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Abstract

Signal compression based on implicit neural representation (INR) is an emerging technique to
represent multimedia signals with a small number of bits. While INR-based signal compres-
sion achieves high-quality reconstruction for relatively low-resolution signals, the accuracy of
high- frequency details is significantly degraded with a small model. To improve the compres-
sion efficiency of INR, we introduce quantum INR (quINR), which leverages the exponentially
rich expressivity of quantum neural networks for data compression. Evaluations using some
benchmark datasets show that the proposed qulNR-based compression could improve rate-
distortion performance in image compression compared with traditional codecs and classic
INR-based coding methods, up to 1.2dB gain.
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Abstract. Signal compression based on implicit neural representation (INR)
is an emerging technique to represent multimedia signals with a small
number of bits. While INR-based signal compression achieves high-quality
reconstruction for relatively low-resolution signals, the accuracy of high-
frequency details is significantly degraded with a small model. To improve
the compression efficiency of INR, we introduce quantum INR (quINR),
which leverages the exponentially rich expressivity of quantum neural
networks for data compression. Evaluations using some benchmark datasets
show that the proposed qulNR-based compression could improve rate-
distortion performance in image compression compared with traditional
codecs and classic INR-based coding methods, up to 1.2dB gain.
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1 Background

Representing multimedia signals (such as images and video frames) in a compact
format is an important task for communicating and storing such signals [36].
Implicit neural representation (INR) is an emerging, memory-efficient format [34]
for compressing data. Most INR architectures exploit a small and simple multi-
layer perceptron (MLP)-based neural network (NN) architecture and train the
coordinate-to-value mappings using the target signals. Since the trained NN
architecture can obtain the signal values of all coordinates by using a simple
feedforward process, recent studies have used the trained INR architectures for
multimedia signal compression. For example, COmpression with Implicit Neural
representations (COIN) variants [6,7,16] have been designed for image coding,
and Neural Representations for Videos (NeRV) variants [3,17,19,24,18] and
COOL-CHIC variants [20, 21, 39, 22, 14| have considered video coding.

A key issue in such INR-based signal compression methods is the inaccu-
rate representation of high-frequency details in a small MLP-based NN archi-
tecture. Some studies have developed sinusoidal coding [25] and activation func-
tions [34] to approximate high-frequency details even in a small NN architecture.
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Fig.1: Overview of the proposed scheme for data compression using a hybrid
quantum-classical implicit neural representation.

In this paper, we introduce a new hybrid quantum-classical INR architecture,
namely, quantum INR (quINR), for signal compression. The proposed quINR in-
tegrates feature embedding and quantum neural network (QNN) [9] for training
the coordinate-to-value mapping. Since QNN is a promising technique for accel-
erating computation and saving parameters, our quINR may have the potential
to reconstruct accurate high-frequency representations with fewer parameters.

Experiments using the range image (RI) dataset in the KITTI Light Detec-
tion and Ranging (LiDAR) point cloud [13] and Kodak color image dataset [§]
show that the proposed qulNR-based compression can provide better coding
efficiency compared to the existing compression methods.

2 Related Work

2.1 Implicit Neural Compression

INR compresses signals by overfitting a compact coordinate-to-value network
and transmitting its weights as the bitstream. Early INR variants for images en-
code pixel coordinates with sinusoidal or periodic activations to better capture
high-frequency content, e.g., SIREN and Neural Radiance Fields (NeRF)-style
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sinusoidal encodings [6,7]. On images, COIN and COIN++ are the pioneer-
ing works and pursue this paradigm by directly mapping 2D coordinates to
pixel intensities and extending to multiple modalities [6,7]. To improve upon
the COIN paradigm for both image and video data, COOL-CHIC and C3 |20,
14] propose hierarchical/coordinate-based codecs that achieve competitive rate-
distortion (R-D) with lightweight decoders. For large-scale videos, NeRV has
been proposed to generate multiple video frames from frame indices via a single
network, reducing storage and enabling smooth temporal interpolation [3]. Sub-
sequent works such as Hierarchically-encoded NeRV (HiNeRV) and Neural Video
Representation Compression (NVRC) improve R-D and scalability through hi-
erarchical encoding and representation compression, while conditional decoders
further exploit temporal redundancy [17,18]. INR-based compression has also
been explored for 3D imaginary [19, 16, 11] and other modalities [26, 35, 10]. For
example, in [16], the INR architecture tailored to LIDAR RI has been proposed
to preserve high-frequency details under rate budgets. Specifically, it improves
coding efficiency by decomposing each RI into structurally distinct components,
i.e., mask and depth images, and encoding them separately using dedicated INR
networks.

Our work targets the same goal—accurate reconstruction at a low bud-
get—but departs from purely classical MLPs by introducing a quantum-classical
architecture to increase expressivity under tight budget constraints.

2.2 Quantum Neural Network

QNN [1,32,9] is an emerging paradigm that exploits quantum physics for neu-
ral network design, where classical data and weight values are embedded into
a variational quantum circuit to control measurement outcomes. QNN provides
universal approximation property [29] and exponentially rich expressibity [33].
In addition, it is analytically differentiable, enabling stochastic gradient opti-
mization [31].

Various frameworks were migrated into a quantum domain: autoencoders [30];
graph neural networks [42]; generative adversarial networks [23, 5]; contrastive
learning [2[; diffusion models [27, 38]. As QNN is extremely parameter-efficient, it
was applied to fine-tuning [4, 15], learnable activation functions [12], and implicit
representation [37,40].

Our study is the first attempt to demonstrate the potential of the QNN
architecture for signal compression. Specifically, we design signal encoding and
decoding procedures using QNN architecture, inspired by an existing implicit
representation [40]. Experiments using image and LiDAR datasets show that
the proposed qulNR yields better reconstruction quality at a small data size.

3 Quantum INR for Data Compression

3.1 Encoding and Decoding Process

Fig. 1 (a) shows the end-to-end operations of the quINR-based encoder and de-
coder. Given the target multimedia signal, we construct a dataset D = {(x;,y;)}
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Fig. 2: Exemplar architecture of QNN layer.

for training the quINR &(z;; ). Here, x; € RV is the ith coordinate, y; € RNout
is its corresponding signal value, and 0 is the learnable parameter set.

In the encoding process, the proposed quiNR &(x;;0) is trained to obtain
the optimized parameter set 6 to express the coordinate-to-value relationships
contained in the dataset D. Here, we use the mean squared error (MSE) as the
loss function to obtain the optimized parameters :

(1

~—

0" = arg rnein MSE(yi7 &(x;; 9))

This training process is coordinate-wise, i.e., the parameters are trained to obtain
a mapping from each coordinate x; to their corresponding signal values y;. The
well-trained parameters 8* after this encoding process are stored in storage or
transmitted to the decoder as the lightweight format of the target signal.

The decoder uses the parameters 8* for reproducing the target signal through
the forward process of the quINR @(x;;0*). The target signal g; is reconstructed
by feeding the coordinates x; to the quINR architecture @(x;; 0*). Likewise, the
encoding process sequentially feeds coordinates x; to the quINR to collect all
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estimated signal values y;, which are then reshaped to the shape of the target
signal as g.

3.2 Model Architecture

Fig. 1 (b) shows the proposed INR architecture. The architecture takes the co-
ordinates of the multimedia signals as inputs and generates the corresponding
signal values as outputs. The quINR @(x;;6) is a hybrid quantum-classical ar-
chitecture integrating QNN layers with a classical NN.

The input layer consists of a linear layer with a sinusoidal activation to obtain
an embedding vector h; € RM from each coordinate pair x; as follows:

h; = sin(wOWwi + b), (2)

where W € RM*Nin and b € RM are trainable parameters of the linear layer
and wy = 30.0 is a constant hyperparameter. The embedding vector h; is then
fed into the QNN layers. The QNN layers consist of embedding and entangling
layers, as shown in Fig. 2.

For embedding layer, we propose folded-angle embedding to encode an arbi-
trary size of embedding vector h; into a finite number of qubits. The conventional
angle embedding has a restriction that the number of qubits must be no lower
than the size of the embedding vector, while the amplitude embedding provides
too small quantum space having little expressivity. To make the QNN compact
yet expressive, the folded-angle embedding uses alternating Rx and Rz gates to
pack more angle parameters. Fig. 2 (a) shows an example of 3-folded embedding
with four qubits to encode twelve variables.

The entangling layer is based on a parameterized quantum circuit in [33].
Specifically, the parameterized circuit sequentially carries out Rz and Ry rota-
tion gates for each qubit, two-qubit controlled Z-rotation (CRZ) for each two-
qubit combination, and finally uses Z-rotation and X-rotation. Here, each rota-
tion gate is controlled based on the parameter set 8. A few number of entan-
gling layers are sequentially cascaded. These embedding and entangling layers
are iterated over a few layers, with a shuffled extension of the data re-uploading
trick [29].

Finally, we measure the probability value of 2V« quantum states. The output
layer selects the last Ny, state with the activation function of quantum rectified
linear unit (QReLU) [28], regarded as the estimated signal value ¢;. The above
structure can be further iterated over layers to improve the capacity. Here, the
number of the required quantum shots is approximately O(2"¢). Even for high
image resolutions, the complexity of the proposed quINR may remain practical,
as it represents clean multimedia signals using a small QNN architecture, i.e.,
with a Ng, as demonstrated in the evaluations.
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Fig.3: PSNR vs. bpp for RI.

4 Experiments

4.1 Settings

Datasets: In this paper, we consider grayscale and color images to discuss the
potential of the proposed quiNR architecture. For the grayscale image, we use
LiDAR RI [41] derived from the KITTI point cloud dataset [13]. RI can be
mapped from three-dimensional (3D) Cartesian coordinate z-y-z to spherical
coordinate p-¢-6, and then mapped to the two-dimensional (2D) image coordi-
nate system with the resolution of 1024 x 64 pixels. Here, each pixel value of
RI is the distance p with floating-point precision. Specifically, we use LiDAR
sequence 00-00 for comparison. For the color image, we perform experiments on
the Kodak image dataset [8], which consists of 24 images of 768 x 512 pixels. We
selected one image from the dataset, Kodim02.

Metric: Regarding the metrics for the decoded color and grayscale images, we
use peak signal-to-noise ratio (PSNR) for comparison. Given an original image
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Fig.4: PSNR vs. bpp for Kodak color image.

I and a reconstructed image I, MSE can be defined as

. 2
MSE_—ZZ( Izg)) . (3)
=1 j=1
PSNR is then obtained as:
MAX?
PSNR =10-1 —_— 4
SNR = 10 OglO(MSE) (4)

where MAX represents the maximum pixel value of the image

Baseline: We compare with baseline methods: Joint Photographic Experts
Group 2000 (JPEG2000) and COIN [6]. JPEG2000 is a typical image compres-
sion method, requiring conversion to 8-bit precision in advance for compression.
COIN is an INR-based image compression baseline. The INR architecture is
trained to obtain a direct mapping from the 2D pixel coordinate to the pixel

value of grayscale and color images.

Implementation: NNs for COIN and our proposed qulNR architectures are
implemented, trained, and evaluated using PyTorch 2.0 with Python 3.9. The
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quantum circuit simulations are performed by PennyLane 0.35. We use Adaptive
moment estimation (Adam) with decoupled weight decay (AdamW) for optimizer
with le-1 learning rate for both classical and quantum architectures.

4.2 Performance Comparison

Fig. 3 shows the PSNR performance for RI as a function of bit per pixel (bpp).
Here, we vary hyperparameters such as embedding size M to show the Pareto
frontier curves for each baseline. The results show that the proposed qulNR
achieves better image quality at a small bpp regime, however, the quality im-
provement is saturated at a large bpp regime compared with COIN architecture.
It suggests that the proposed quINR may have the potential to reconstruct clean
signals at band-limited and storage-limited environments.

Fig. 4 shows the PSNR performance for the Kodak color image as a function
of bpp. For this case, JPEG2000 offers much better performance than RI case
as the target signal is a natural image. Nevertheless, the proposed quIlNR ar-
chitecture can be better than the other baselines in low to medium compression
regimes with up to 1.2dB gain.

5 Conclusion

This paper highlights the potential of quantum techniques in advancing multi-
media signal compression. The proposed quINR architecture demonstrated good
PSNR performance, particularly in compressing LiDAR RI, leveraging the ex-
pressive power of QNN. Nevertheless, its rate-distortion performance for color
image compression was limited, indicating the need for further improvements,
e.g., with quantum network architecture search (NAS) and distillation.
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