate (i,,i,) are sequentially passed to
the depth INR network from the depth dataset Dp, and the
corresponding depth values are regressed. We employ mean
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squared error (MSE) loss as a regression loss function for the
depth INR as

| Ny /N,
Lusp(@) = 22D D0 D0 WG in);w) = I (i iu, i) |,
g Tu Ty (10)
E. MODEL COMPRESSION
Parameters 1) and w become effectively compressed repre-
sentations of the depth and mask images after a thorough
training. We introduce a series of parameter compression
processes for both to further improve their compactness.

1) Model Pruning

As an initial step in our parameter compression procedure,
we implement global unstructured pruning for parameters in
both depth and mask INRs. Given a threshold w, for the
magnitude of parameters, each parameter w is determined to
be retained or pruned based on the following criteria:

>
o= Y=Y an
0 otherwise.

To guarantee that the pruned parameters are of good ex-
pression, we subsequently retrain the parameters to fine-tune
using the same dataset D, and Dp.

2) Model Quantization and Encoding
The pruned and fine-tuned parameters are uniformly quan-
tized to a bit depth of N,. This quantization is layer-wise,
meaning that given a parameter set corresponding to each
layer in the depth and mask INRs as u € w, a quantized
parameter set i, is obtained as follows:

K — Kmin

_ d Mmax — Mmin
Mg = roun oN, —_——

2Ny
(12)

>S+“mina s =

where round(-) is a rounding function to the nearest inte-
ger and fyax and pepi, are the maximum and minimum
values in p. The quantized tensor p, is finally coded into
a binary sequence using Huffman coding. It is noteworthy
that the quantized parameters p, are likely to assume values
near zero, particularly for smaller bit depths. Consequently,
Huffman coding demonstrates its effectiveness in reducing
the overall size of encoded parameters.

F. Rl DECODER
The decoding process of Rl is a simple feedforward process
involving the mask INR and depth INR with optimized
parameters 1& and @. The mask image is reconstructed by
feeding the coordinate sets {(u,v) | u € {1,--- ,W}v €
{1,---, H}} to the mask INR. The resulting binary values
are then reshaped to construct the W x H mask image I
The depth image reconstruction is in a two-stage manner.
Each patch is first reconstructed by feeding the sets of pairs
of a patch index and an in-patch coordinate {(Z,4y,%,) | ¢ €
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{1"" aNg}viu € {17 vW/Np}viU € {]-a 7H/NP}}
to the depth INR. The reconstructed patches are then gathered
to build the complete depth image Ip. Finally, the recon-
structed RI [ is obtained as

. {fD(u,v) fM(u,v) =1,

I(u,v) = (13)

Pnull otherwise.

G. 2D-TO-3D MAPPING

The concluding phase of our decoding procedure is the recon-
struction of a 3D point cloud through a 2D-to-3D mapping
against the reconstructed RI. When the pixel (u, v) on the RI
has a valid point depth, i.e., is not p,,,;, the corresponding
point in the spherical coordinate p’ = (p, b, é) is obtained as
follows:

p=1(u,v),
b= (1= 7) @up+ lbuowal) = [Saonal,
h=— (2%-1) T (14)

Finally, the 3D points in the spherical coordinate are trans-
formed into the 3D Cartesian coordinate p = (&, , 2) as

izﬁcos¢cosé,@=ﬁcos¢sin ,ézﬁsiné. (15)

IV. EXPERIMENTS

A. SETTINGS

Dataset: We use the KITTI dataset [10] as our source of
3D point cloud data. For R-D performance, we evaluate the
KITTI Odometry dataset, using frames 00, 25, 50, 75, and
100 from sequences 00 to 06. For downstream tasks, we
use the KITTI 3D Object Detection dataset. We split the
official training set into 3,712 training samples and 3,769
validation samples, and evaluate detection performance on
the validation split to quantify the impact of compression.
We use OpenPCDet [38] v0.6.0 to train and evaluate three
representative detectors: PointPillars [39], SECOND [40],
and PointRCNN [41].

All data were collected with a Velodyne 64 scanner that
features 64 laser scan lines and an azimuth resolution of 0.09
degrees. In the proposed scheme, these 3D point clouds are
projected into an RI for compression. Note that projecting
points into a range image may cause point loss. We evaluate
the point retention ratio defined as ry = |P|/|P|, where P
is the original input point cloud and P is the reconstructed
point cloud via RI projection and back-projection. On the
KITTI odometry dataset, we observe ry = 41.02% +0.38%
using 35 selected frames from sequences 00-06. Similarly,
we observe ry = 74.33% =+ 0.69% on the KITTI object
detection validation split of 3,769 frames, measured on the
cropped point clouds used as inputs for 3D object detectors.
Metric: Regarding the metrics for the decoded 3D point
clouds, we follow the common practice in the community
using chamfer distance (CD). CD has been widely adopted
as a distortion measure for 3D point cloud reconstruction and
sensing [42].

6

CD is defined as:

1 1 1

CD:f{— min ||p — pll2 + = min p—ﬁg},

3P| > ﬁef)\l [ B AEAPGPH [
peP peP

16)

where P is the set of 3D points in the original point cloud
and P is the set of 3D points in the decoded point set.

For the R-D performance assessment between the pro-

posed method and the baselines, we use the Bjgntegaard
delta chamfer distance (BD-CD) [43] for calculating average
CD improvement between R-D curves for the same bitrate,
where positive values denote CD improvement compared to
the baselines. For downstream tasks, we evaluate 3D object
detection accuracy using the Car 3D bounding-box average
precision (AP).
Network Architecture Details: Both INR architectures are
designed to effectively approximate the coordinate-to-value
mappings in the mask and depth images derived from RI.
The mask INR is an MLP with a fixed depth of L = 6
layers. We experimented with varying the number of nodes
V in each hidden layer to evaluate the impact on performance
and compression efficiency. The values of V' considered are
{10, 19, 24, 28, 31, 34, 37, 40}.

The network takes as input the pixel coordinates (u,v) €
R? from the mask dataset D,; and outputs a scalar value
representing the mask at that coordinate. The architecture is
structured as follows:

« Input Layer: The coordinates of the pixels (u,v).

« Hidden Layers: It consists of L = 6 hidden layers, each
with V nodes. Each hidden layer employs the sinusoidal
activation function to introduce periodicity and enable
the network to model high-frequency variations in the
mask image.

o Output Layer: A single node with the sigmoid acti-
vation function produces an output in the range (0, 1),
suitable for binary classification of mask values.

The Depth INR is also implemented as an MLP with a
fixed depth of L = 6 layers. We also consider the dif-
ferent number of nodes V' in each hidden layer, choosing
{28, 31,34, 37,40, 42,45} to evaluate the trade-off between
model capacity and compression.

The input to the depth INR is a concatenation of the patch
index i and the in-patch pixel coordinates (i,,i,) € RZ,
resulting in a 3-dimensional input vector. Since we set the
patch scaling factor to N, = 16, the patch index 7 ranges
from 0 to 255. The architecture of the depth INR is as
follows:

« Input Layer: The concatenated input vector (i, iy, i, ).

« Hidden Layers: It contains L = 6 hidden layers, each
with V nodes. Similarly to the mask INR, the sinusoidal
activation function is applied to each hidden layer to
capture the complex variations in the depth image.

o Output Layer: A single node with a linear activa-
tion function (identity function) to output the estimated
depth value fD(i, tu,iy) € R.
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FIGURE 3: Chamfer distance as a function of bitrate across different sequences of the KITTI LiDAR point clouds, where
the bitrate is measured in bits per point (bpp). From left to right: (left) performance in frame 00 of sequence 00, (middle)
performance in frame 25 of sequence 00, and (right) performance in frame 50 of sequence 00.

Hyperparameter Details: We use separate hyperparameter
settings for mask and depth INRs. The general settings for
both INRs include the Adam optimizer, an initial learning
rate of 1 x 1073, 3,000 training epochs, and a batch size of 1.
For depth INR, we adopt the cosine annealing scheduler with
a warmup phase. The initial learning rate is set to 1 x 1074,
and the warmup period lasts for 300 epochs. The minimum
learning rate is set to 1 x 10712

Model Compression Details: A global unstructured pruning
is used for model pruning. The pruning ratio (sparsity) was
varied from O to 1 to adjust the sparsity of the model parame-
ters. For each pruning ratio, we determined the corresponding
threshold w, to control which parameters were pruned. A
higher pruning ratio results in more parameters being set to
zero. After pruning, we fine-tuned the model using the same
dataset to recover any potential performance loss.

To further compress the pruned and fine-tuned model,
we perform uniform quantization to the parameters. The
quantization bit depth N, was varied from 4 to 32 bits
to balance compression performance and model precision.
The quantized parameters were then encoded using Huffman
coding to further reduce the model size.

Baselines: We evaluate our proposed method by comparing
it with existing baselines in both geometric 3D point cloud
compression and 2D image compression.

1) As baselines for 3D point cloud compression, we select
G-PCC within the PCC family. We refer to the MPEG
reference implementation TMC13-v14.0 for octree ge-
ometry compression.

2) We also select Draco [44] as the 3D point cloud com-
pression baseline which also belongs to the PCC fam-
ily. We use the official implementation of the Draco en-
coder that performs KD-tree-based compression [45].

3) OctAttention [19] is an octree-based autoencoder
within the PCC family. This method improves the con-
ventional octree structure by incorporating attention
mechanisms for better context modeling. To evaluate
its performance across different compression levels, we
set the octree depth to values from 8 to 13.
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4) As conventional image compression baselines, we se-
lect JPEG, JPEG2000, High-Efficiency Image File
Format (HEIF), and AV1 Image File Format (AVIF).
We convert floating-point valued RIs into 8-bit preci-
sion in advance when using these methods.

5) R-PCC [22] is an RI based LiDAR compression base-
line. It maps LiDAR point clouds to RIs and performs
intra-coding using floating-point lossless coding meth-
ods. Here, we use LZ4 and Deflate for coding methods
due to their fast decompression.

6) COmpression with Implicit Neural representations
(COIN) [7] is an INR-based image compression base-
line. The INR architecture is trained to obtain a direct
mapping of the pixel coordinate to each pixel value of
RI. We assume that COIN serves as a reliable indicator
of the efficiency of our depth/mask separation strategy,
as it does not employ the process.

Implementation Detail: All the evaluations exhibited in this
paper are performed with CPUs of Intel Core i9-10850K
and 19-13900KF and with GPUs of NVIDIA GeForce RTX
3080 and 4070. NNs for COIN and our proposed method
are implemented, trained, and evaluated using PyTorch 2.2.0
with Python 3.10.

B. COMPARISON WITH BASELINES

1) RATE-DISTORTION PERFORMANCE

We show the R-D performance of our proposed method and
baselines. Figs. 3 show the CD between the original and
reconstructed LiDAR point clouds against various bitrates,
i.e., bit per point (bpp). We observe the following findings:

o The proposed method achieves higher 3D reconstruc-
tion quality than G-PCC, Draco, image compression,
and RI compression methods across the bpp range up
to 3.0 for frame 00.

o OctAttention achieves the best R-D performance in
frames 00, 25 and 50, whereas it requires long decoding
latency, as will be detailed in Table 2.

o Image compression methods suffer from quality satura-
tion due to the precision disparity between RI and the
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FIGURE 4: Snapshot of the reconstructed LiDAR point clouds in proposed and baseline methods. Here, (b)-(1) and (n)-(x)
show the reconstructed point clouds of frames 00 and 25 of sequence 00, respectively.

TABLE 1: The list of BD-CD 1 for the KITTI dataset across the different sequences. Note that BD-CD is evaluated for each
baseline using the proposed method as the reference. Positive values indicate that the proposed method achieves a lower chamfer

distance than the corresponding baseline.

Oct R-PCC R-PCC

Seq.  JPEGT JPEG2000f HEIFf AVIFf COIN} G-PCC§ Dracof o § oo q wza) I
00 1.393 0.801 0535 0256  1.103 0.081 0.157 -0.025 0.023 0.110
01 1.234 0.686 0515 0259  1.095 0.097 0.234 -0.017 0.019 0.097
02 1.120 0.612 0447 0254  1.039 0.083 0.226 -0.026 0.006 0.094
03 1.322 0.733 0497 0232 1074 0.059 0.176 -0.045 -0.007 0.078
04 1.343 0.748 0515 0237  1.092 0.074 0.192 -0.039 0.010 0.097
05 1.484 0.877 0576 0248  1.041 0.065 0.153 -0.040 0.008 0.095
06 1.324 0.785 0527 0224 0993 0.053 0.153 -0.070 -0.024 0.062

Average 1317 0.749 0516 0244  1.063 0.073 0.185 -0.037 0.005 0.090

t: Image based method(s), }: INR based method,

typical 8-bit precision image.

o PCC methods do not have saturation since they com-
press the geometry information with 10-bit precision.

e In R-PCC, R-D performance highly depends on the
lossless coding method.

o The INR-based method requires a large model size for
reconstructing high-quality RI.

Figs. 4 (a)-(x) show the snapshots of the original and
reconstructed LiDAR point clouds in each method Here,
Figs. 4 (a)-(1) and (m)-(x) use frames 00 and 25 of sequence
00, respectively. The proposed method can reconstruct a
clean point cloud at the same bitrate. However, some PCC,

8

§: Point Cloud based method(s),

€: Range Image based method(s).

image compression, and INR-based compression methods
contain circular noises and/or decrease the number of 3D
points in the reconstructed LiDAR point clouds. A circular
noise still remains in R-PCC methods as well.

Table 1 lists the average BD-CD performance of the
proposed method against the baselines in each sequence of
LiDAR point clouds. Here, BD-CD is evaluated for each
baseline using the proposed method as the reference. It shows
that the proposed method achieves the best 3D reconstruction
quality in the same bitrate range against G-PCC, Draco,
image compression, and INR-based compression methods
irrespective of LiDAR sequences. For OctAttention and R-
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FIGURE 5: Quantitative results of 3D object detection on the KITTI detection dataset. Car 3D bounding-box AP@0.7, 0.7, 0.7
as a function of bitrate (bits per point), for three downstream detectors (left to right): PointPillars, SECOND, and PointRCNN.

TABLE 2: Average decoding latency |

Method Latency per frame
JPEG 0.49 ms
JPEG2000 0.54 ms
HEIF 0.51 ms
AVIF 0.48 ms
COIN 0.71 ms
G-PCC 2.00 ms
Draco 3.00 ms
OctAttention 10.6 s
R-PCC (Deflate) 11.5 ms
R-PCC (LZ4) 10.3 ms
Proposed 0.69 ms

TABLE 3: Average encoding latency |

Method Latency per frame
JPEG 9 ms
JPEG2000 10 ms
HEIF 55 ms
AVIF 94 ms
COIN 30 min
G-PCC 65 ms
Draco 10 ms
OctAttention 134 ms
R-PCC (Deflate) 20 ms
R-PCC (LZ4) 60 ms
Proposed 180 min

PCC (Deflate), the proposed method can be comparable or
slightly worse in some cases. In addition, the performance
gap between R-PCC and the proposed methods depends
on the lossless coding method. When R-PCC uses a low-
efficiency coding method, such as LZ4, for fast decoding, the
proposed scheme achieves better R-D performance than R-
PCC.
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2) DOWNSTREAM TASK
We then discuss the impact of our RI compression method
on the performance of downstream tasks on the LiDAR
point cloud. We selected 3D object detection as a represen-
tative example of downstream tasks. To evaluate robustness
across different perception architectures, we consider three
representative LiDAR detectors: PointPillars (BEV-based),
SECOND (voxel-based), and PointRCNN (point-based).
Fig. 5 shows the Car 3D bounding-box AP@0.7,0.7,0.7 as
a function of bitrate for the original and reconstructed point
clouds, evaluated with PointPillars, SECOND, and PointR-
CNN. The dashed line indicates the detection accuracy on the
uncompressed point clouds. The results demonstrate that the
proposed method achieves higher detection accuracy than the
baselines across all three detectors in low-bpp regimes, i.e.,
bpp from 1.0 to 2.0.

3) DECODING LATENCY

Table 2 shows the average decoding latency of the proposed
and baseline methods for LiDAR frame 00 of sequence 00.
The decoding latency values for the proposed method and
the baselines are the total time required from RI decoding to
the 2D-to-3D mapping. The decoding latency of the proposed
method is comparable to that of image compression methods
and has more than 65.5% and 93.3% reduction compared to
G-PCC, Draco and R-PCC methods, respectively. In addi-
tion, the proposed scheme achieves a speedup of over four
orders of magnitude compared to OctAttention. This means
that the proposed method approaches the decoding latency of
image compression methods and achieves 3D reconstruction
quality comparable to PCC/R-PCC methods.

4) ENCODING LATENCY

Table 3 lists the average encoding latency of the proposed
and baseline methods for LiDAR frame 00 of sequence 00.
Here, the encoding latency for the RI-based schemes contains
the conversion time from the point cloud to the RI. It can
be seen that INR-based approaches, including the proposed
one, involve significantly longer encoding time than both 3D
point cloud and 2D image compression methods. However, as

9



IEEE Access

Kuwabara et al.: Range Image-Based Implicit Neural Compression for LiDAR Point Clouds

0.30
[0 O Seq:00, Frame:00
) A A Seq:00, Frame:25
LC) 0.25 O O Seq:00, Frame:50
S
wn 0.20
()
-
@ 0.15
£
@ o.10
e
o —— Pixel-wise
0.05° —— Patch-wise
0.0 0.5 1.0 b1.5 2.0 2.5 3.0
(a) R-D performance.
10° —=— Pixel-wise w/o Rl division
Pixel-wise
8 —— Patch-wise
C
©
-+
n
a
o
()
£
©
G
=1 o
1y \ 13x faster
T —
100 500 1000 1500 2000 2500

Epoch

(b) Convergence speed.

FIGURE 6: Patch-wise vs. pixel-wise.

shown in Table 2, INR-based compression drastically reduces
decoding latency, which is advantageous for on-demand,
quality-driven services.

We note that the proposed scheme has a trade-off between
reconstruction quality and encoding latency depending on the
learning rate schedule. Here, we use initial and minimum
learning rates of 1 x 107% and 1 x 107!2 for quality-
sensitive users. When we use initial and minimum learning
rates of 1 x 107% and 1 x 10~® for encoding, the encoding
latency is reduced to 30 minutes with a slight degradation
in reconstruction quality. This means the proposed scheme
can select quality-oriented or latency-oriented configurations
based on application requirements.

C. ABLATION STUDY
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bpp:1.83 bpp:2.14
CD:0.123 CD:0.056

(c) Pixel-wise (d) Patch-wise

bpp:2.02 bpp:2.14
CD:0.107 CD:0.058

FIGURE 7: Snapshot of the reconstructed LiDAR point
clouds in pixel-wise and patch-wise proposed methods. Here,
(a)-(b) and (c)-(d) show the reconstructed point clouds of
frames 00 and 25 of sequence 00, respectively.

1) IMPACT OF PATCH-WISE INR ARCHITECTURE

The proposed depth INR exploits the patch-wise architecture,
whereas the pixel-wise architecture can be used for the depth
INR. Fig. 6 (a) shows the CD of the proposed patch-wise
INR and pixel-wise INR architectures as a function of bitrates
under the different sequences of KITTI's LiDAR point cloud.
We can see that the patch-wise depth INR achieves better
CD than the pixel-wise architecture at large bitrate regimes
in every LiDAR sequence. Specifically, BD-CD between the
patch-wise and pixel-wise architectures is 0.047, 0.031, and
0.028 in frames 00, 25, and 50 of sequence 00, respectively.
The effects on the visual quality are shown in Figs. 7 (a)—(d),
respectively.

Fig. 6 (b) shows the CD performance of INR-based image
compression methods as a function of the learning epochs.
Our patch-wise architecture boosts the convergence speed by
up to 13x compared to the pixel-wise architecture, and the
fast convergence results in a short encoding delay.

2) IMPACT OF MODEL COMPRESSION

After the encoder trains the depth and mask INR archi-
tectures, the trained weights are pruned and quantized for
compression. Here, the proposed method can set different
pruning ratios and bit depths for the depth and mask INRs.
This section discusses the impact of model pruning and
quantization on both INR model compression.

Figs. 8 (a) and (b) show the effect of model pruning and
quantization for the depth and mask architectures. In pruning,
the mask INR is similar in performance to the full model, al-
though the sparsity is approximately 70%. However, pruning
the model for the depth INR causes quality degradation even
though the sparsity is only 10%. For quantization, a 16-bit
model still retains almost the same CD as the original 32-
bit model in depth INR, while the mask INR can reduce the
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FIGURE 8: Model compression performance.

number of bits to 11.

3) IMPACT OF NETWORK ARCHITECTURE

This section discusses the effect of the configurations for
the depth INR architecture, specifically the patch size N,
and layer size L, on the quality of the reconstructed LiDAR
point cloud. The proposed depth INR uses the patch-wise
architecture, and thus the depth image is divided into patches
of size N, x N,. Here, a small patch size increases the
complexity of intra-patch learning, while a large patch size
increases the complexity of inter-patch learning.

Fig. 9 shows CD performance varying [V, and Fig. 10
demonstrates the corresponding snapshots of the recon-
structed point cloud. We consider all the variants using the
same model size in Fig. 8 with a sparsity of 0.0 and N, of
32. The evaluation results demonstrated that the patch size
of IV, = 16 yields the best CD performance. However, using

VOLUME 4, 2016

0.104

0.100

0.094

e
o
@
S

0.078

istance

0.060 e

Chamfer D

0.020

0.000—"555 ax4 8x8  16x16 32x32 64x64

Np X Np
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(c) N,: 4, CD: 0.094

(f) Np: 32, CD: 0.067

FIGURE 10: Snapshots of the reconstructed LiDAR point
clouds in proposed methods under the different patch sizes
N, x N,,. Here, (b)-(g) show the reconstructed point clouds
of frame 00 of sequence 00.

larger or smaller [V, values leads to performance degradation.
While a large N, reduces the effectiveness of patch-wise
modeling due to the limited pixel count, a small N,, requires
covering a wider area. This makes it challenging to capture
sharp depth transitions and preserve geometric details near
boundaries.

Similarly, Fig. 11 and 12 show the 3D reconstruction qual-
ity of the proposed scheme and the corresponding snapshots
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FIGURE 12: Snapshots of the reconstructed LiDAR point
clouds in proposed methods under the different layer sizes
L. Here, (b)-(e) show the reconstructed point clouds of frame
00 of sequence 00.

for different layer sizes L. The results indicate that a layer
size of L = 6 is the most effective for CD performance.

V. CONCLUSION AND FUTURE WORK

We proposed a novel RI-based LiDAR point cloud compres-
sion method. The proposed method is designed to efficiently
compress floating-point RIs using INR-based techniques and
features a sophisticated architecture that combines separated
learning for mask and depth images, patch-wise learning
for depth images, and model compression. Experiments on
the KITTI dataset show that the proposed method improves
3D reconstruction quality at low bitrates compared with
conventional image codecs and representative baselines such

12

as G-PCC, Draco, and COIN, and it also achieves strong 3D
object detection accuracy in the low-bpp regime.

The proposed method has two limitations: encoding delay
and transformation loss from RIs to 3D point clouds. While
existing baselines require only a few milliseconds for en-
coding, implicit neural compression, including the proposed
method, takes from tens of minutes to several hours. In sum-
mary, the proposed method’s long encoding delay and short
decoding delay make it well-suited for offline applications
of LiDAR point clouds. To further reduce encoding latency,
recent findings on learned initializations for coordinate-
based neural representations [46] and meta-learned sparse
INRs [47] can be integrated into our depth/mask INR archi-
tecture. We leave the implementation and evaluation of such
integration as future work.

In addition, RIs with limited spatial resolution will lead to
irreversible point loss during 2D-to-3D decoding, potentially
degrading the performance of downstream tasks. In future
work, we will consider integrating a point cloud genera-
tor [48] to obtain a denser point cloud from the limited
resolution of RIs.

APPENDIX

This appendix provides further details for Table 1. Table 4
shows the detailed BD-CD performance across the different
LiDAR frames.
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