MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

LatentLLM: Activation-Aware Transform to Multi-Head
Latent Attention

Koike-Akino, Toshiaki; Chen, Xiangyu; Liu, Jing; Wang, Ye; Wang, Pu; Brand, Matthew
TR2026-018 January 22, 2026

Abstract

Modern foundation models such as large language models (LLMs) require a massive amount
of computational and memory resources. We propose a new framework to convert such LLMs
into a reduced-dimension latent structure. Our method extends a local activation-aware
tensor decomposition to a global attention-aware joint tensor decomposition. Our framework
can significantly improve the model accuracy over the existing model compression methods
when reducing the latent dimension to realize computationally /memory- efficient LLMs. We
show the benefit on several benchmark including multi-modal reasoning tasks.

AAAI Conference on Artificial Intelligence 2026

© 2026 AAAI Personal use of this material is permitted. Permission from AAAI must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

LatentLL.M: Activation-Aware Transform to Multi-Head Latent Attention

Toshiaki Koike-Akino, Xiangyu Chen, Jing Liu, Ye Wang, Pu (Perry) Wang, Mathew Brand

Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02319 USA
{koike, jiliu, yewang, pwang, brand } @ merl.com

Abstract

Modern foundation models such as large language mod-
els (LLMs) require a massive amount of computational and
memory resources. We propose a new framework to convert
such LLMs into a reduced-dimension latent structure. Our
method extends a local activation-aware tensor decomposi-
tion to a global attention-aware joint tensor decomposition.
Our framework can significantly improve the model accuracy
over the existing model compression methods when reduc-
ing the latent dimension to realize computationally/memory-
efficient LLMs. We show the benefit on several benchmark
including multi-modal reasoning tasks.

Introduction

Large language models (LLMs) (Touvron et al. 2023;
Achiam et al. 2023) and large multi-modal models
(LMMs) (Liu et al. 2023) have shown excellent performance
across a variety of general tasks (Wei et al. 2022; Katz et al.
2024; Bubeck et al. 2023). Nonetheless, these models hav-
ing billions of parameters demand significant computational
resources (Schwartz et al. 2020). Towards increasing the
accessibility and sustainability of LLMs/LMMs, extensive
efforts have been devoted to model compression (Xu and
McAuley 2023; Zhu et al. 2024; Bai et al. 2024a): e.g., par-
tial activation (Jiang et al. 2024; Lin et al. 2024a), prun-
ing (Frantar and Alistarh 2023; Sun et al. 2023; Bai et al.
2024b; Hassibi, Stork, and Wolff 1993), quantization (Fran-
tar et al. 2022; Lin et al. 2024b; Wang et al. 2024a), knowl-
edge distillation (Hsieh et al. 2023; DeepSeek-Al 2025;
Hwang et al. 2024), and low-rank factorization (Yuan et al.
2023; Liu et al. 2024; Hwang et al. 2024; Saxena et al. 2024).

More recently, the reduced-dimension LLM DeepSeek-
V3 (Liu et al. 2024) has attracted much attention for its
high efficiency and performance. It employs a low-rank
architecture called multi-head latent attention (MLA) to
compress the standard multi-head attention (MHA), real-
izing an efficient KV cache (Chang et al. 2024; Saxena
et al. 2024), accelerated training, and high-performance in-
ference. In this paper, we provide a novel solution to con-
vert a pretrained LLM/LMM built with MHA into a com-
pressed LLM/LMM with a type of MLA. Our approach is
motivated by a global compression framework introduced
in SparseLLM (Bai et al. 2024b) and Q-VLM (Wang et al.
2024a). Although the original method was designed for

pruning/quantization, we adopt it for tensor rank reduction.
We further extended it to the joint compression of MHA,
while the original SparseLLM was for compressing the
multi-layer perceptron (MLP) part. Our derived solution is
based on a high-order tensor-rank decomposition to jointly
factorize multiple linear layers.

The contributions of our paper are summarized below.

* We propose a novel low-rank decomposition approach
called LatentLLM to compress LLMs/LMM:s.

* We discuss an optimal pre-conditioning for activation-
aware SVD.

* We reveal that a choice of junction matrix can signifi-
cantly reduce the model size.

* We then introduce an attention-aware joint SVD frame-
work to compress multiple weights at the same time.

» Several experiments validate that our LatentLLM ap-
proach can improve the performance of LLM/LMM
compression over existing methods.

* The LLaVA/Qwen-VL compressed with LatentLLM of-
fer a significant advantage in multi-modal reasoning.

Related Work

Model Compression The field of model compression for
LLMs/LMMs has seen a surge of innovative techniques
aimed at mitigating the substantial computation and mem-
ory requirements (Zhu et al. 2024; Yuan et al. 2024). Various
methods have emerged to address this challenge, each taking
a unique approach to reduce the memory footprint of LLMs.
These methods primarily fall into four categories: weight
quantization (Lin et al. 2024b; Frantar et al. 2022; Wang
et al. 2024a), network pruning (LeCun, Denker, and Solla
1989; Hassibi, Stork, and Wolff 1993; Frantar and Alistarh
2023; Bai et al. 2024b), knowledge distillation (Hsieh et al.
2023; DeepSeek-Al 2025; Hwang et al. 2024), and low-rank
factorization (Yuan et al. 2023; Liu et al. 2024; Hwang et al.
2024; Saxena et al. 2024; Saha et al. 2024).

Among them, weight quantization has gained significant
traction in the context of large foundation models due to its
effectiveness. However, all four compression techniques are
orthogonal and can be applied together. We hence introduce
a novel low-rank decomposition method which jointly com-
presses multiple layers of an LLM in a training-free manner.

(b) LLM Joint Tensor Compression

(a) LLM Local Tensor Compression

Figure 1: Reduced-dimension LLM/LMM with low-rank
tensor decomposition. (a) each linear modules are lo-
cally compressed by activation-aware tensor decomposition.
(b) multiple linear modules are globally compressed by
attention-aware tensor decomposition.

Low-Rank Decomposition In the realm of low-rank de-
composition (Schotthofer et al. 2022) for neural network
compression, existing methods typically involve decompos-
ing weight matrices of pre-trained networks using tech-
niques like Singular Value Decomposition (SVD) or tensor
decomposition, followed by fine-tuning the factorized net-
work (Denton et al. 2014; Sainath et al. 2013). LoSparse (Li
et al. 2023) uses low-rank approximation plus a sparse ma-
trix to compress the weight matrix in transformers. Sim-
ilarly, CALDERA (Saha et al. 2024) uses low-rank ap-
proximation plus a quantized matrix. ASVD (Yuan et al.
2023) significantly improves the low-rank decomposition by
dealing with activation statistics. It was applied to SVD-
LLM (Wang et al. 2024b) and Palu (Chang et al. 2024).
DeepSeek-V3 (Liu et al. 2024) employs the similar latent re-
duction via MLA to make MHA efficient and capable. Eigen
attention (Saxena et al. 2024) is highly related to MLA.

LatentLLM: Tensor Compression
Reduced-Dimension LLM/LMM

Figure 1 illustrates the basic transformer architecture con-
sisting of MHA and MLP, used in some LLMs/LMMs.
For MLP, there are up and down projections, whereas
MHA has query/key/value/output projections. By transform-
ing those dense weight matrices into low-rank decompo-
sitions, we can realize an efficient latent LLM/LMM hav-
ing potential benefits: (i) fewer-parameter model size; (ii)
KV cache reduction; (iii) accelerated processing; (iv) lower-
power consumption. In fact, some recent LLM models such
as DeepSeek-V3 (Liu et al. 2024) demonstrated efficiency
and high-performance with MLA. We focus on compressing
a pre-trained LLM/LMM by converting MHA into a type of
MLA in a zero-shot fashion, i.e., without any fine-tuning.
Most compression methods are based on a local loss min-
imization to approximate each weight individually. Moti-
vated by recent work towards global optimization (Bai et al.

2024b; Wang et al. 2024a), we propose a joint tensor com-
pression framework that we call “LatentLLM.” Specifically,
we derive a mathematical solution to jointly decompose a
pair of query and value projections, a pair of value and out-
put projections, and a pair of up and down projections to
compress LLMs. We first address activation-aware compres-
sion to provide some new insights on the choice of pre-
conditioner and junction matrix below.

Activation-Aware SVD: Pre-Conditioning

A pioneering work by ASVD (Yuan et al. 2023) introduced
a way to compress a layer depending on the activation statis-
tics. Consider a pretrained-weight W ¢ R% >4 to compress
with a lower-rank decomposition W = BA for compression
matrix A € R”*? and decompression matrix B € R% *",
Using the input activation X € R%*! ([is the calibration
sample length), ASVD aims to minimize the activation loss:

Ly =Ex||[WX - WX|* =Ex||[WX - BAX|]", (1)
instead of the naive weight-based loss:
o= W W[= |w-Bal". @

It is well-known that the optimal solution to minimize £
can be given by the plain SVD of W. To minimize L,
ASVD introduced a pre-conditioner P € R%*¢ to whiten the
statistical impact of the activation X. Specifically, ASVD
uses the low-rank matrices given by whitened SVD:

BAP = svd,.[WP], 3

where svd,.[] denotes the rank-r truncated SVD.

Although ASVD originally suggested a diagonal ¢;-norm
pre-conditioning, the optimal pre-conditioning matrix P can
be given by reformulating £, as follows:

Ly = t[(W - BA)Ex[XX](W — BA)"] @)
= v BAYCH| = [wek - Bact|,)

where C = Ex[X X] € R%*? is a covariance (precisely,
auto-correlation) of input activation. Hence, the above loss
can be minimized by the SVD: BACz = svd,[WC'z].
Accordingly, it is found that the optimal pre-conditioner is
the square-root covariance: P = C 2. Given the finite cal-
ibration data X, we can estimate the covariance as C =
XX T + M, where the damping factor A € R corresponds
to the shrunk estimator (Ledoit and Wolf 2004).

Remark 1 Different pre-conditioning methods were intro-
duced in several techniques including pruning and quantiza-
tion, as listed in Table 1. As those variants are sub-optimal,
we use the optimal root covariance: P = C 3. See more dis-
cussion in Appendix.

Junction Matrix for Model Compression

In fact, the solution of (3) does not have a unique decompo-
sition into low-rank matrices B and A. The truncated SVD
is written as

USV = svd, [WP), (6)

Conditioning P Expression

Reference

Identity I

Hessian diag[(XX T +)\I)_1]7Tl
¢1-norm diag[>~ [X1,

£2-norm diag[XXT]%
Covariance XXT+ M

Root-Covariance (XX T 4+ AJ)%

Plain SVD (Sainath et al. 2013; Denton et al. 2014)
OBS (Hassibi et al.); GPTQ (Frantar et al.); SparseGPT (Frantar and Alistarh)
s 2o 1 Xay |]* ASVD (Yuan et al. 2023); AWQ (Lin et al. 2024b)

WandA (Sun et al. 2023)

CorDA (Yang et al. 2024)

LatentLLLM (Ours)

Table 1: Variants of pre-conditioning matrices P for activation-aware distillation.

where U € Rd/”, S € R™" and V € R"*4 are the left
singular unitary matrix, singular-value diagonal matrix, and
right singular unitary matrix, respectively. The decompres-
sion and compression matrices B and A can be expressed:

B=USJ, A=JVpPH, 7

where J € R™™" is a junction matrix and []* denotes the
pseudo inverse. Choosing any junction matrix that satisfies
SJJ+ = S has no impact on the loss. Hence, there is few
literature discussing the choice of .J. Typically, one may use
J = I to put singular-values into the decompression matrix;
J = S to put it into the compression matrix; or J = [S2]*
to split it across both matrices equally.

However, a certain choice of J has a noticeable advantage
to reduce the number of parameters and floating-point oper-
ations (FLOPs). We can write the whitened right-singular
matrix V P as two sub-blocks:

VPt =V V3, @®)

for V; € R™*" and Vo € R™*(4=") When we use J = Vj,
the compression matrix A will contain an identity block as
long as V) is non-singular:

A=JTVPT=Vvi" Vi WVo]=[I VtW]. (9

This can greatly reduce the number of parameters from
r(d' + d) tor(d’ + d) — r?, as well as the FLOPs, because
no computation is needed for the identity projection.

For example, when the hidden size is d = d’, even if we
compress it by 25%, i.e., the latent size is r = 0.75d, the to-
tal number of parameters will be r(d’ +d) = 1.5d, which is
50% more than the original d?. This increased FLOPs hin-
ders the low-rank compression of LLMs, even with the KV
cache benefit (Liu et al. 2024; Yuan et al. 2023; Chang et al.
2024). Nevertheless, with our identity block form, we can
always reduce the number of parameters regardless of the
latent size, i.e., 7(d' + d) — r? < d'd for r < min(d’,d).
For the above example of 25% latent compression, we can
achieve (d’' +d) — r? = (15/16)d? < d°. Figure 2 depicts
the role of the pre-conditionning and junction matrices for
the activation-aware compression. We also illustrate the ten-
sor diagrams to understand the flexibility of tensor mapping.

Remark 2 Pivoting columns can solve the case when the
left-most sub-block Vi is singular. The pivoting does not re-
quire any FLOPs in inference while additional memory is
required to record the permutation index.

u TXT PXrTXT rxd Jsuch that

! A,
1 N

a’xr Block Identity

Weight PreCondition LeftSingular RightSingular I

w P ~ U Xr rxd = rxd P

Singular

Value
Pxd dxd d'xr dxr dxd
‘DO QO @ -“‘0—0—0"
" L J 4

Tensor Diagrams Wd
R S

Figure 2: Activation-aware compression with pre-
conditioning and junction matrix. The junction matrix
J can be adjusted such that A or B is block identity to save
the number of parameters and inference computation.

LatentLLM: Joint Tensor Compression

The SVD described above is optimal in the sense that the
local error is minimized for the single tensor compression,
whereas it does not guarantee global optimality. Motivated
by the global loss minimization framework introduced by
SparseLLM (Bai et al. 2024b), we propose a joint tensor
compression technique which factorizes multiple tensors in
adjacent modules concurrently.

Multi-Head Latent Attention: Joint QK SVD

First, we consider a joint compression of query (Q) and key
(K) projections in MHA to convert into MLA. The attention
map is the dot product of query and key features:

M; = XTWJ Wi X, (10)

where M; € R!*! is the ith head attention map before soft-
max operation, W, ; € R%*4 is the ith head query projec-
tion matrix, and Wy ; € R%*4 is the ith head key projec-
tion matrix. Here, d}, is the head dimension, which is often
dy, = d/h for the number of heads h.

Rather than individually compressing Q and K projec-
tions, we consider minimizing the attention map error:

(1)

2
",

h
Ly=)_||M;— N
i=1

G=einsum(“hij,hik->hjk”, W,, W,)

Tucker Decomp

A lrod
6 g
A
| LT

o] 6 |/ Hehyrr) B WhAT
S e A,
W,: (h, dy, d) G: (h, d, d) A (re d)

Dot-Product

Figure 3: Tucker decomposition for joint QK compression.
The compression matrices A, and Ay correspond to the
Tucker tensor planes, while H = A,GA, is the Tucker
tensor core. For simplicity, we omit junction matrices and
pre-conditioning matrix.

where Mi is the ith head latent attention with the low-rank
compression:

M; = XTA]B] ;Bi i ALX, (12)

where A, € R7a*4 g the Q compression matrix, Ay €
R™*9 is the K compression matrix, By € R%*7a g the
1th head Q decompression matrix, and By ; € R X7« ig the
ith head K decompression matrix, respectively. Here, r4 and
ry are the latent dimensions for Q and K.
Similar to (5), we can write
L 2
1 1 1 1
Ly=> ||C2W] WiiC? —C2A] B];Bi: AC2 |,
] N———— —— R//—/
G;eRdxd AQ’ H;€R"™a*"k AL
(13)

This is known as a high-order SVD (HOSVD) problem to
decompose for the 3-mode tensor G € R"*4*¢ whose ith
slice is G;. A’q corresponds to the 2nd tensor plane, A] is
the 3rd tensor plane, and H € R"*raXmi whose ith slice is
H;, is the tensor core. This is illustrated in Figure 3.

This Tucker tensor decomposition is typically solved by
alternating SVD over each slice sequentially. Algorithm 1
shows the pseudo-code of the joint SVD compression for
QK Ilatent projections. See the detailed derivations of the
joint SVD algorithm in Appendix . Here, we generalize the
pre-conditioning matrix P, as not necessarily the optimal
Cz. In addition, we explicitly denoted any arbitrary junc-
tion matrices that do not change the error. Note that there
are additional junction matrices per heads J; € R Xd
as well as individual Q/K junctions J, € R™*"< and
Ji € R™*"< This suggests that we can further reduce the
number of parameters by transforming into the block iden-
tity form per head. The total number of parameters will be
(rq+7i)(d+dyh) =12 —rg —dih, reduced from the original
weights 2ddy h.

Remark 3 Our joint QK SVD can be extended with most
positional encoding methods. See Appendix.

Remark 4 Attention-aware pruning (Liang et al. 2024) is
related to our method, while our derivation provides an op-
timal tensor rank decomposition and only requires precon-
ditioning matrices.

Algorithm 1: Joint SVD to Transform MHA to MLA

Input: Pre-conditioning P € R%*?, query projection

heads W, ; € R™*4 key projection heads Wy ; €
R%*d number of heads h, rank Tq, Tk, iteration N
Initialize:
Wq,i=WqPforie{l,...,h}
Wk,i = Wk’iP fori € {1, ceey h}
Gi =W/ Wy forie{l,... h}
Aq = RightSingular, [Z?Zl GG/ |
forn =1to N do
Ay = RightSingular,. [Z?Zl GE—A;—AQGJ
Aq = RightSingular,, [Z?Zl Gi Ay AG]
end for
Output:
By = J;quiAqTJq fori € {1,...,h}
Bk,i = JjWk,zAl—{er fori € {1, ceey h}
Ay = JO‘I“AqPJr
A = JF APt

Multi-Head Latent Attention: Joint VO SVD

Next, we discuss the joint SVD for value (V) and output (O)
projections in MHA. The MHA output can be written as

h
y! = Z Wo.iWy.i X softmax[M;'], (14)

i=1

where W, ; € R% >4 i the ith head output projection, and
W, € R&*d jg the ith head value value projection. We
may consider minimizing the loss:

h
L5 =" |[WoiWoiX — Wo WeiX|*, (15

i=1

for the low-rank compression: Wo,i = ByA,; € R4 xdn
and W,; = By;A, € R®*4 with B, € R¥*", A,,; €
R7oxdn B, € R%x7v and A, € R™*¢ The MLA output
is thus given as

h
Yy = Z BoA, By i Ay X softmax[M;]. (16)

i=1

Interestingly, this is also formulated in a similar manner of
(13), and it can be solved by the joint SVD algorithm.

Latent MLP: Joint UD SVD

Finally, we address the joint compression of MLP layers
which consists of up (U) projection and down (D) projec-
tion in typical LLMs/LMMs. Although the global optimiza-
tion is generally difficult due to the nonlinear activations in
the MLP layer, SparseLLM (Bai et al. 2024b) provides an
elegant way to approximate MLP layer. The key idea is to
minimize the MLP loss in a decoupled manner by introduc-
ing auxiliary variables. Our LatentLLM exploits the same
philosophy to compress MLP layers.

Compression FLOPs MACs

Parameters (byte) Speed (token/sec) KV Cache (byte)

0% 109.0T N 54,57 N 13,32 N 672«

20% 87.27 I 4367 NN
40% 6547 I 3277 M
60% 43.6T I 21.8T I
80% 21.8T M 109T B

5.37G N
11.06G N 7.11x N 2.97¢ Il
8.40G N 8.35k N 1.98G I
5.74G 1 1.4k I 121c 0
3.08G M 16.02x I (.57G |

Table 2: Computational complexity and memory requirements of OPT-6.7B models compressed by LatentL.LM.

Compression 10% 20% 30% 40%
Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB Cc4
OPT-1.3B (WT2: 14.6, PTB: 20.3, C4: 16.1)
Plain SVD (Identity) 9428.1 10670.8 4865.4 16461.2 20589.0 11039.8 18105.3 17360.8 12565.2 22155.9 15820.3 16566.2
ASVD (Hessian) 23.8 40.6 24.9 63.0 173.7 52.8 8258 9279 385.0 4912.3 3086.3 2138.9
ASVD (¢2-norm) 20.3 323 21.6 28.7 60.2 27.7 745 2174 58.5 5924 1072.0 336.7
ASVD (Cov) 29750.9 31499.1 18646.3 19716.9 21757.2 14967.2 21738.3 24300.2 16428.7 22776.5 23591.7 14922.1
ASVD (RootCov) 17.7 27.9 18.9 21.9 35.3 22.2 33.9 55.8 29.7 75.0 1079 51.1
LatentLLM (RootCov) *14.5 21.5 16.6 15.8 24.3 17.8 20.2 31.6 21.3 34.1 58.1 30.6
Qwen3-1.7B (WT2: 16.7, PTB: 33.8, C4: 22.4)
Plain SVD (Identity) 1.8¢7 1.6e7 1.1e7 13e7 1.1e7 1.1e7 1.0e7 1.0e7 6.5¢6 1.9¢7 1.7¢7 1.5¢7
ASVD (Hessian) 1.1e5 6.8e5 3.4e5 52e6 8.0e6 4.6e6 44e6 6.7¢6 4.0e6 3.0e6 1.6e7 3.2e6
ASVD (¢2-norm) 72.5 1384 102.8 1679.1 2719.6 1639.8 4842.6 1.2e4 3960.3 2.8¢5 2.8e5 9.8¢4
ASVD (Cov) 860.6 3378.6 338.3 1989.8 1.0e4 516.1 6645.8 2.4ed 906.1 1.2e4 4.6e4 1796.1
ASVD (RootCov) 37.5 63.2 43.9 66.3 114.8 62.5 147.8 287.6 100.0 387.2 1066.1 193.7
LatentLLM (RootCov) 22.3 47.8 28.4 27.9 51.5 353 48.8 81.4 533 1375 2649 98.6
Qwen3-8B (WT2:9.7, PTB: 17.2, C4: 15.4)

Plain SVD (Identity) 2.4e5 87ed4 4.5e4 9.0e6 1.9¢6 8.8e5 2.8¢7 3.8¢7 1.8¢7 5.3e7 1.0e8 5.2¢8
ASVD (Hessian) 33.6 78.3 40.7 90.8 573.7 1152 1250.8 1.3e4 8544 5324.6 3.1ed 4872.0
ASVD ({2-norm) 18.8 32.2 25.1 26.0 43.9 32.0 40.6 71.8 47.7 98.6 171.1 92.1
ASVD (Cov) 1.3e5 4.77e5 44e4 1.2e5 3.1eS 44ed 83ed 23e5 34ed 6.led 1.2e5 2.7e4
ASVD (RootCov) 16.7 25.0 21.8 26.0 32.6 26.3 49.3 60.5 38.6 119.2 136.9 71.1
LatentLLM (RootCov) 11.8 21.2 17.9 14.2 23.1 19.9 22.4 29.5 24.8 53.9 68.5 40.8

Table 3: Perplexity ({) of OPT/Qwen3 models with different SVD compression methods for 10-40% size reduction. Asterisk
“*” indicates the better performance than the original un-compressed LLM.

Consider a 2-layer MLP:

Z=W,X, Z'=0(2), Y=WaZ', U7

where W, € R%*9 is the up projection matrix, Wy € R4*%
is the down projection matrix, and d; is the intermediate size
which is typically four-fold of hidden size: d; = 4d. The
intermediate variables Z, Z' € R%*! are auxiliary factors to
be optimized.

Specifically, we consider minimizing the decoupled loss:

Ly =a||WuX — Z|? + 8|2 — o(2)|]? +~||WaZ' —(11/8”)%

for auxiliary variables Z and Z’, given calibration input X
and output Y.

Following SparseLLM (Bai et al. 2024b), the optimal Z’
can be obtained given the other parameters fixed:

7' = (AW Wa+ 807 (Bo(Z) +W]Y). (19

The optimal closed-form Z can be obtained for ReLU:

7 =W.X, Z,=

(aZ-+B2), (20)

a+p
depending on Z’s element-wise sign.

This approach can be used for low-rank approximation.
Given Z, we can optimize low-rank matrix W,, = B, A,
by SVDof ZX*C 2, where ZX T corresponds to the effec-
tive weight matrix to map X onto Z. Given Z’, we approx-

. 1
imate Wy = ByAq by SVD of Y Z'TC?, given correlation
Cq = Z'Z'". This alternating solution is iterated over a few
rounds. For detail, see Appendix.

Experiments

Experiments Setup We conduct experiments for LLM
and LMM benchmarks to evaluate the effectiveness of our
method. Our experiments are based on the same setting of

103

1074
Plain SVD (ldentity)

- ASVD (Hessian)

+ ASVD (L2-norm)
ASVD (Cov)

ASVD (RootCov)
LatentLLM (RootCov)

Perplexity

10!

00 01 02 03 04 05 06 07 08 09
Compression Ratio

Figure 4: WT2 perplexity over compression ratio for OPT-
350M model.

SparseLLM (Bai et al. 2024b) and their code base'. We im-
plemented LatentLLM in PyTorch and used the Hugging-
Face transformers library for handling models and datasets.
All experiments are conducted on NVIDIA A40 GPUs.

For LLM benchmark, we follow the same setup of (Fran-
tar and Alistarh 2023) and use 64 samples of 2048-token
segments, randomly chosen from the first shard of the
C4 (Raffel et al. 2020) dataset. This dataset represents
generic text data crawled from the internet and ensures our
experiments are zero-shot as no task-specific data is seen
during compression. We followed existing work (Sun et al.
2023) and compressed all linear layers in MLP and MHA
in LLMs to the target compression ratio. For LMM bench-
mark, we use 64 samples, randomly chosen from the train
split of the multi-modal question answering dataset. We con-
sider two benchmarks: ScienceQA (Lu et al. 2022); and
TextVQA (Singh et al. 2019).

For LLM experiments, we consider the OPT (Zhang et al.
2022) and Qwen3 (Yang et al. 2025) models as they pro-
vide a wide range of model sizes. We show results on dif-
ferent sizes of models to provide a broader picture for the
performance of LatentLL.M. We mainly focus on perplexity,
which is known to be a stable metric for evaluating the ac-
curacy of compression methods (Yao et al. 2022; Dettmers
and Zettlemoyer 2023). We consider the test sets of raw-
WikiText2 (WT2) (Merity et al. 2016) and the Penn Tree-
bank (PTB) (Marcus et al. 1994) as well as a subset of the
C4 validation data, all popular benchmarks in the LLM com-
pression literature (Frantar and Alistarh 2023; Frantar et al.
2022; Sun et al. 2023).

For LMM experiments, we use LLaVA (Liu et al. 2023)
and Qwen2.5-VL (Bai et al. 2025). We evaluate the capa-
bility of the multi-modal answer reasoning based on the
ScienceQA dataset, which contains 21K vision-language
multi-choice questions for three subjects: natural, social,
and language science. Some fractions of questions have im-
age and/or text contexts, and the problem levels range from
grade 1 to 12. In addition, we also evaluate TextVQA, which

"https://github.com/BaiTheBest/SparseLLM

103

Y T TY T 3
—¥— Plain SVD (ldentity)
=+ ASVD (L2-norm)
—e— LatentLLM (RootCov)

iy

<

21024

o

o}

[= %

10? T .
1010 1011 1012

FLOPs

Figure 5: WT2 perplexity vs. FLOPs of six OPT models
from 125M to 13B scales with varying compression ratios.

makes LMMs to read and reason about text in images to an-
swer visual reasoning questions for 28K images.

Computational Complexity When all linear modules are
compressed with LatentLLM, the inference complexity is
expected to be reduced with the compression ratio almost
linearly. Nevertheless LLMs/VLMs have extra complexity
other than linear affine transforms, the inference complexity
is not precisely proportional to the compression factor. We
show the complexity analysis in Table 2 for the compressed
OPT-6.7B models, based on the calflops library. We as-
sume the token length of 2048 at 4 batches. We found that
the FLOPs, multiply-accumulation operations (MACs), and
parameters are almost linearly reduced with the compression
factor. The inference throughput on A40 GPU can be also
monotonically increased by compressing LLMs. While we
used torch.compile (mode="max—autotune"), it
was not a perfectly linear speedup due to the sub-optimal
GPU kernel. The reduction of KV cache memory is signif-
icant because the latent dimension has quadratic relation to
the sparsity: r(d’ + d) — r? = pdd'.

Compression over Model Size We first look into the
compression capabilities of our LatentLLM across various
model sizes in comparison to baseline methods. Some re-
sults are shown for a size reduction over 10-40% in Table 3.
The perplexity results of the original un-compressed LLM
models are reported next to the names of the models in the
table.

We can see that the conventional plain SVD has a poor
performance, and that ASVD with a proper pre-conditioning
can significantly improve the perplexity. It was found that
the diagonal Hessian is worse than the diagonal ¢2-norm,
whereas covariance pre-conditioning can be terrible in low
compression regimes for larger LLMs. In contrast, the supe-
riority of root covariance is remarkable. In addition, the joint
SVD used for LatentLLM offers an additional improvement
consistently across different model sizes and families. No-
tice that our methods can also achieve slightly better per-
formance than the original un-compressed LLMs for some

Subject Context Modality Grades
Method Compression NAT SOC LAN TXT IMG NO Gl1-6 G7-12 Avg
Original un-compressed 0% 7247 69.18 6573 73,51 6882 6599 7272 65.19 70.03
Plain SVD (Identity) 10% 5.33 1.35 0.27 5.77 6.69 0.00 3.30 2.97 3.18
ASVD (Hessian) 10% 17.23 2497 3.18 1843 29.55 2.16 1740 1127 15.21
ASVD (¢2-norm) 10% 16.70 18.34 255 17.89 2434 223 16.04 857 13.37
ASVD (Cov) 10% 4121 2722 3791 4130 3515 3833 38.62 3527 3742
ASVD (RootCov) 10% 64.08 56.13 5736 64.03 6098 5735 6270 57.02 60.67
LatentLLM (RootCov) 10% 68.52 6423 61.36 69.06 6520 61.53 68.72 60.45 65.76
Plain SVD (Identity) 30% 0.13 0.00 0.00 0.10 0.00 0.07 0.11 0.00 0.07
ASVD (Hessian) 30% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ASVD (¢2-norm) 30% 0.09 0.00 0.00 0.10 0.10 0.00 0.04 0.07 0.05
ASVD (Cov) 30% 41.25 2733 3736 4140 3525 37.84 3847 3527 37.33
ASVD (RootCov) 30% 56.66 51.18 5227 56.74 5627 5199 5573 51.94 5437
LatentLLM (RootCov) 30% 64.03 56.24 55.27 6447 61.77 5540 62.78 5537 60.13
Plain SVD (Identity) 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ASVD (Hessian) 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ASVD (¢2-norm) 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ASVD (Cov) 50% 40.94 2688 3691 4120 3510 3728 38.18 3474 36.95
ASVD (RootCov) 50% 52.58 45.11 46.00 5293 50.07 4599 5128 4575 49.30
LatentLLM (RootCov) 50% 55.55 4724 4955 56.01 54.09 48.78 54.55 48.12 52.25

Table 4: Accuracy in percent (1) on ScienceQA dataset of LLaVA-7B model with different compression methods for 10%—-50%
size reduction. Question subjects: natural science (NAT); social science (SOC); language science (LAN). Context modality:
text (TXT); image (IMG); or no context (NO). Grades: 1-6 (G1-6); 7-12 (G7-12).

Compression 10% 20% 30% 40% 50%
LLaVA-7B: Uncompressed Acc 61.32
Plain SVD (identity) 236 048 035 034 0.36
ASVD (Hessian) 2388 9.60 124 021 031
ASVD (¢2-norm) 2441 953 277 082 0.75
ASVD (Cov) 038 036 040 033 0.35
ASVD (RootCov) 52.51 4991 4553 3847 27.36
LatentLLM (RootCov) 60.06 57.65 52.63 46.90 35.94
Qwen2.5-VL-7B-Instruct: Uncompressed Acc 82.11
Plain SVD (identity) 002 047 032 0.05 0.11
ASVD (Hessian) 5876 7.03 023 045 041
ASVD (¢2-norm) 77.84 7392 57.13 1879 0.41
ASVD (Cov) 041 041 041 041 041
ASVD (RootCov) 79.46 7476 66.31 51.80 34091
LatentLLM (RootCov) 80.85 79.30 73.90 62.11 42.53

Table 5: Accuracy in percent (1) on TextVQA dataset for
compressed LLaVA-7B and Qwen2.5-VL-7B.

cases. Figure 4 shows the plot at a wider range of com-
pression ratios for OPT-350M model, and Figure 5 plots the
performance of all six models in OPT family across FLOPs
when varying the compression ratios.

Multi-Modal Reasoning Capability We show the accu-
racy of latent LLaVA models for ScienceQA multi-modal
reasoning benchmark in Table 4. It is verified that our La-
tentLLM can significantly outperform other low-rank com-
pression methods across diverse reasoning problems over
different subjects/contexts/grades, approaching the perfor-

mance of the original un-compressed LLaVA model. It is
seen that ASVD without using proper pre-conditioning ma-
trix degrades the performance quickly with higher com-
pression ratios, while our LatentLLM keeps relatively
higher performance across all cases. Another benchmark on
TextVQA shown in Table 5 validates the clear superiority of
our LatentLLM over baselines for both LLaVA and Qwen-
VL models.

Discussion Our framework with optimal pre-conditioning
and joint tensor distillations can be readily applied to prun-
ing and quantization as well. See some results in Appendix.
Further fine-tuning is expected to be able to compensate for
the performance degradation by the latent reduction.

Summary

We introduced LatentLLLM which jointly compresses mul-
tiple tensors through the use of high-order tensor-rank
decomposition. We also provided some new perspectives
for activation-aware compression when choosing the pre-
conditioner and junction matrix. With a proper selection, we
demonstrated that the model compression performance can
be significantly improved. Our latent LMMs showed a sig-
nificant advantage in multi-modal reasoning tasks compared
to other baseline methods.

References

Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, L;
Aleman, F. L.; Almeida, D.; Altenschmidt, J.; Altman, S.;
Anadkat, S.; et al. 2023. GPT-4 technical report. arXiv
preprint arXiv:2303.08774.

Bai, G.; Chai, Z.; Ling, C.; Wang, S.; Lu, J.; Zhang, N.; Shi,
T.; Yu, Z.; Zhu, M.; Zhang, Y.; et al. 2024a. Beyond effi-
ciency: A systematic survey of resource-efficient large lan-
guage models. arXiv preprint arXiv:2401.00625.

Bai, G.; Li, Y.; Ling, C.; Kim, K.; and Zhao, L. 2024b.
SparseLLM: Towards global pruning of pre-trained lan-
guage models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Bai, S.; Chen, K.; Liu, X.; Wang, J.; Ge, W.; Song, S.; Dang,
K.; Wang, P.; Wang, S.; Tang, J.; et al. 2025. Qwen2.5-VL
technical report. arXiv preprint arXiv:2502.13923.

Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.;
Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y. T.; Li, Y.; Lundberg,
S.; etal. 2023. Sparks of artificial general intelligence: Early
experiments with GPT-4. arXiv preprint arXiv:2303.12712.
Chang, C.-C.; Lin, W.-C,; Lin, C.-Y.; Chen, C.-Y.; Hu, Y.-
F; Wang, P.-S.; Huang, N.-C.; Ceze, L.; Abdelfattah, M. S.;
and Wu, K.-C. 2024. Palu: Compressing KV-cache with
low-rank projection. arXiv preprint arXiv:2407.21118.

Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q. V.; and
Salakhutdinov, R. 2019. Transformer-XL: Attentive lan-
guage models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

DeepSeek-Al. 2025. DeepSeek-R1: Incentivizing Rea-
soning Capability in LLMs via Reinforcement Learning.
arXiv:2501.12948.

Denton, E. L.; Zaremba, W.; Bruna, J.; LeCun, Y.; and Fer-
gus, R. 2014. Exploiting linear structure within convolu-
tional networks for efficient evaluation. Advances in neural
information processing systems, 27.

Dettmers, T.; and Zettlemoyer, L. 2023. The case for 4-
bit precision: k-bit inference scaling laws. In International
Conference on Machine Learning, 7750-7774. PMLR.

Frantar, E.; and Alistarh, D. 2023. SparseGPT: Massive lan-
guage models can be accurately pruned in one-shot. In Inter-
national Conference on Machine Learning, 10323—10337.
PMLR.

Frantar, E.; Ashkboos, S.; Hoefler, T.; and Alistarh, D. 2022.
GPTQ: Accurate post-training quantization for generative
pre-trained transformers. arXiv preprint arXiv:2210.17323.

Hassibi, B.; Stork, D. G.; and Wolff, G. J. 1993. Optimal
brain surgeon and general network pruning. In IEEE inter-
national conference on neural networks, 293-299. IEEE.
Hsieh, C.-Y,; Li, C.-L.; Yeh, C.-K.; Nakhost, H.; Fujii, Y.;
Ratner, A.; Krishna, R.; Lee, C.-Y.; and Pfister, T. 2023. Dis-
tilling step-by-step! Outperforming larger language mod-
els with less training data and smaller model sizes. arXiv
preprint arXiv:2305.02301.

Hwang, L.; Park, H.; Lee, Y.; Yang, J.; and Maeng, S. 2024.
PC-LoRA: Low-Rank Adaptation for Progressive Model
Compression with Knowledge Distillation. arXiv preprint
arXiv:2406.09117.

Jiang, A. Q.; Sablayrolles, A.; Roux, A.; Mensch, A.;
Savary, B.; Bamford, C.; Chaplot, D. S.; Casas, D. d. L;
Hanna, E. B.; Bressand, F.; et al. 2024. Mixtral of experts.
arXiv preprint arXiv:2401.04088.

Katz, D. M.; Bommarito, M. J.; Gao, S.; and Arredondo, P.
2024. GPT-4 passes the bar exam. Philosophical Transac-
tions of the Royal Society A, 382(2270): 20230254.

Kenton, J. D. M.-W. C.; and Toutanova, L. K. 2019. BERT:
Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of naacL-HLT, volume 1, 2.
Minneapolis, Minnesota.

LeCun, Y.; Denker, J.; and Solla, S. 1989. Optimal brain
damage. Advances in neural information processing sys-
tems, 2.

Ledoit, O.; and Wolf, M. 2004. A well-conditioned estima-
tor for large-dimensional covariance matrices. Journal of
multivariate analysis, 88(2): 365-411.

Li, Y;; Yu, Y.; Zhang, Q.; Liang, C.; He, P.; Chen, W.; and
Zhao, T. 2023. LoSparse: Structured compression of large
language models based on low-rank and sparse approxima-

tion. In International Conference on Machine Learning,
20336-20350. PMLR.

Liang, Y.; Long, J.; Shi, Z.; Song, Z.; and Zhou, Y. 2024.
Beyond linear approximations: A novel pruning approach
for attention matrix. arXiv preprint arXiv:2410.11261.

Lin, B.; Tang, Z.; Ye, Y.; Cui, J.; Zhu, B.; Jin, P.; Zhang,
J.; Ning, M.; and Yuan, L. 2024a. MoE-LlaVa: Mixture
of experts for large vision-language models. arXiv preprint
arXiv:2401.15947.

Lin, J.; Tang, J.; Tang, H.; Yang, S.; Chen, W.-M.; Wang, W.-
C.; Xiao, G.; Dang, X.; Gan, C.; and Han, S. 2024b. AWQ:
Activation-aware Weight Quantization for On-Device LLM
Compression and Acceleration. Proceedings of Machine
Learning and Systems, 6: 87-100.

Liu, A.; Feng, B.; Xue, B.; Wang, B.; Wu, B.; Lu, C.; Zhao,
C.; Deng, C.; Zhang, C.; Ruan, C.; et al. 2024. DeepSeek-v3
technical report. arXiv preprint arXiv:2412.19437.

Liu, H.; Li, C.; Wu, Q.; and Lee, Y. J. 2023. Visual Instruc-
tion Tuning.

Lu, P; Mishra, S.; Xia, T.; Qiu, L.; Chang, K.-W.; Zhu, S.-
C.; Tafjord, O.; Clark, P.; and Kalyan, A. 2022. Learn to
Explain: Multimodal Reasoning via Thought Chains for Sci-
ence Question Answering. In The 36th Conference on Neu-
ral Information Processing Systems (NeurlPS).

Marcus, M.; Kim, G.; Marcinkiewicz, M. A.; Maclntyre,
R.; Bies, A.; Ferguson, M.; Katz, K.; and Schasberger, B.
1994. The penn treebank: Annotating predicate argument
structure. In Human Language Technology: Proceedings of
a Workshop held at Plainsboro, New Jersey, March 8-11,
1994.

Merity, S.; Xiong, C.; Bradbury, J.; and Socher, R.
2016. Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843.

Radford, A. 2018. Improving language understanding by
generative pre-training. Preprint.

Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text

transformer. Journal of machine learning research, 21(140):
1-67.

Saha, R.; Sagan, N.; Srivastava, V.; Goldsmith, A.; and Pi-
lanci, M. 2024. Compressing large language models using
low rank and low precision decomposition. Advances in
Neural Information Processing Systems, 37: 88981-89018.

Sainath, T. N.; Kingsbury, B.; Sindhwani, V.; Arisoy, E.; and
Ramabhadran, B. 2013. Low-rank matrix factorization for
deep neural network training with high-dimensional output
targets. In 2013 IEEE international conference on acoustics,
speech and signal processing, 6655—6659. IEEE.

Saxena, U.; Saha, G.; Choudhary, S.; and Roy, K. 2024.
Eigen attention: Attention in low-rank space for KV cache
compression. arXiv preprint arXiv:2408.05646.

Schotthofer, S.; Zangrando, E.; Kusch, J.; Ceruti, G.; and
Tudisco, F. 2022. Low-rank lottery tickets: finding effi-
cient low-rank neural networks via matrix differential equa-
tions. Advances in Neural Information Processing Systems,

35: 20051-20063.

Schwartz, R.; Dodge, J.; Smith, N. A.; and Etzioni, O. 2020.
Green Al. Communications of the ACM, 63(12): 54-63.
Singh, A.; Natarjan, V.; Shah, M.; Jiang, Y.; Chen, X.;
Parikh, D.; and Rohrbach, M. 2019. Towards VQA Mod-
els That Can Read. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 8317-8326.
Su, J.; Ahmed, M.; Lu, Y.; Pan, S.; Bo, W.; and Liu, Y. 2024.
RoFormer: Enhanced transformer with rotary position em-
bedding. Neurocomputing, 568: 127063.

Sun, M.; Liu, Z.; Bair, A.; and Kolter, J. Z. 2023. A simple
and effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.

Wang, C.; Wang, Z.; Xu, X.; Tang, Y.; Zhou, J;
and Lu, J. 2024a. Q-VLM: Post-training Quantiza-
tion for Large Vision-Language Models. arXiv preprint
arXiv:2410.08119.

Wang, X.; Zheng, Y.; Wan, Z.; and Zhang, M. 2024b.
SVD-LLM: Truncation-aware singular value decomposition
for large language model compression. arXiv preprint
arXiv:2403.07378.

Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.;
Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler,
D.; etal. 2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Xu, C.; and McAuley, J. 2023. A survey on model com-
pression and acceleration for pretrained language models.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, 10566-10575.

Yang, A.; Li, A.; Yang, B.; Zhang, B.; Hui, B.; Zheng, B.;
Yu, B.; Gao, C.; Huang, C.; Lv, C.; et al. 2025. Qwen3
technical report. arXiv preprint arXiv:2505.09388.

Yang, Y.; Li, X.; Zhou, Z.; Song, S. L.; Wu, J.; Nie, L.; and
Ghanem, B. 2024. CorDA: Context-Oriented Decomposi-
tion Adaptation of Large Language Models. arXiv preprint
arXiv:2406.05223.

Yao, Z.; Yazdani Aminabadi, R.; Zhang, M.; Wu, X.; Li,
C.; and He, Y. 2022. ZeroQuant: Efficient and afford-
able post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:
27168-27183.

Yuan, Z.; Shang, Y.; Song, Y.; Wu, Q.; Yan, Y.; and Sun, G.
2023. ASVD: Activation-aware singular value decomposi-
tion for compressing large language models. arXiv preprint
arXiv:2312.05821.

Yuan, Z.; Shang, Y.; Zhou, Y.; Dong, Z.; Zhou, Z.; Xue, C.;
Wu, B.;Li,Z.; Gu, Q.; Lee, Y. J.; etal. 2024. LLM inference
unveiled: Survey and roofline model insights. arXiv preprint
arXiv:2402.16363.

Zhang, S.; Roller, S.; Goyal, N.; Artetxe, M.; Chen, M.;
Chen, S.; Dewan, C.; Diab, M.; Li, X.; Lin, X. V.; et al. 2022.
OPT: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068.

Zhu, X.; Li, J.; Liu, Y.; Ma, C.; and Wang, W. 2024. A survey
on model compression for large language models. Transac-

tions of the Association for Computational Linguistics, 12:
1556-15717.

Weight-Aware Compression
Plain SVD
Given a pretrained weight matrix W € R% >4 we wish to approximate it with a low-rank structure:
W =B x A, Q21

where W € R% %4 is an approximated weight, B € R¥*" and A € R"*? are low-rank matrices with a rank r < d, d’. We
assume d’ < d for simplicity, as modifying for d’ > d is straightforward.
Consider the approximation loss:

L=|wW-w|? (22)
=W - BA|%. (23)
The best solution is given by SVD of W as follows:

A=JMV, (24)
B=USJ, (25)
where U € RY*" is r most-principal left-singular vectors, S = diag[oy,...,0,] € R"™" is diagonal singular-values, and

V € R"*¢ is the most-principal right-singular vectors for WW:
USV = svd,.[W], (26)

where we assume the singular values are sorted in the descending order: o1 > o9 > --- > o,.. The loss is the accumulation of

all the squared singular-values outside the rank r: Lpin = Y i O'i2.

Junction Matrix
There is no literature discussing the choice of a junction matrix J € R"*", which has no impact on performance, provided that
SJJ+ = S is satisfied. There are many suitable choices for this matrix .J, such as:

e Left singular: J = I;

* Right singular: J = ST;

* Symmetry singular: J = [S2]*.

e Left block identity: J = [US].

* Right block identity: J = [V].,.
Although there is no performance impact by the choice of J, it is notable that the block identity which is based on block LU
factorization can significantly reduce the number of parameters and FLOPs by r2. This parameter reduction is particularly
significant in high-dimensional (high-rank) latent cases. For example, when the weight is a size of d = d’ = 2048, even with
the half-rank latent » = d/2 = 1024, there is no parameter reduction as the dense compression and decompression matrices B
takes 2dr = d? parameters. Hence, the 50% latent has no benefit in complexity but only for KV cache memory reduction as
discussed in DeepSeek-V3 (Liu et al. 2024). It is even worse for r > d/2: e.g., if we use 75% latent of » = 0.75d = 1536, the
total parameter and FLOPs increases by 50% of the original weight (i.e., 2rd — d? = d?/2). However, using the block identity
form, we can save 72, and the total FLOPs will be always less than the original weight: 2rd — 72 < d? for any r < d.

Activation-Aware Compression
Consider an input token X € R*! for a context length [>> d, the linear projection output Y € R4 %L js:
Y =WX. (27)
We assume that no bias is used for simplicity.

We wish to minimize the expected approximation error of output activation vectors between the true Y and the approximation
Y e RYxL,

Y =WX, (28)
projected by a low-rank weight W = BA. Consider the loss function:
L=Ex|y -Y|? (29)
= Ex||(W - W)X|? (30)
=Ex||(W - BA)X]|? 31)
= tr[(W — BA)Ex[XXT|(W — BA)T] (32)
= tr[(W — BA)C(W — BA)T| (33)

= |WCF — BACH|?, (34)

where C' = Ex[X X "] € R?*? is a (positive semidefinite) correlation matrix of the input vector.
The loss function of the activation-aware distillation in (34) is identical to the weight-aware distillation in (23) by transform-
ing as:

W= W =WOz, (35)
A— A = AC:. (36)
Hence, the optimal solution is obtained similarly.
Specifically, from (24), (25), and (26), we have
A= ACE = JtV, (37)
B=U'SJ, (38)
where U’ € RE*4' 8" ¢ RY*d and V' € R4*? are SVD of W’ = W(C'3:
U'S'V' = svd[WC3]. (39)
From (37), we finally obtain optimal A as:
A=Jtsv'[Ca]*t. (40)

Pre-Conditioning Matrix
ASVD (Yuan et al. 2023) proposed to use a projection matrix P € R?*4 on weights before SVD: svd[IW P]. The optimal
projection P is apparently the square-root covariance P = C' 2, while there are many other approximated projections that were
considered in literature:
« Root-covariance: P = (XX 4 \)2
+ Covariance (e.g., CorDA (Yang et al. 2024)): P = X X T
* Diagonal L2-norm (e.g., WandA (Sun et al. 2023)): P = diag[XXT]%
* Diagonal L1-norm (e.g., AWQ (Lin et al. 2024b), ASVD (Yuan et al. 2023)): P = diag[||[X]1.:|l1,- - - |[X]a.:|l1]
 Diagonal Hessian (e.g., OBS (Hassibi, Stork, and Wolff 1993), GPTQ (Frantar et al. 2022), SparseGPT (Frantar and Alistarh
2023)): P = diag[(XX T 4+ AI)"1]=
¢ Identity (Plain SVD, e.g., (Sainath et al. 2013)): P =1
In the context of fine-tuning initialization, CorDA (Yang et al. 2024) uses covariance matrix C' without square root, which
should be worse than the square-root covariance. Fig. 6 demonstrates the benefit for random weights approximation with covari-
ance drawn from the Wishart distribution. GPTQ (Frantar et al. 2022) and SparseGPT (Frantar and Alistarh 2023) use another
preconditioning matrix based on optimal brain surgeon (OBS) (Hassibi, Stork, and Wolff 1993) using Hessian, in the context
of quantization and pruning. Similarly, we can use it for low-rank compression as we have evaluated. In the context of pruning,
WandA (Sun et al. 2023) proposed a simpler diagonal projection based on ¢>-norm, while it achieves an excellent performance.
AWQ and ASVD used the diagonal ¢;-norm, while the theoretical justification is missing. They introduced another exponent
factor to adjust.

Bias Update
When the bias is there, we have
L=|(WX+b1")— (BAX +b17)|2 (41)
The gradient with respect to bis
Vb= —2((WX +b1") — (BAX + b17))1. (42)
Hence, the optimal bias modification is:
b=b+ (W — BA)pu, (43)
where 1 = X1/171 € R4*! is a mean bias of input activation. Plugging into the loss, we have
L=](W - BA)X —p1")|* (44)
= tr[(W — BA) (X — 1 ")(X — p1 ") (W — BA)T] (45)
CoeRdxd
= l(W — BAYCZ|I* (46)

Hence, the optimal solution is the SVD of weight multiplied with square root of covariance Cy not auto-correlation (X X 7):
Co = (C = pp")l. (47)

Loss (dB)

Plane
—— Sqgrt ‘\\
50 4 —i— Corda AN
=¥~ Plane (exp0.9)
-@- Sqrt (exp0.9)
-M- Corda (exp0.9) \n
4 128 256 384 512 640

Rank

Figure 6: Comparison of SVD, CorDA, and RootCorDA.

Activation-Aware Joint QKV Compression

Consider minimizing QKV activation:

Wq Bq 2
L= Wil X — |Bx| AX]|| .
W, B,
—— ——
W eR3d’ xd BeR3d xr
In this case, the optimal solution is an SVD of WC's.
Note that this is different from QKYV individual optimization:
L= > WX -BAX|
1€[q,k,v]
Wy By O O Aq 2
= Wil X—-10 By O Al X
W, 0O O B, Ay
~—— —_———— ——
A€R3d’ xd BER3d x3r W eR3rxd

The solution is 3 SVDs: W;C’3.

(48)

(49)

(50)

The key difference: (i) the shared vs. non-shared compression matrix A; (ii) block-diagonal vs. dense decompression matrix
B. The number of parameters will be (3d’ + d) from 3r(d’ + d), allowing 50% more rank for joint QKV when d’ = d. When
we use LU factorizatin, the number of parameters will be (3d’ +d — r) from 3r(d’ + d —r). We show the benefit of joint-QKV

activation-aware distillation in Fig. 7.

Nevertheless, the relative magnitudes over Q/K/V are not well-treated for joint case, and it could be worse in the global

performance in the end.

Parameter Ratio

0.00.1 0.2 0.3 04 05 06 0.7 0.8 0.9
90 A
S
SN
80 { FONN SS==oo_ 3o
SI~D> S~
\\ = == ~*~~~
S RS Te=a
70 1 RS T
\\\ .~ \\N\\\\\\\ S
o 60 - ~. T o
g \\\\ \\\\
0 \\\ \\\ R
(%] ~ ~
9 50 7 =% LoRA *\ ‘!\\ .
—8— RootCorDA S N \\.
40 - Spa N R
—&— ASpa (Hardshrink) & NY
30] —¥ WandA (DiagCov) R Y
—*— Split-RootCorDA (12-Head) \\
—— JointQKV-RootCorDA AN
201" _¢— SplitQKv-RootCorDA ‘e
4 128 256 384 512 640
Rank

Figure 7: Joint-QKYV vs split-QKV approximation.

Split-Head Compression

Typically, the weight matrix is split into multiple heads, what happens if we use split-head activation loss? Consider

h
L= WX — BiA;X|? (51)
i=1
W1 Al 2
= H X — diag[By,...,Bn] |- | X (52)
—
Wh BeRd xr Ah
S—— N——
WeRd xd AgRrxd

where W; € RY/hxd B, ¢ R¥/hxr/h 4. ¢ Rr/h*d gre the ith head approximation with / being the number of heads. The

solution is individual SVD of W;C'z. However, as decompression matrix B is sparse block diagonal, it is not efficient than joint
head approximation. It is shown in Fig. 8.

Multi-Head Attention (MHA)

Typically, the attention projection uses a square weight d’ = d, but it is divided into multiple heads such that:

Wq,l Wk,l
Ww. 2 Wk,2

We=| . |er™ we=| 7| eri (53)
Wa,n Wi n

where W, ; € R¥"*d and W) ; € R%"*? are the ith head projection weights, and h is number of heads. The analysis so far is
still valid for per-head low-rank approximation to regard d’ = d/h.

Loss (dB)

90

80

70

60

50

40

30

20

Parameter Ratio
0.00.1 0.2 0.3 04 05 06 0.7 0.8 0.9

LoRA
RootCorDA

Spa

ASpa (Hardshrink)
WandA (DiagCov)
Split-RootCorDA (12-Head) »

SESR RS

128 256 384 512 640
Rank

Figure 8: Split-head activation-aware approximation had terrible performance.

M; = XTW/ Wi X.

For arbitrary X (worst-case), we may consider minimizing

h
L= WS iWi;—A] By ,Bei Akl
—l ~—— ———

G; €Rdxd H;€R™a X Ty

h
=> |G — AT H A
i=1

However, joint-head low-rank approximation may have a benefit over head-wise low-rank approximation. The ith head
attention map is given as:

(54)

When we jointly decompose the low-rank with independent rank o and ri: W, = BqA, and Wi, = By Ay for By, Al €

R%*X7a, By, AII € R we can write VAVq,Z- = By ;A4 and VAVkJ = By ;Ax for By ; € R/hxra gpd By, € R¥/hxre je. the
compression matrix A is shared, and decompression matrix B is individual over multiple heads. It suggests that the rank r4 and
i should not be lower than d/h, otherwise some heads can be redundant.

(55)

(56)

Note that G; = W, ;Wi; € R**% is at most of rank d/h. And the rank of H; = B, ;Bi; € R"*"* is not greater than
r = min(ry, rx,d/h).

Note that there is no loss in generality to restrict that A, and Ay are ortho-normal, i.e., AqA(I = I, and AkAlj =1, ,asa

full matrix H; can absorb any non-ortho-normal impact. Then, we have

h
L= GG + AJH; AA) HT Ay — A]H;AG — G, A H Ay
N——

=1 Irk
h
=Y NGilP + te[HH AqA]] — tr[H; AG AL + AgGi AL [T
i=1 —~
I

h
= Z IGill* + || Hi||” — 2tr[H; AkG Aj -

i=1
The gradients:
Vi, L =2H; — 24,G; A\
The KKT condition for H; given A, and Ay is thus:
H; = A,Gi A}
= AW, Wi Ay
Putting it back to the loss, we obtain:

h
L= |IGil* + || H:||* — 2tx[H; AG A

=1

=D NGill? + [[AGiA] ||? — 2[4, G A AG A
h
=D NGill? + [AGi AL |I? — 2| AgGi AL |I?
i=1
h
= |IGilI” — [[AgG AL |17,
i=1
Let’s rewrite as
L= |Gil* = I(Ax ® Ag)vec[Gi]|>
=D NGl = (Ax ® Ag)vec[Gy]||?

= Z 1G> — [|(Ak ® Aq) [vec[G1], vec[Gal, . . ., vec[Gh]] |1

GeRddxh

= IGI* - lI(Ax ® Ag)G|*
= IGII? = [I(In ® Ax ® Ag)vec[G]]*.

(57)

(58)

(59)

(60)

(61)
(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)
(71)

This is the 3-mode tensor-rank decomposition problem involving the high-order SVD (HOSVD) for folding G into the size of
d x d x h, but with a restriction that the first mode plane is identity (it may suggest that we may be able to improve by relaxing

this constraint).

HOSVD has no simple solution, while alternating method works well in practice. Specifically, each tensor plane is alternat-

ingly obtained by left singular of the unfolded tensor in different axis. Given Ay, the best A, is the r left singular:

A, + LeftSingular, ([G1A[],G2AY, ..., GLA]))
Rd Xrih

= LeftSingular, (Y G; A} AG,).

(72)

(73)

The loss will be the residual accumulation of the eigenvalues beyond the rank rq. Then given A, the best Ay is the 7y left
singular:

A « LeftSingular,, ([G{ A, .Gy Ay ,...,G}AL]) (74)
Rdxrqh
= LeftSingular,, (Z GZTAJAqGZ-). (75)

The loss will be the residual accumulation of the eigenvalues beyond the rank ry. Iterating the above often achieves a good
solution. NOTE: singular vectors of >, G;G, and 3", G G, can be a good initialization of A, and Aj.

NOTE: the non-uniform choice of ranks 74 and 7 can be optimized to minimize the loss, rather than using the same rank. It
can be adaptively adjusted from the eigenvalue distributions.

Once we obtained the HOSVD solution for tensor planes A, and Ay, the tensor core H; € R"a*" is generated by (62) as
H; = AWGiA] = AW, ;Wi A\l Given optimized H;, any arbitrary By ; and By ; provides the same error as long as it
holds:

H; = B Bx,. (76)

The solution is
Bqi = J; WqiA], (77)
By = J; Wi AL (78)

where J; € R%/"*d/ ig any arbitrary full-rank matrix of our choice. The most natural choice is identity: J; = I h-

Nevertheless, another simple solution will be

Bq,i = Lijhxry (79)

By = 80
k, [O(d/hrq)xrk (80)

when ry < d/h. This has a benefit that query decompression does not require any memory and key decompression is a block
sparse.

Another solution will be

H.T
Byi= i 81
¢ |:O(d/hrk)><rq:| 81
Byx,i = Li/hxr. (82)

when r, < d/h. Similar benefit, but probably removing the requirement of query decompression is more beneficial than key
decompression in practice.

When 7y, rq > d/h (in most case?), we can select J; such that B ; or By ; is block matrix to save (d/ h)2 parameters from
(rq + rx)d/h. For this case, fine-tuning two decompression B, ; and By ; rather than a product H; will be more parameter-
efficient.

Activation-Aware Multi-Head Latent Attention
Consider the loss:

L= |M;— M| (83)
=3 IXT(Gi — A H; Ay) X|? (84)
i —/_/
A;€Rdxd
:}:tﬂXTApXXTAIX] (85)
fE:MA XXTATXXW (86)
CeRdXd
= Ztr[AiCAiTC] (87)
-_E:MAAC CcrAlCR 0] (88)
—ZHC PACE|P (89)
::E:ncw(%05470%A§£aAkc%H% (90)
- N—_—— , N——
’ G; ALT Al

where C'is a positive semi-definite of rank no greater than min(d, [).
In fact, the solution is same as the case without X comparing (56) and (90), where we can regard as

G, — G, =C2G;C?, 91)
Aq — AL = A0, 92)
A — Al = AC3. (93)

Here, we can consider A,C 3 and A, C'2 are instead orthogonal, and thus the solution can be given by HOSVD likewise.
Fig. 9 shows the comparison between adaptive and non-adaptive distillation with activation/attention-aware methods.

Bias Update
Some LLMs use bias for QKV. For this case, we need to modify the bias term as well. We have
L= Z [(WaiX + bqil)T (WieiX + biil ") — (WoiX + b il T) T (Wiei X + bici 1) (94)
X T X - - X|\T - - X 2
=€ Was_tud LT g D] [T b (5
we eRd/hX(dJrl) ~~ W/ .€Rd/hx(d+1 i d/hx(d+1) i d/hx(d+1)
X/ R4+ x1 ke W, €R Wy .€R
95)
ZZMNWWm W/ LW)X (96)
= Zu Cr(WLWi, — W W)O3 |2 97)
where we have a modified covariance:
C'v — X/X/T c R(d+1)><(d+1) (98)
X
c 1 C
SR
Cz o) 3 =
—t] o O | A (101)
pCz (I—p ' Cru)z] O (1—p CTp)?

Parameter Ratio
0.00.1 0.2 0.3 04 05 06 0.7 0.8 0.9

140 A

130 A

Loss (dB)

120 1 —¢- svD (power=0.0)
WandA (power=0.5, diag)

-@®- RootCorDA (power=0.5)

=p- CorDA (power=1.0)

—¥— Att-SVD (power=0.0)
Att-WandA (power=0.5, diag)

—&— Att-RootCorDA (power=0.5)

100 4 —»— Att-CorDA (power=1.0)

110 A

4 128 256 384 512 640
Rank

Figure 9: Attention-Aware vs. Activation-Aware Approximation. Loss is attention map error. Random query/key projections
with Wishart sample correlation (0.9 decaying). WandA uses diagonal correlation.

where we assume C'is normalized as C = X X /I, and 1 € R?*! is a mean of input tokens: ;z = X 1/1. Then, we can omit /.
Similar format but it cannot be solved by the same way as we have a structured low-rank expression:

TRT
Aqui

W/TWIQJ.:[BT,V} [BiiAx by (102)
q,?

erR(Tq-H)X(Tk-H)

T B, .
_ Aq del A_l(ii,l [Bkl bk Z:I Ak Orkxl . (103)
O1><rq 1 bq.i N ! o O1x4 1
_ N——

d
B ;ERIX (ML)

AT cRd+1) X (rq+1) Bc/lTieR(qurl)xd Al eR(ricH1) X (d+1)

We may use the HOSVD to decompose with one more rank for bias, while the compression matrix Aﬁl and Aj needs to be a
particular format. Nonetheless, we can modify the bias by the KKT condition:

ALCG,CAT = ALCA H{ALCAL. (104)

Hence we have
H] = (ALCA)TALCG,CA (ALCAT)T (105)
= (ALCATALCW/ Wi ,CAT(ALCAT)T. (106)

BT. By ;

q,7

Parameter Ratio

0.00.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9

150 1 1 1 1 1 1 1 1 1 1
140 A
130 A

_ 120 A

[an]

z

§ 1107 -¥- Act-SVD (power=0.0)

S .

Act-WandA (power=0.5, diag)
100 4 —@~- Act-RootCorDA (power=0.5)

=p- Act-CorDA (power=1.0)
90 4 ~¥— Att-SVD (power=0.0)
Att-WandA (power=0.5, diag)
—&— Att-RootCorDA (power=0.5)
80 1 —— Att-CorDA (power=1.0)
4 128 256 384 512 640
Rank

Figure 10: Sparse approximation for Attention-Aware vs. Activation-Aware distillation. No markers are sparse approximation.

Sparse is better than low-rank.

Thus, given optimized A, and Ay, we have optimized decompression matrix with updated bias:
Byi=[Bai bql

7Ty ApT I A AT+

=J; W, CA, (A CAY)

= J [Wai bqi] CAT(A,CA)T

? a

(107)
(108)
(109)

(110)

(111)

[CAT u] [A,CAT Au]™
=J Wqi bqi a- Hq a
q _MTAq 1 ,uTAg 1
Ty . 1| CAL I O] [(A,CAl — Aquu™ AT O] [I —Aqu
= ']i [Wqﬂ bq,z] _MTAQZ; 1 —,LLTA:; 1 4 4 Oq a]_ O lq
T Wi bos] _(C—WT)AJ(Aq%AI — AqupT AL —(C—uuT)AI(AqCACTl—AquuTAIVAunru

7

(112)

= J [Wai(C = puT) A (AGCAG = AquuT AJ)T —Woi(C — ppT) A (AqCAG — Aqupm AL) T Aqpt + Wi+ byi] -

It gives the bias modifications:

by = diag[Ji] (b + Wap — Wo(C — pu") A (AqC A — Aquu " AJ) " Aqpe),
b = diag[J;] (b + Wi = Wie(C — pn ") AL (AC AT — A" AT)T Aepa).

We define the centered auto-correlation:

Co=C—pup'.

(113)

(114)
(115)

(116)

Then, we assume that the optimal compression matrices A, and Ay are orthogonal on CO% :
AqCoAg =1,
A CoA) =1,
In this case, the bias modification can reduce to
by = diag[J;] (bg + Wop — Wy CoAy Aqp),
by = diag[J;" (b + Wi — WiCo Ay Axpr).

For this case, we have

acay = [MEha Ao,
(A,CAG)" = _,Mg AT 1+ ;TAX#AQM] ’
AL(ALCATTA = __ ;ﬁ? Aérqu 14 f%fT Aqu} ;
seanyaze=| . Mns 9.
CaaOaTyeaT = (g 1= Cotedan),
CAL(ALCA AT C = o Aol s ' ﬂ -

Plugging the optimized H;, the loss is expressed as
L= Z |CEW W, ,CF — C3 AT (ALC AT ALCW WL CAT (AL CAT) ALCH [
= Z |CEW LWL, C3 2 — |2 Al HACE |2

1

_ZHC WILWL O3 2 — | CF AT (ALCATYY ALCWIT W ,CAT (ALCAT) ALCE |2

w

fZHc WEWL O3 — [CAT (ALCAT)TALC W WL ,CALT (AL CAT)T ALCWLT W).

G EREFD X (d+1)

Focusing on optimizing A4, the second term will be

Sel([5 8]][] e - [5G e

=tr |:00Aq choldx(d+1) Z Gq,il(d+1)xd} + c.c.

= ||AqCO(Id><(d+1) Z Gq,il(d+1)><d)% ||2 + c.c..

Hence the optimal A, is the right-singular vectors:
3 . . 1 1
AqC§ = RightSingular,, [C’Oz Ty (a1 (E Gqﬁi)I(d_H)XdC(f].

In fact, we can re-write G ; as

T T T
G~ (15 b ([0t) o] 1] [45 e s

WT
= { b } (Wk iCo Ay AxCoW,l; + (Wicips + bis) Wacip + bk,i)T> Wai bqsl -

q,?

(117)
(118)

(119)
(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)
(131)

(132)

(133)

(134)

(135)

(136)

(137)

Hence, we have

A,C§ = RightSingular,, [3" C¢ W, Wi, CoA] ACoW,[W C3

1 1
+) CEW (Wicip + bies) Wieip + biei) ' WqiCg |- (138)

The first term is the solution if no bias and mean are present.
Similarly the solution for Ay is given by

i . . 1 1
ACE = RightSingular,, [C¢ Lix(as1) (Y Giei)(a+1)xaCE] (139)
— RightSingular,, [S C2 Wi, Wy CoAl ACoW,], Wi, CF
1 1
+) CEW (Waipt + ba.i) Waitt + bai) WieiCg | (140)
where

Gy = WLLW! ,CAT (ALCA)T ALCW! W, (141)
_ [Wq,iCoAd AqCoW,, Wi bii] + W (Wit + ba,i) Wikt +bqi) T Wi biil (142)

— bl—(rl q,iv04q HAqohVq g k,z k,7 b}jz q,ilb q,7 q,i q,i k,i k,i] -

Grouped Query Attention (GQA)

MHA (e.g., for Llama-2) uses h-heads for query, key, and value. However, Llama-3 uses grouped query attention (GQA), where
the number of heads for key and value are smaller than the number of heads for query. Let nq be the query group size. Then,
the number of query heads is nqh, whereas h is the number of KV heads. Suppose 74 is the integer so that simple repetition
can be used. Q and K projections:

W Wi 1
2 , W2 ,
We=| 7| ermahdxd yp= | 7| e RRIXd (143)
Wq,nqh Wk,h

for Wi € RY*4, Wy ; € R *? with the head dimension d’. Llama-3 uses repeat-interleave to match the number of heads by
repeating the KV projections nq-times:

Wit
Wi
W = : anhd/xd. 144
k Wi | € (144)
LWi,n]
For such GQA, we have attention map for the jth head in the ithe group (j € Z}', i € Zjlq):
M;j=X"W/, ;Wi.X, (145)
where we use an index convention: W ; ; = W in +j.
Consider the loss:
L= Z | M; ; — Mz‘,jH2 (146)
0,3
Gij cR4x4d H; ; ER™a X"k
T T AT BB A x|
=3 IXT (WS, ;Wi —A] By, ;Bei Aw) X|| (147)
I A, jERIX
=Y (032G, CF — CRAL H; jACH |2 (148)

4,7
Hence the solution can be obtained with HOSVD likewise MHA in Sec. .

Positional Encoding

Additive PE
Consider additive PE for a token X € R¥!:
X' = X +E, (149)
where E € R%*! is a positional embedding matrix. Often it is sinusoidal like
E; ; = exp(y2n fij/l), (150)

with a predefined frequency f; for ¢ € Z4. Note that complex rotation is not used in typical case, and instead split into cos and
sin. Many work also considered trainable PE (Radford 2018; Kenton and Toutanova 2019).
In this additive PE case, the solution is same by replacing the correlation matrix C' with

C'=Ex[X'X'"] (151)
=Ex[(X +E)(X +E)'] (152)
=C+EET +Ex[XET + EX]. (153)

For zero-mean token case, is reduces to C' + EE . For static token case, we may use (X + F)(X + E) T directly.
Nevertheless, some PE methods (Dai et al. 2019) use different additive PE for query and key individually:

Xq =X+ Ey, (154)
Xy =X + Ex. (155)
In this case, the attention map will have bias terms:
M; = X W/ ;Wi i Xi (156)
=X"G:X + X'GiE+ E; G X + E| G;Ey. (157)

There are many variants to relax them or generalize them.
Consider loss:

L= Z [X4 AiXil? (158)
= u[A XXy AT XX] (159)
) N—— ——
CreRaxd CqERdxd
= t[ACA] Cy) (160)
= A CECE Al CE 08 (161)
=Y ulCEACECE Al 8 (162)
=Y cEACE|? (163)
=S C2GiCE - CE AT H ACE |1 (164)
G/, AQT Al

Hence, we can still solve it with HOSVD.

Concatenative PE
Another PE uses concatenation:

Wq,iX
;= 0 ; 165
o= 13 s
[Wi X
K; = [o] . (166)
Then, the attention map will be
M; = Q] K (167)
= X"GiX + EJ ;Ex,, (168)

which has just a bias term EqT FE) and there is no impact in loss function with low-rank approximation.

Multiplicative PE

Consider a multiplicative PE for token X:
X' =X0E, (169)

where ® denotes Hadamard product. We just need to replace the correlation with C’ = X’X'T to solve in a straightforward
manner.

However, rotary PE (RoPE) (Su et al. 2024) uses multiplicative PE on query and key, not token X. More precisely, we can
represent per token:

dim = @i,qu,ixma (170)
ki,m = @i,ka,ixma (171)

where ©; ,, is a block diagonal rotation matrix for ith head and mth token, such that @Z m©in =0 n_m.
For example, Llama-2 uses the same RoPE for all heads with block rotation:

o it et R a72)
d = diag [{9721‘11/(1};14%11—1] c Rd/2h><d/2h7 (173)
with a base rope theta of § = 10%.
We have the loss:
L=Ex Y laimkim = @l mkiml’ (174)
=Ex Y |z}, (W i0in-mWii— Al By ;Oin—mBridx) | (175)

A m ERIX

=Ex Y t[Ain-mnty Al miy) (176)

= Zl)::[nﬂi,nmCAanC] (177)

= z§§||05‘ﬂi,nmCéll2 (178)

= g | CEW 040 m Wi i CF —CEA] B(Ii@i,nmek,i&Cfl/ 2 (179)
o W m AT Hinem Al

where we assumed z.,,, and x,, are independent. Then, we can solve it with HOSVD. However, considering all token lengths
over m and n is not practical, and we may need to consider attention windows such as |[n —m| < 5 to optimize. When a causal
mask is used, we do not need to sum over m > n but only m > n.

NOTE: we can generalize RoPE with other unitary rotations.

Fig. 11 shows the result of HOSVD with/without RoPE consideration. The loss is calculated over 10-token window, with
ROPE base theta of 10%, used in Llama-2, while the hiiden size is still 768. HOSVD without RoPE consideration was already a
good approximation as it is optimal at diagonal token. RoPE-aware HOSVD offers additional 1-2 dB gain.

Joint Value-Output Compression
Many LLMs have output projection after QKV attention. The attention output will be

Y =) WoWyiXo(M,), (180)

where W, ; € R?*4/ is the ith head output projection, and Y € R%*! is the attention output. This motivates us to optimize
value projection and output projection jointly.

NOTE: W, ;W ; can be triangularized by LU factorization to save the number of parameters from 2d? to 2d? — d? / h without
any performance loss.

Parameter Ratio
0.00.1 0.2 0.3 04 05 06 0.7 0.8 0.9

150 A

140 A

Loss (dB)

130 A

-¥- Att-SVD (power=0.0)
-@- Att-RootCorDA (power=0.5)
1204 —p- Att-CorDA (power=1.0)

—¥— ROPE-Att-SVD (power=0.0)

—8— ROPE-Att-RootCorDA (power=0.5)

110 —»— RoPE-Att-CorDA (power=1.0)

4 128 256 384 512 640
Rank

Figure 11: RoPE-Attention-Aware Distillation: 10-token window.

As o(M;) is just weighting X, we may assume that the statistics still holds as E[X o (M;)o(M;)T X 7] = C for uncorrelated

tokens. Hence, we end up with optimizing
L=|W,W,C? — B, A,B, A,C? .
——
H

Hence, both projections can be combined together.
Nevertheless, when we consider minimizing individual head projection loss for arbitrary attention weights:

L= || Wo Wy iC% =By Ao;By; ACE |2
B N——— —_——
. G,€Rdxd H,;ERroXTv Al
Then the solution is HOSVD:
B, = RightSingular, [Z G ATA G,
i

A, = RightSingular,._ [Z G B,B] G,
Ao = By Woil;
Byi=Ji W AT,

for arbitrary full-rank matrix .J; € R%/7*4/"_Selecting .J; can save the number of parameters by up to d/h x d/h.

Bias Update
Some LLMs such as OPT uses bias in QKVO. Let’s consider bias impact. The attention output will be:

Y =3 Woi(WyiX +byil")o(M;) +bol"

K3

=Y WoiWyiXo(M;) + Wo by il "o(M;) + beil".

(181)

(182)

(183)

(184)

(185)
(186)

(187)

(188)

Considering any arbitrary attention map M;, we may want to optimize:

L= [[WoilWeiX +byil") +boil " — Woi(WyiX +byi17) = boi1" %

The gradient with respective to b, is given
_(Wo,i(Wv,iX + bv,ilT) + bo,il—r - Wo,i(Wv,iX + Bv,il—r) - Bo,ilT)L
Thus the KKT condition gives:

bo,i = bo,i + Wo,i(Wv,ilJf + bv,i) - Wo,i(Wv,iM + l;v,i)~

Plugging into the loss gives:
L= Z [Wo,iWyi(X — Nl—r) - WonVZ(X - NlT)HQ

1 1
= | WoiWs; C¢ — Bo AoiByi ACE|?.
. S~ ——

v G;ERdxd H;€RroXxrv

Here, Cy = (X — pulT)(X — pu1T) T is centered covariance (it can be normalized). Hence, this is solved by HOSVD:

B, = RightSingular, [Z GiC’oAIAVCbGH,
A,CE = RightSingular, [3" C¢ G B,B] G.C¢].

Note that b, has no impact as it can be absorbed by bo. Hence, we can keep the original bias or changed to zero bias.
Attention-Aware Joint VO Compression
The output projection module takes the input token:
Xoi =Wy Xa(M;).
The covariance of the token is
Co,i = Xo,iX(Ii
= Wv,iXU(MiT)U(Mi)W\Ii-

Over the heads, we have cross-correation terms:

Wv,lXO'(MlT)
X, = Wv,aXff(MJ)
Wy nXo(M,)

o(M{)

. o(My)

= dlag[Wv,l, Wv’g, ceey Wv,h} (Ih (29 X)
W‘iERh’d’hth O'(M};r)
X/ethxl

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)

197)
(198)

(199)

(200)

We consider using the covariance of output projection module not value projection module instead. The covariance of the output

projection C, € R"n>hdn i ojven as
-
Co = XX,
_ / Iy T 1T
=W, X'X"' W,
C, €Rhdxhd

Using this attention-aware token statistics C\, can be more accurate to optimize, rather than simple token statistics C'.

201)
(202)

The value projection module takes the input token X typically. However, there is no impact when we instead take the
attention-weighted token for each head before value projection: X’. Even though we have no statistics on this, we can predict

it from C,, as C, = W.C,W!T:
Cy = WirC, Wi,

Note that this is at most the rank of hdj,.
The loss will be

L= WoiWeiXo(M) = Wo Wy Xo(M,)|?

= |[W WX — W, W X'|?
= W W/ CE — WoWLC2 |2
— |W,CE — W WIWIC2 |2,

Here we have

WIWT = diag[Wy, i W,y (W 1 W) T W oW (W o W) T L W WD, (W W)] € R D,

We write:
L == H Z Wo,i[coé]i - Bo Ao,ti,i AVW:z[CO%]lHZ
- ——
H;ER™0XTv
— W, - B, S HAWS (R
= ||WOC’O% — B, [H, - Hh](Ih®Av)diag[ij1,...vah]CO%HZ.

HER™0 X hry

Note that H; is of rank up to min(r,, 7y, dp).
Gradient:

Vit =—(B,) (WeCd — B © A0Wrc) (o Aowcd)

Vao, b= (BO)T (W"CO% — BoH(In ® AV)WﬁCO%) (Bv,jAvW\j:j [CO%];'
Vi, £ = ~(Bodos) ! (WoC3 = BoH (I @ AW CF) (AW (CE 5

Vi, L= —(Wocé — BoH (I & AV)WV’+CO%) (H(Ih ® AV)WV’+C§)T,

Va£ =3 (Bot) (WCk - B 3 B 0d)) (whied),

The optimal B, is the left-singular of W,C¢ , having unitary condition: B! B, = I, .
From the first KKT, we have a linear system to solve for H:

1 1 T 1
Avaﬁ [002]1 AVW\jjl [C()Qh . Avaﬁ [002]1
H = Bc—>rV[/o(7(>E .
AW ICF] [AWSICEn AW ICE

Hence, we have

+
H = BIW,ColWiH]T (I @ A7) ((In @ AW oWy T (I @ A7))

Plugging into the loss, we have

£ = [WaC§ 12 = [BIWaColWi)T (1 & 40T (1 @ AW CoWiH T (T @ AL)T)

2

12

(203)

(204)

(205)
(206)
(207)

(208)

(209)

(210)

@211)

(212)
(213)
(214)
(215)

(216)

217)

(218)

(219)

The last KKT condition requires solving in vectorization:

Z(GjGiT ® H;Hi)vec[Av] = Zvec[HjBOTWOC%GjT], (220)
4,J J
where G; € R4*"dn 5 defined:
G = WH[CE)s. 221)

MLP-Aware Joint Compression

SparseLLM (Bai et al. 2024b) proposed the way to sparsify MLP layer in LLM models as it consumes two thirds of trainable
parameters. The key idea is to minimize the MLP loss, not local loss. LLM uses typically 2-layer MLP:

z = Wléﬂ + bl, (222)
a=o0(z), (223)
Yy = WQCL + bQ. (224)

The first linear layer typically upsamples by a factor of four, and then the second linear layer downsamples to the same dimen-
sion. Activation-aware low-rank approximation can minimize loss individually for z given x and y given a, but not the MLP
output y given .

SparseLLM uses the closed-form solution to minimize:

L =al[Wiz +by — 2| + Bla— o (2)|* +7[Waa + bx — g%, (225)

for auxiliary variables a and z, given pre-trained input x and output y.
Optimizing a can be obtained by ridge regression:

a* = (YW5 Wa + BI)* (B (2) +4Wy (y — ba)). (226)

Optimal 2 can be also obtained closed-form way with case for ReLU:
z_ =Wix + by, (227)
2= e + Ba), (228)

depending on [z];’s sign.)

The same approach can be used for low-rank approximation. Given z, we can optimize low-rank matrix Wy = By A; by
SVD of (z — bl)erC’w% , where (z — b))z = (2 — b1)z " C corresponds to the effective weight matrix to map = onto z. Given
a, we approximate Wy = By Ay by SVD of (y — bg)CﬁC’é = (y— bg)aTC’a_Tl, given correlation C, = aa .

Sparse Matrix
Consider low-rank plus sparse decomposition:

W = BA+ D, (229)

where D € R4 %4 jg a sparse matrix such that || D||o < k. As discussed so far, given a D matrix, the best low-rank matrices are

SVD of (W — D)C 3. Given BA, finding sparse D is an NP-hard problem, and often it is solved by greedy or relaxed methods
such as matching pursuit and proximal gradient. Considering the ¢; relaxation, we have

L' =|(D+BA—-W)C? + A(|D|x — &). (230)
Fast iterative shrinkage-threshold algorithm (FISTA) uses iterations with Nesterov’s accelerating technique:
Dy = Taue [Di—1 — 26 (Dy—1 + BA = W)C1, (231)
1

k1 = 5(1+\/1+4u2), (232)

. —1
Dy, « D+ "= 2 (D), — Dy_1), (233)

HE+1

for iterations k = 1,2, ... with a stepsize p1 = 1. T, is a soft shrinkage operator:

Talz] = sign[z](z —). (234)

Parameter Ratio

0.00.1 02 0.3 04 05 0.6 0.7 0.8 0.9
90 1 1 1 1 1 1 1 1 1 1
80 A
70 A
60 A
)
z
¥ 50 1
S - Orig: STE + Hardshrink S
40 Softshrink S
——- Hard STE
—-—=- Soft STE
30 1 =% LoRA
—8— RootCorDA X
20 - Spa \
—— ASpa (Hardshrink)
4 128 256 384 512 640
Rank

Figure 12: Random weight approximation with/without correlation. Correlation is sampled from Wishart distribution with
covariance of identity or off-diagonal decaying of 0.9 factor. Weight is normal distributed.

We may iterate SVD and FISTA. The choice of) is crucial to have a target sparsity. It is not easy to adjust A such that the target
sparsity is achieved beforehand.
Alternatively, we use a regular gradient method with straight-through estimator (STE):

D = D — D.detach +S,;[D.detach], (235)
—_—

STE Trick

where S, [-] is a hard shrinkage operator, i.e., sparcification operator passing only ~ elements having largest magnitude. This
STE method has a benefit over FISTA: i) the sparsity can be specified; ii) any other loss function including the final downstream
task loss can be incorporated; and iii) the quantization-aware training can be readily integrated in the STE projection. Never-
theless, soft shrink and hard shrink are actually differentiable, and we may not need to use STE. Fig. 12 shows the comparison
of STE and Hard/Softshrink. In this experiment, Hardshrink works best.

We also notice that sparse approximation can be better than low-rank approximation. And, also joint low-rank plus sparse
approximation did not work well as shown in Fig. 13.

However, unstructured sparse matrix may require index storage to memorize the non-zero entry locations. When we use a
mask, it requires d’d binary memory as well as non-zero values in D. When the sparsity is small, keeping index will be more
efficient, i.e., keeping log,(dd’)r. Fig. 14 shows the case with sparsification for low-rank adapter B, A, starting RootCorDA
of rank 640 and 512. Although sparsified low-rank approximation has a benefit, it does not outperform sparse approximation
alone.

Another possibility using sparse approximation is to sparsify LoRA matrices B and A. However, doing so may be poor
because the product of two sparse matrices can be much more sparse: e.g., 50% sparse B and A will result in 25% sparse BA.
Hence, using sparse matrices for B and A may be a bad solution. Similarly, using sparse W, and W\ may be a poor combination
for attention map approximation.

WandA (Sun et al. 2023), SparseGPT (Frantar and Alistarh 2023) and SparseLLM (Bai et al. 2024b) use non-iterative
solutions by considering only diagonal covariance:

C—Col,. (236)

Parameter Ratio

0.00.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9
$ —o— LoRA
—— Spa
80 1 —*— SLORA 1/2
—A— SLORA r4
70 SLoRA r8
= 60
°
)]
[%)]
o
- 50 _
40 |
30 A

4 128 256 384 512 640
Rank

Figure 13: Low-rank plus sparse approximation does not outperform sparse-alone approximation.

This does not require iterative compressed sensing. However, the diagonal approximation has a degraded performance as in
Fig. 15.

Quantization-Aware Distillation

We can use STE for quantization-aware distillation in a straightforward manner. Whatever the loss, we can use STE for the
trainable parameters, e.g., for B and A low-rank matrices:

B < B — B.detach + Q[B.detach], (237)
A+ A — A.detach + Q[A.detach], (238)

where we may consider a simple chunk-wise g-bit uniform quantization:
7’ = Qlx] (239)

29 -1 max — “<min
= round[(m — Tpin) - P— L 94 _a; + Tmin, (240)
where z,,;, and x,,,« are determined from a chunk of x.
LLM Models

Parameters for some major transformer models are listed in Table 11. OPT model variants are listed in Table 6. Table 7 shows
parameters of Qwen3 models.

For LMM models, we used LLaVa: 1iuhaotian/llava-vl.6-vicuna—"7b. It has Vicuna-7B model for LLM and
ViT based on CLIP for the vision encoder. The Vicuna is an instruction-tuned version of LLaMa, having 32 transformer layers.
CLIP ViT has 24 transformer layers.

0.00.1 0.2 0.3 04 05 0.6

Parameter Ratio

0.7 0.8

0.9

90 .
80 A
70 A

__ 601

m

z

% 50 1

o

-

40 7" ——- SLoRA r640
SLORA r512 *
30 4 =% LoRA
—8— RootCorDA
Spa
20 A . N
—— ASpa (Hardshrink) »
4 128 256 384 512 640
Rank
Figure 14: Sparsification of B and A low-rank matrices.
Table 6: OPT Models (Zhang et al. 2022)

Models #layers L #heads h hiddensized headdimd, di =4d Huggingface ID
125M 12 12 768 64 3072 facebook/opt-125m
350M 24 16 1024 64 4096 facebook/opt-350m

1.3B 24 32 2048 64 8192 facebook/opt-1.3b
2.7B 32 32 2560 80 10240 facebook/opt-2.7b
6.7B 32 32 4096 128 16384 facebook/opt-6.7b
13B 40 40 5120 128 20480 facebook/opt-13b
30B 48 56 7168 128 28672 facebook/opt-30b
66B 64 72 9216 128 36864 facebook/opt-66b
175B 96 96 12288 128 49152

Table 7: Qwen3 Models

Models #layers L #heads h # KV heads hy, hiddensized head dim d}, d; Huggingface ID
0.6B 28 16 8 1024 128 3072 Qwen/Qwen3-0.6B
1.7B 28 16 8 2048 128 6144 Qwen/Qwen3-1.7B

4B 36 32 8 2560 128 9728 Qwen/Qwen3-4B
8B 36 32 8 4096 128 12288 Qwen/Qwen3-8B
14B 40 40 8 5120 128 17408 Qwen/Qwen3-14B
32B 64 64 8 5120 128 25600 Qwen/Qwen3-32B

Loss (dB)

Parameter Ratio
0.00.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9

80 A
70 A
60 A
50 A
40 A
—¥— LoRA .
30 4 —@— RootCorDA S
Spa
-0 —— ASpa (Hardshrink) .
—¥— WandA (DiagCov) »
4 128 256 384 512 640
Rank

Figure 15: Comparison with WandA.

Compression 10% 20% 30% 40%
Dataset WT2 PTB C4 WT2 PTB Cc4 WT2 PTB C4 WT2 PTB C4
OPT-125M (WT2: 27.7, PTB: 39.0, C4: 26.6)
Plain SVD (Identity) 393.8 608.8 2746 6689 1098.0 559.0 12983 1888.7 806.5 3306.5 29859 1637.0
ASVD (Hessian) 57.8 92.8 450 1069 169.8 79.9 288.1 5304 215.0 8389 15819 608.2
ASVD (¢2-norm) 49.7 74.7 422 87.3 126.8 72.0 256.0 282.1 188.3 9069 8643 5284
ASVD (Cov) 87.5 1215 67.6 115.7 157.0 83.1 163.1 242.8 109.9 2483 390.6 1584
ASVD (RootCov) 40.5 64.4 34.5 54.8 86.8 42.7 88.8 148.9 61.5 1775 306.7 116.8
LatentLLM (RootCov) 29.0 4.3 27.6 32.9 50.9 30.4 434 68.7 374 73.3 1169 55.7
OPT-350M (WT2: 22.0, PTB: 31.1, C4: 22.6)
Plain SVD (Identity) 112.3 130.8 82.8 2113 226.8 151.5 378.1 392.0 258.7 7055 6355 509.8
ASVD (Hessian) 64.0 89.1 509 104.6 1344 80.3 202.1 212.0 1459 5573 558.6 371.6
ASVD (¢2-norm) 40.0 59.9 36.6 594 78.0 49.8 117.5 134.2 869 308.7 2839 201.1
ASVD (Cov) 78.0 90.6 61.7 100.8 111.0 72.7 311.2 356.8 129.4 14853 922.7 5482
ASVD (RootCov) 30.8 422 28.5 39.0 514 33.6 71.6 86.1 495 1185 1321 73.0
LatentLLM (RootCov) 23.1 33.3 23.6 25.9 37.0 25.8 32.9 45.0 30.6 51.3 63.4 42.5
OPT-1.3B (WT2: 14.6, PTB: 20.3, C4: 16.1)
Plain SVD (Identity) 9428.1 10670.8 4865.4 16461.2 20589.0 11039.8 18105.3 17360.8 12565.2 22155.9 15820.3 16566.2
ASVD (Hessian) 238 40.6 249 63.0 173.7 52.8 825.8 927.9 385.0 49123 3086.3 21389
ASVD (¢2-norm) 20.3 323 21.6 28.7 60.2 27.7 74.5 2174 58,5 5924 1072.0 336.7
ASVD (Cov) 29750.9 31499.1 18646.3 19716.9 21757.2 14967.2 21738.3 24300.2 16428.7 22776.5 23591.7 14922.1
ASVD (RootCov) 17.7 27.9 18.9 21.9 353 222 339 55.8 29.7 75.0 1079 51.1
LatentLLM (RootCov) *14.5 21.5 16.6 15.8 24.3 17.8 20.2 31.6 21.3 34.1 58.1 30.6
OPT-2.7B (WT2: 12.5, PTB: 18.0, C4: 14.3)
Plain SVD (Identity) 1922.0 2250.3 900.7 7446.2 70424 5113.6 11253.8 10109.6 7742.6 26177.5 29321.3 17035.3
ASVD (Hessian) 18.2 31.9 20.0 31.6 96.9 28.0 216.2 8523 74.8 27149 2894.0 626.0
ASVD (¢2-norm) 16.9 27.1 18.7 23.1 44.6 234 53.0 190.7 432 5243 9815 2293
ASVD (Cov) 16419.9 15136.0 10680.6 15495.8 14896.4 10891.6 17392.3 15994.8 11926.0 17976.5 16298.1 11566.8
ASVD (RootCov) 14.5 22.1 16.5 17.1 26.7 18.8 24.1 36.3 23.7 48.4 66.5 37.1
LatentLLM (RootCov) *12.3 18.8 14.7 13.6 20.6 15.7 16.5 24.3 18.1 24.5 36.0 24.2
OPT-6.7B (WT2: 10.9, PTB: 15.8, C4: 12.7)
Plain SVD (Identity) ~ 14839.0 28665.9 22936.1 67517.7 116974.8 110860.5 123286.4 213333.5 190378.4 27304.0 31719.7 24071.3
ASVD (Hessian) 14.3 22.0 16.6 17.3 273 20.1 26.0 51.0 28.8 733 2522 67.6
ASVD (¢2-norm) 12.6 19.6 15.1 14.6 23.0 17.2 18.7 32.1 214 30.6 73.2 33.7
ASVD (Cov) 9111.6 9171.3 7220.2 9842.6 9465.6 7175.0 11848.0 10046.0 6973.6 8514.7 7931.2 6660.3
ASVD (RootCov) 11.8 17.7 14.2 13.5 19.5 15.4 17.0 239 17.8 27.2 36.1 24.0
LatentLLM (RootCov) *10.7 16.1 13.0 11.5 17.4 13.7 13.5 19.2 15.3 18.0 24.2 18.4
OPT-13B (WT2: 10.1, PTB: 14.5, C4: 12.1)
Plain SVD (Identity) 8922 1003.5 789.3 21574 20683 1716.1 36129 3381.8 2806.9 5838.7 5069.1 4292.5
ASVD (Hessian) 12.5 18.6 14.3 14.6 220 15.8 19.1 29.7 18.7 29.5 48.9 25.1
ASVD (¢2-norm) 11.2 16.8 13.4 12.2 18.6 14.4 14.0 21.9 16.3 18.2 29.0 20.3
ASVD (Cov) 13999.3 11053.5 8991.2 10250.7 8883.2 6556.4 128853 11756.7 7658.0 12625.5 10709.9 7972.3
ASVD (RootCov) 10.9 159 13.1 11.9 17.0 13.9 14.3 20.0 15.3 20.2 24.1 18.3
LatentLLM (RootCov) 10.2 14.8 12.4 10.7 154 13.0 12.0 16.7 13.9 14.8 19.2 15.8

Table 8: Perplexity () of OPT models with different SVD compression methods for 10-40% size reduction. Asterisk “*”
indicates the better performance than the original un-compressed LLM.

Compression 10% 20% 30% 40%

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4
Qwen3-0.6B (WT2: 21.0, PTB: 43.8, C4: 30.3)

Plain SVD (Identity) 2.7e6 6.1e6 2.6e6 1.7¢7 49e7 1.8e7 2.8¢7 2.4e7 2.5¢7 4.3¢7 5.4e7 3.4e7

ASVD (Hessian) 1.6e6 6.3e6 1.5e6 2.3e6 4.2¢6 3.0e6 4.2e6 3.4e6 4.9e6 6.8e6 1.3e7 6.4e6
ASVD (¢2-norm) 9593.9 1.4e4 32979 3.1e5 8.0e5 1.4e5 4.0e5 4.5e5 2.2e5 8.0e4 1.0e5 3.led
ASVD (Cov) 1811.5 4.7e4 606.8 7388.4 1.3e5 1288.4 1.1e4 7.0e4 2398.6 1.7e4 2.6e4 5406.7
ASVD (RootCov) 145.6 379.2 1302 484.1 1054.6 250.6 3531.1 1.4e4 996.7 2.4e4 5.8e4 2496.1

LatentLLM (RootCov) 304 60.3 442 599 1183 77.6 232.6 510.3 161.2 1951.6 6794.9 688.9

Qwen3-1.7B (WT2: 16.7, PTB: 33.8, C4: 22.4)
Plain SVD (Identity) 1.8¢7 1.6e7 1.1e7 1.3e7 1.1e7 1.1e7 1.0e7 1.0e7 6.5¢6 19e7 1.7¢7 1.5¢7

ASVD (Hessian) 1.1e5 6.8e5 3.4e5 52e6 8.0e6 4.6e6 4.4e6 6.7e6 4.0e6 3.0e6 1.6e7 3.2e6
ASVD (¢2-norm) 72.5 1384 102.8 1679.1 2719.6 1639.8 4842.6 1.2e4 3960.3 2.8e5 2.8e5 9.8e4
ASVD (Cov) 860.6 3378.6 338.3 1989.8 1.0e4 516.1 6645.8 2.4e4 906.1 1.2e4 4.6e4 1796.1
ASVD (RootCov) 375 632 439 663 1148 625 147.8 287.6 100.0 387.2 1066.1 193.7

LatentLLM (RootCov) 223 47.8 284 279 515 353 488 814 533 1375 2649 98.6

Qwen3-4B (WT2: 13.7, PTB: 24.7, C4: 19.9)
Plain SVD (Identity) 5.0e4 52e4 3.7e4 6.5e¢5 1.7e6 4.0e5 3.1e6 5.0e6 1.8¢6 3.8¢7 3.3e7 4.8e7

ASVD (Hessian) 682.9 1372.1 598.5 2782.5 4110.1 1377.6 4.5e4 2.9e4 23e4 4.1e5 4.5¢5 3.1e5
ASVD (¢2-norm) 29.3 467 348 461 732 528 80.6 153.6 101.2 229.8 451.1 2452
ASVD (Cov) 1.9e5 1.1e6 2.5¢4 1.5¢5 4.9e5 2.4e4 1.5e6 33e6 3.0e5 9.2e5 1.7e6 5.1e5
ASVD (RootCov) 23.1 360 270 40.0 555 354 84.1108.7 584 1953 2259 115.0

LatentLLM (RootCov) 158 329 21.6 187 371 245 351 47.0 321 90.8 1229 635

Qwen3-8B (WT2: 9.7, PTB: 17.2, C4: 15.4)
Plain SVD (Identity) 24e5 8.7e4 4.5e4 9.0e6 1.9e6 8.8e5 2.8¢7 3.8¢7 1.8¢7 5.3e7 1.0e8 5.2e8

ASVD (Hessian) 336 783 40.7 90.8 573.7 115.2 1250.8 1.3e4 854.4 5324.6 3.le4 4872.0
ASVD (¢2-norm) 18.8 322 251 260 439 320 406 71.8 47.7 986 171.1 92.1
ASVD (Cov) 1.3e5 4.7e5 4.4e4 1.2e5 3.1e5 4.4e4 83ed 23e5 3.4e4 6.1e4 1.2e5 2.7¢4
ASVD (RootCov) 16,7 250 21.8 260 326 263 493 605 386 1192 1369 71.1

LatentLLM (RootCov) 11.8 21.2 179 142 231 199 224 295 248 539 685 408

Table 9: Perplexity () of Qwen3 models with different SVD compression methods for 10-40% size reduction.

Compression 10% 20% 30% 40% 50%
LLaVA-7B: Uncompressed Acc 61.32

Plain SVD (identity) 236 048 035 034 036
ASVD (Hessian) 2388 9.60 124 021 031
ASVD (¢2-norm) 2441 953 277 082 0.75
ASVD (Cov) 038 036 040 033 035
ASVD (RootCov) 52.51 4991 4553 38.47 27.36

LatentLLM (RootCov) 60.06 57.65 52.63 46.90 35.94

Qwen2.5-VL-7B-Instruct: Uncompressed Acc 82.11

Plain SVD (identity) 002 047 032 005 0.11
ASVD (Hessian) 5876 7.03 023 045 041
ASVD (¢2-norm) 77.84 7392 57.13 1879 0.41
ASVD (Cov) 041 041 041 041 041
ASVD (RootCov) 79.46 7476 6631 51.80 3491

LatentLLM (RootCov) 80.85 79.30 73.90 62.11 42.53

Qwen2.5-VL-3B-Instruct: Uncompressed Acc 78.17

Plain SVD (identity) 0.01 0.08 009 009 0.01
ASVD (Hessian) 0.14 031 031 031 034
ASVD (¢2-norm) 4423 0.14 0.00 041 037
ASVD (Cov) 041 041 041 041 041
ASVD (RootCov) 73.78 6730 5420 3393 13.99

LatentLLM (RootCov) 76.44 74.29 64.28 45.80 19.67

Table 10: Accuracy in percent (1) on TextVQA dataset for compressed LLaVA-7B and Qwen2.5-VL-7/3B.

Table 11: Transformer Models

ViT-16/B Llama-2-7B Llama-3.2-1B
ID google/vit-base-patch16-224 meta-1lama/Llama-2-7b-hf meta-1lama/Llama-3.2-1B-Instruct
hidden size d 768 4096 2048
hidden act gelu silu silu
intermediate size d; 3072 (4d) 11008 (2.68d) 8192 (4d)
head dim di, = d/h 64 128 64
num attention heads h 12 32 32
num key value heads hi 12 32 8
num hidden layers L 12 32 16
gkv bias True False False
mlp bias True False False
rope theta 0 — le4 5e5
max position embeddings 197 4096 131072
OPT-350M BLOOM-560M Qwen2-0.5B
ID facebook/opt-350m bigscience/bloom-560m Qwen/Qwen2-0.5B
hidden size 1024 1024 896
hidden act relu gelu silu
intermediate size 4096 4096 4864
head dim 64 64 64
num attention heads 16 16 14
num key value heads 16 16 2
num hidden layers 24 24 24
gkv bias True True True
mlp bias True True False
rope theta — — le6
max position embeddings 2048 2048 131072
RoBERTa-350M Phi-3.5 mini Gemma-2B
ID FacebookAl/roberta-base microsoft/Phi-3.5-mini-instruct google/gemma-2b
hidden size 768 3072 2048
hidden act gelu silu gelu
intermediate size 3072 (4d) 8192 16384
head dim 64 96 256
num attention heads 12 32 8
num key value heads 12 32 1
num hidden layers 12 32 18
gkv bias True False False
mlp bias True False False
rope theta — le4 led
max position embeddings 514 131072 8192

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2026-018.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35

