
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

LatentLLM: Activation-Aware Transform to Multi-Head
Latent Attention

Koike-Akino, Toshiaki; Chen, Xiangyu; Liu, Jing; Wang, Ye; Wang, Pu; Brand, Matthew

TR2026-018 January 22, 2026

Abstract
Modern foundation models such as large language models (LLMs) require a massive amount
of computational and memory resources. We propose a new framework to convert such LLMs
into a reduced-dimension latent structure. Our method extends a local activation-aware
tensor decomposition to a global attention-aware joint tensor decomposition. Our framework
can significantly improve the model accuracy over the existing model compression methods
when reducing the latent dimension to realize computationally/memory- efficient LLMs. We
show the benefit on several benchmark including multi-modal reasoning tasks.

AAAI Conference on Artificial Intelligence 2026

c© 2026 AAAI. Personal use of this material is permitted. Permission from AAAI must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

LatentLLM: Activation-Aware Transform to Multi-Head Latent Attention

Toshiaki Koike-Akino, Xiangyu Chen, Jing Liu, Ye Wang, Pu (Perry) Wang, Mathew Brand
Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02319 USA

{koike, jiliu, yewang, pwang, brand}@merl.com

Abstract

Modern foundation models such as large language mod-
els (LLMs) require a massive amount of computational and
memory resources. We propose a new framework to convert
such LLMs into a reduced-dimension latent structure. Our
method extends a local activation-aware tensor decomposi-
tion to a global attention-aware joint tensor decomposition.
Our framework can significantly improve the model accuracy
over the existing model compression methods when reduc-
ing the latent dimension to realize computationally/memory-
efficient LLMs. We show the benefit on several benchmark
including multi-modal reasoning tasks.

Introduction
Large language models (LLMs) (Touvron et al. 2023;
Achiam et al. 2023) and large multi-modal models
(LMMs) (Liu et al. 2023) have shown excellent performance
across a variety of general tasks (Wei et al. 2022; Katz et al.
2024; Bubeck et al. 2023). Nonetheless, these models hav-
ing billions of parameters demand significant computational
resources (Schwartz et al. 2020). Towards increasing the
accessibility and sustainability of LLMs/LMMs, extensive
efforts have been devoted to model compression (Xu and
McAuley 2023; Zhu et al. 2024; Bai et al. 2024a): e.g., par-
tial activation (Jiang et al. 2024; Lin et al. 2024a), prun-
ing (Frantar and Alistarh 2023; Sun et al. 2023; Bai et al.
2024b; Hassibi, Stork, and Wolff 1993), quantization (Fran-
tar et al. 2022; Lin et al. 2024b; Wang et al. 2024a), knowl-
edge distillation (Hsieh et al. 2023; DeepSeek-AI 2025;
Hwang et al. 2024), and low-rank factorization (Yuan et al.
2023; Liu et al. 2024; Hwang et al. 2024; Saxena et al. 2024).

More recently, the reduced-dimension LLM DeepSeek-
V3 (Liu et al. 2024) has attracted much attention for its
high efficiency and performance. It employs a low-rank
architecture called multi-head latent attention (MLA) to
compress the standard multi-head attention (MHA), real-
izing an efficient KV cache (Chang et al. 2024; Saxena
et al. 2024), accelerated training, and high-performance in-
ference. In this paper, we provide a novel solution to con-
vert a pretrained LLM/LMM built with MHA into a com-
pressed LLM/LMM with a type of MLA. Our approach is
motivated by a global compression framework introduced
in SparseLLM (Bai et al. 2024b) and Q-VLM (Wang et al.
2024a). Although the original method was designed for

pruning/quantization, we adopt it for tensor rank reduction.
We further extended it to the joint compression of MHA,
while the original SparseLLM was for compressing the
multi-layer perceptron (MLP) part. Our derived solution is
based on a high-order tensor-rank decomposition to jointly
factorize multiple linear layers.

The contributions of our paper are summarized below.

• We propose a novel low-rank decomposition approach
called LatentLLM to compress LLMs/LMMs.

• We discuss an optimal pre-conditioning for activation-
aware SVD.

• We reveal that a choice of junction matrix can signifi-
cantly reduce the model size.

• We then introduce an attention-aware joint SVD frame-
work to compress multiple weights at the same time.

• Several experiments validate that our LatentLLM ap-
proach can improve the performance of LLM/LMM
compression over existing methods.

• The LLaVA/Qwen-VL compressed with LatentLLM of-
fer a significant advantage in multi-modal reasoning.

Related Work
Model Compression The field of model compression for
LLMs/LMMs has seen a surge of innovative techniques
aimed at mitigating the substantial computation and mem-
ory requirements (Zhu et al. 2024; Yuan et al. 2024). Various
methods have emerged to address this challenge, each taking
a unique approach to reduce the memory footprint of LLMs.
These methods primarily fall into four categories: weight
quantization (Lin et al. 2024b; Frantar et al. 2022; Wang
et al. 2024a), network pruning (LeCun, Denker, and Solla
1989; Hassibi, Stork, and Wolff 1993; Frantar and Alistarh
2023; Bai et al. 2024b), knowledge distillation (Hsieh et al.
2023; DeepSeek-AI 2025; Hwang et al. 2024), and low-rank
factorization (Yuan et al. 2023; Liu et al. 2024; Hwang et al.
2024; Saxena et al. 2024; Saha et al. 2024).

Among them, weight quantization has gained significant
traction in the context of large foundation models due to its
effectiveness. However, all four compression techniques are
orthogonal and can be applied together. We hence introduce
a novel low-rank decomposition method which jointly com-
presses multiple layers of an LLM in a training-free manner.

Wq Wk Wv

Wo

Wu

Wd

MLP

MHA

Av

Bv
Ak

Bk
Ao

Bo

Au

Bu

Ad

Bd

Aq

Bq

(a) LLM Local Tensor Compression

Wq Wk Wv

Wo

Wu

Wd

MLP

MHA

Av

Bv
Ak

Bk
Ao

Bo

Au

Bu

Ad

Bd

Aq

Bq

(b) LLM Joint Tensor Compression

Figure 1: Reduced-dimension LLM/LMM with low-rank
tensor decomposition. (a) each linear modules are lo-
cally compressed by activation-aware tensor decomposition.
(b) multiple linear modules are globally compressed by
attention-aware tensor decomposition.

Low-Rank Decomposition In the realm of low-rank de-
composition (Schotthöfer et al. 2022) for neural network
compression, existing methods typically involve decompos-
ing weight matrices of pre-trained networks using tech-
niques like Singular Value Decomposition (SVD) or tensor
decomposition, followed by fine-tuning the factorized net-
work (Denton et al. 2014; Sainath et al. 2013). LoSparse (Li
et al. 2023) uses low-rank approximation plus a sparse ma-
trix to compress the weight matrix in transformers. Sim-
ilarly, CALDERA (Saha et al. 2024) uses low-rank ap-
proximation plus a quantized matrix. ASVD (Yuan et al.
2023) significantly improves the low-rank decomposition by
dealing with activation statistics. It was applied to SVD-
LLM (Wang et al. 2024b) and Palu (Chang et al. 2024).
DeepSeek-V3 (Liu et al. 2024) employs the similar latent re-
duction via MLA to make MHA efficient and capable. Eigen
attention (Saxena et al. 2024) is highly related to MLA.

LatentLLM: Tensor Compression
Reduced-Dimension LLM/LMM
Figure 1 illustrates the basic transformer architecture con-
sisting of MHA and MLP, used in some LLMs/LMMs.
For MLP, there are up and down projections, whereas
MHA has query/key/value/output projections. By transform-
ing those dense weight matrices into low-rank decompo-
sitions, we can realize an efficient latent LLM/LMM hav-
ing potential benefits: (i) fewer-parameter model size; (ii)
KV cache reduction; (iii) accelerated processing; (iv) lower-
power consumption. In fact, some recent LLM models such
as DeepSeek-V3 (Liu et al. 2024) demonstrated efficiency
and high-performance with MLA. We focus on compressing
a pre-trained LLM/LMM by converting MHA into a type of
MLA in a zero-shot fashion, i.e., without any fine-tuning.

Most compression methods are based on a local loss min-
imization to approximate each weight individually. Moti-
vated by recent work towards global optimization (Bai et al.

2024b; Wang et al. 2024a), we propose a joint tensor com-
pression framework that we call “LatentLLM.” Specifically,
we derive a mathematical solution to jointly decompose a
pair of query and value projections, a pair of value and out-
put projections, and a pair of up and down projections to
compress LLMs. We first address activation-aware compres-
sion to provide some new insights on the choice of pre-
conditioner and junction matrix below.

Activation-Aware SVD: Pre-Conditioning
A pioneering work by ASVD (Yuan et al. 2023) introduced
a way to compress a layer depending on the activation statis-
tics. Consider a pretrained-weight W ∈ Rd′×d to compress
with a lower-rank decomposition Ŵ = BA for compression
matrix A ∈ Rr×d and decompression matrix B ∈ Rd′×r.
Using the input activation X ∈ Rd×l (l is the calibration
sample length), ASVD aims to minimize the activation loss:

L1 = EX

∥∥WX − ŴX
∥∥2 = EX

∥∥WX −BAX
∥∥2, (1)

instead of the naı̈ve weight-based loss:

L0 =
∥∥W − Ŵ

∥∥2 =
∥∥W −BA

∥∥2. (2)

It is well-known that the optimal solution to minimize L0

can be given by the plain SVD of W . To minimize L1,
ASVD introduced a pre-conditioner P ∈ Rd×d to whiten the
statistical impact of the activation X . Specifically, ASVD
uses the low-rank matrices given by whitened SVD:

BAP = svdr[WP], (3)

where svdr[·] denotes the rank-r truncated SVD.
Although ASVD originally suggested a diagonal ℓ1-norm

pre-conditioning, the optimal pre-conditioning matrix P can
be given by reformulating L1 as follows:

L1 = tr
[
(W −BA)EX [XX⊤](W −BA)⊤

]
(4)

=
∥∥(W −BA)C

1
2

∥∥2 =
∥∥WC

1
2 −BAC

1
2

∥∥2, (5)

where C = EX [XX⊤] ∈ Rd×d is a covariance (precisely,
auto-correlation) of input activation. Hence, the above loss
can be minimized by the SVD: BAC

1
2 = svdr[WC

1
2].

Accordingly, it is found that the optimal pre-conditioner is
the square-root covariance: P = C

1
2 . Given the finite cal-

ibration data X , we can estimate the covariance as C =
XX⊤ + λI , where the damping factor λ ∈ R+ corresponds
to the shrunk estimator (Ledoit and Wolf 2004).

Remark 1 Different pre-conditioning methods were intro-
duced in several techniques including pruning and quantiza-
tion, as listed in Table 1. As those variants are sub-optimal,
we use the optimal root covariance: P = C

1
2 . See more dis-

cussion in Appendix.

Junction Matrix for Model Compression
In fact, the solution of (3) does not have a unique decompo-
sition into low-rank matrices B and A. The truncated SVD
is written as

USV = svdr[WP], (6)

Conditioning P Expression Reference

Identity I Plain SVD (Sainath et al. 2013; Denton et al. 2014)
Hessian diag[(XX⊤ + λI)−1]

−1
2 OBS (Hassibi et al.); GPTQ (Frantar et al.); SparseGPT (Frantar and Alistarh)

ℓ1-norm diag
[∑

j |X1,j |, . . . ,
∑

j |Xd,j |
]α ASVD (Yuan et al. 2023); AWQ (Lin et al. 2024b)

ℓ2-norm diag[XX⊤]
1
2 WandA (Sun et al. 2023)

Covariance XX⊤ + λI CorDA (Yang et al. 2024)
Root-Covariance (XX⊤ + λI)

1
2 LatentLLM (Ours)

Table 1: Variants of pre-conditioning matrices P for activation-aware distillation.

where U ∈ Rd′×r, S ∈ Rr×r, and V ∈ Rr×d are the left
singular unitary matrix, singular-value diagonal matrix, and
right singular unitary matrix, respectively. The decompres-
sion and compression matrices B and A can be expressed:

B = USJ, A = J+V P+, (7)

where J ∈ Rr×r is a junction matrix and [·]+ denotes the
pseudo inverse. Choosing any junction matrix that satisfies
SJJ+ = S has no impact on the loss. Hence, there is few
literature discussing the choice of J . Typically, one may use
J = I to put singular-values into the decompression matrix;
J = S+ to put it into the compression matrix; or J = [S

1
2]+

to split it across both matrices equally.
However, a certain choice of J has a noticeable advantage

to reduce the number of parameters and floating-point oper-
ations (FLOPs). We can write the whitened right-singular
matrix V P+ as two sub-blocks:

V P+ = [V1 V2] , (8)

for V1 ∈ Rr×r and V2 ∈ Rr×(d−r). When we use J = V1,
the compression matrix A will contain an identity block as
long as V1 is non-singular:

A = J+V P+ = V +
1 [V1 V2] =

[
I V +

1 V2

]
. (9)

This can greatly reduce the number of parameters from
r(d′ + d) to r(d′ + d) − r2, as well as the FLOPs, because
no computation is needed for the identity projection.

For example, when the hidden size is d = d′, even if we
compress it by 25%, i.e., the latent size is r = 0.75d, the to-
tal number of parameters will be r(d′+d) = 1.5d2, which is
50% more than the original d2. This increased FLOPs hin-
ders the low-rank compression of LLMs, even with the KV
cache benefit (Liu et al. 2024; Yuan et al. 2023; Chang et al.
2024). Nevertheless, with our identity block form, we can
always reduce the number of parameters regardless of the
latent size, i.e., r(d′ + d) − r2 < d′d for r < min(d′, d).
For the above example of 25% latent compression, we can
achieve r(d′ + d)− r2 = (15/16)d2 < d2. Figure 2 depicts
the role of the pre-conditionning and junction matrices for
the activation-aware compression. We also illustrate the ten-
sor diagrams to understand the flexibility of tensor mapping.

Remark 2 Pivoting columns can solve the case when the
left-most sub-block V1 is singular. The pivoting does not re-
quire any FLOPs in inference while additional memory is
required to record the permutation index.

W P U

S V

~~ = B

A

P

d’ x d d x d d’ x r

r x r r x d

d x r

r x d

d x d

SVD Map

W P U S V B A P
d’ d d

Tensor Diagrams

dd’ rr dd’ r d

U S V
dd’ rr

J J+
r r

=

U

S V

d’ x r

r x r r x d

=

J

r x r

J+

r x r

Weight PreCondition LeftSingular

Singular
Value

RightSingular

Insert Junction =
Block Identity

J such that

=

I A2

Figure 2: Activation-aware compression with pre-
conditioning and junction matrix. The junction matrix
J can be adjusted such that A or B is block identity to save
the number of parameters and inference computation.

LatentLLM: Joint Tensor Compression
The SVD described above is optimal in the sense that the
local error is minimized for the single tensor compression,
whereas it does not guarantee global optimality. Motivated
by the global loss minimization framework introduced by
SparseLLM (Bai et al. 2024b), we propose a joint tensor
compression technique which factorizes multiple tensors in
adjacent modules concurrently.

Multi-Head Latent Attention: Joint QK SVD
First, we consider a joint compression of query (Q) and key
(K) projections in MHA to convert into MLA. The attention
map is the dot product of query and key features:

Mi = X⊤W⊤
q,iWk,iX, (10)

where Mi ∈ Rl×l is the ith head attention map before soft-
max operation, Wq,i ∈ Rdh×d is the ith head query projec-
tion matrix, and Wk,i ∈ Rdh×d is the ith head key projec-
tion matrix. Here, dh is the head dimension, which is often
dh = d/h for the number of heads h.

Rather than individually compressing Q and K projec-
tions, we consider minimizing the attention map error:

L2 =

h∑
i=1

∥∥Mi − M̂i

∥∥2, (11)

Gh

G1

Wq: (h, dh, d)

Wq,1

Wq,h

Wk: (h, dh, d)

Wk,1

Wk,h

G=einsum(“hij,hik->hjk”, Wq, Wk)

Dot-Product
G: (h, d, d)

H

Tucker Decomp

H: (h, rq, rk)

Ak

Aq

I Aq: (rq, d)

Ak: (rk, d)

Bk= Wk Ak
T

Bq= Wq Aq
T

Figure 3: Tucker decomposition for joint QK compression.
The compression matrices Aq and Ak correspond to the
Tucker tensor planes, while H = AqGA⊤

k is the Tucker
tensor core. For simplicity, we omit junction matrices and
pre-conditioning matrix.

where M̂i is the ith head latent attention with the low-rank
compression:

M̂i = X⊤A⊤
q B

⊤
q,iBk,iAkX, (12)

where Aq ∈ Rrq×d is the Q compression matrix, Ak ∈
Rrk×d is the K compression matrix, Bq,i ∈ Rdh×rq is the
ith head Q decompression matrix, and Bk,i ∈ Rdh×rk is the
ith head K decompression matrix, respectively. Here, rq and
rk are the latent dimensions for Q and K.

Similar to (5), we can write

L2 =

h∑
i=1

∥∥C 1
2W⊤

q,iWk,iC
1
2︸ ︷︷ ︸

Gi∈Rd×d

−C
1
2A⊤

q︸ ︷︷ ︸
A′⊤

q

B⊤
q,iBk,i︸ ︷︷ ︸

Hi∈Rrq×rk

AkC
1
2︸ ︷︷ ︸

A′
k

∥∥2.
(13)

This is known as a high-order SVD (HOSVD) problem to
decompose for the 3-mode tensor G ∈ Rh×d×d, whose ith
slice is Gi. A′

q corresponds to the 2nd tensor plane, A′
k is

the 3rd tensor plane, and H ∈ Rh×rq×rk , whose ith slice is
Hi, is the tensor core. This is illustrated in Figure 3.

This Tucker tensor decomposition is typically solved by
alternating SVD over each slice sequentially. Algorithm 1
shows the pseudo-code of the joint SVD compression for
QK latent projections. See the detailed derivations of the
joint SVD algorithm in Appendix . Here, we generalize the
pre-conditioning matrix P , as not necessarily the optimal
C

1
2 . In addition, we explicitly denoted any arbitrary junc-

tion matrices that do not change the error. Note that there
are additional junction matrices per heads Ji ∈ Rdh×dh

as well as individual Q/K junctions Jq ∈ Rrk×rk and
Jk ∈ Rrk×rk . This suggests that we can further reduce the
number of parameters by transforming into the block iden-
tity form per head. The total number of parameters will be
(rq+rk)(d+dhh)−r2q−r2k−d2hh, reduced from the original
weights 2ddhh.

Remark 3 Our joint QK SVD can be extended with most
positional encoding methods. See Appendix.

Remark 4 Attention-aware pruning (Liang et al. 2024) is
related to our method, while our derivation provides an op-
timal tensor rank decomposition and only requires precon-
ditioning matrices.

Algorithm 1: Joint SVD to Transform MHA to MLA

Input: Pre-conditioning P ∈ Rd×d, query projection
heads Wq,i ∈ Rdh×d, key projection heads Wk,i ∈
Rdh×d, number of heads h, rank rq, rk, iteration N
Initialize:
Wq,i = Wq,iP for i ∈ {1, . . . , h}
Wk,i = Wk,iP for i ∈ {1, . . . , h}
Gi = W⊤

q,iWk,i for i ∈ {1, . . . , h}
Aq = RightSingularrq

[∑h
i=1 GiG

⊤
i

]
for n = 1 to N do
Ak = RightSingularrk

[∑h
i=1 G

⊤
i A

⊤
q AqGi

]
Aq = RightSingularrq

[∑h
i=1 GiA

⊤
k AkG

⊤
i

]
end for
Output:
Bq,i = J⊤

i Wq,iA
⊤
q Jq for i ∈ {1, . . . , h}

Bk,i = J+
i Wk,iA

⊤
k Jk for i ∈ {1, . . . , h}

Aq = J+
q AqP

+

Ak = J+
k AkP

+

Multi-Head Latent Attention: Joint VO SVD
Next, we discuss the joint SVD for value (V) and output (O)
projections in MHA. The MHA output can be written as

Y ′ =

h∑
i=1

Wo,iWv,iX softmax[M⊤
i], (14)

where Wo,i ∈ Rd′×dh is the ith head output projection, and
Wv,i ∈ Rdh×d is the ith head value value projection. We
may consider minimizing the loss:

L3 =

h∑
i=1

∥∥Wo,iWv,iX − Ŵo,iŴv,iX
∥∥2, (15)

for the low-rank compression: Ŵo,i = BoAo,i ∈ Rd′×dh

and Ŵv,i = Bv,iAv ∈ Rdh×d with Bo ∈ Rd′×ro , Ao,i ∈
Rro×dh , Bv,i ∈ Rdh×rv , and Av ∈ Rrv×d. The MLA output
is thus given as

Ŷ ′ =

h∑
i=1

BoAo,iBv,iAvX softmax[Mi]. (16)

Interestingly, this is also formulated in a similar manner of
(13), and it can be solved by the joint SVD algorithm.

Latent MLP: Joint UD SVD
Finally, we address the joint compression of MLP layers
which consists of up (U) projection and down (D) projec-
tion in typical LLMs/LMMs. Although the global optimiza-
tion is generally difficult due to the nonlinear activations in
the MLP layer, SparseLLM (Bai et al. 2024b) provides an
elegant way to approximate MLP layer. The key idea is to
minimize the MLP loss in a decoupled manner by introduc-
ing auxiliary variables. Our LatentLLM exploits the same
philosophy to compress MLP layers.

Compression FLOPs MACs Parameters (byte) Speed (token/sec) KV Cache (byte)

0% 109.0T 54.5T 13.32G 6.72k 5.37G
20% 87.2T 43.6T 11.06G 7.11k 2.97G
40% 65.4T 32.7T 8.40G 8.35k 1.98G
60% 43.6T 21.8T 5.74G 11.48k 1.21G
80% 21.8T 10.9T 3.08G 16.02k 0.57G

Table 2: Computational complexity and memory requirements of OPT-6.7B models compressed by LatentLLM.

Compression 10% 20% 30% 40%

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

OPT-1.3B (WT2: 14.6, PTB: 20.3, C4: 16.1)

Plain SVD (Identity) 9428.1 10670.8 4865.4 16461.2 20589.0 11039.8 18105.3 17360.8 12565.2 22155.9 15820.3 16566.2
ASVD (Hessian) 23.8 40.6 24.9 63.0 173.7 52.8 825.8 927.9 385.0 4912.3 3086.3 2138.9
ASVD (ℓ2-norm) 20.3 32.3 21.6 28.7 60.2 27.7 74.5 217.4 58.5 592.4 1072.0 336.7
ASVD (Cov) 29750.9 31499.1 18646.3 19716.9 21757.2 14967.2 21738.3 24300.2 16428.7 22776.5 23591.7 14922.1
ASVD (RootCov) 17.7 27.9 18.9 21.9 35.3 22.2 33.9 55.8 29.7 75.0 107.9 51.1
LatentLLM (RootCov) *14.5 21.5 16.6 15.8 24.3 17.8 20.2 31.6 21.3 34.1 58.1 30.6

Qwen3-1.7B (WT2: 16.7, PTB: 33.8, C4: 22.4)

Plain SVD (Identity) 1.8e7 1.6e7 1.1e7 1.3e7 1.1e7 1.1e7 1.0e7 1.0e7 6.5e6 1.9e7 1.7e7 1.5e7
ASVD (Hessian) 1.1e5 6.8e5 3.4e5 5.2e6 8.0e6 4.6e6 4.4e6 6.7e6 4.0e6 3.0e6 1.6e7 3.2e6
ASVD (ℓ2-norm) 72.5 138.4 102.8 1679.1 2719.6 1639.8 4842.6 1.2e4 3960.3 2.8e5 2.8e5 9.8e4
ASVD (Cov) 860.6 3378.6 338.3 1989.8 1.0e4 516.1 6645.8 2.4e4 906.1 1.2e4 4.6e4 1796.1
ASVD (RootCov) 37.5 63.2 43.9 66.3 114.8 62.5 147.8 287.6 100.0 387.2 1066.1 193.7
LatentLLM (RootCov) 22.3 47.8 28.4 27.9 51.5 35.3 48.8 81.4 53.3 137.5 264.9 98.6

Qwen3-8B (WT2: 9.7, PTB: 17.2, C4: 15.4)

Plain SVD (Identity) 2.4e5 8.7e4 4.5e4 9.0e6 1.9e6 8.8e5 2.8e7 3.8e7 1.8e7 5.3e7 1.0e8 5.2e8
ASVD (Hessian) 33.6 78.3 40.7 90.8 573.7 115.2 1250.8 1.3e4 854.4 5324.6 3.1e4 4872.0
ASVD (ℓ2-norm) 18.8 32.2 25.1 26.0 43.9 32.0 40.6 71.8 47.7 98.6 171.1 92.1
ASVD (Cov) 1.3e5 4.7e5 4.4e4 1.2e5 3.1e5 4.4e4 8.3e4 2.3e5 3.4e4 6.1e4 1.2e5 2.7e4
ASVD (RootCov) 16.7 25.0 21.8 26.0 32.6 26.3 49.3 60.5 38.6 119.2 136.9 71.1
LatentLLM (RootCov) 11.8 21.2 17.9 14.2 23.1 19.9 22.4 29.5 24.8 53.9 68.5 40.8

Table 3: Perplexity (↓) of OPT/Qwen3 models with different SVD compression methods for 10–40% size reduction. Asterisk
“*” indicates the better performance than the original un-compressed LLM.

Consider a 2-layer MLP:

Z = WuX, Z ′ = σ(Z), Y = WdZ
′, (17)

where Wu ∈ Rdi×d is the up projection matrix, Wd ∈ Rd×di

is the down projection matrix, and di is the intermediate size
which is typically four-fold of hidden size: di = 4d. The
intermediate variables Z,Z ′ ∈ Rdi×l are auxiliary factors to
be optimized.

Specifically, we consider minimizing the decoupled loss:

L4 = α∥WuX − Z∥2 + β∥Z ′ − σ(Z)∥2 + γ∥WdZ
′ − Y ∥2,

(18)

for auxiliary variables Z and Z ′, given calibration input X
and output Y .

Following SparseLLM (Bai et al. 2024b), the optimal Z ′

can be obtained given the other parameters fixed:

Z ′ =
(
γW⊤

d Wd + βI
)+(

βσ(Z) + γW⊤
d Y

)
. (19)

The optimal closed-form Z can be obtained for ReLU:

Z− = WuX, Z+ =
1

α+ β
(αZ− + βZ ′), (20)

depending on Z’s element-wise sign.
This approach can be used for low-rank approximation.

Given Z, we can optimize low-rank matrix Ŵu = BuAu

by SVD of ZX+C
1
2 , where ZX+ corresponds to the effec-

tive weight matrix to map X onto Z. Given Z ′, we approx-
imate Ŵd = BdAd by SVD of Y Z ′+C

1
2

d , given correlation
Cd = Z ′Z ′⊤. This alternating solution is iterated over a few
rounds. For detail, see Appendix.

Experiments
Experiments Setup We conduct experiments for LLM
and LMM benchmarks to evaluate the effectiveness of our
method. Our experiments are based on the same setting of

Figure 4: WT2 perplexity over compression ratio for OPT-
350M model.

SparseLLM (Bai et al. 2024b) and their code base1. We im-
plemented LatentLLM in PyTorch and used the Hugging-
Face transformers library for handling models and datasets.
All experiments are conducted on NVIDIA A40 GPUs.

For LLM benchmark, we follow the same setup of (Fran-
tar and Alistarh 2023) and use 64 samples of 2048-token
segments, randomly chosen from the first shard of the
C4 (Raffel et al. 2020) dataset. This dataset represents
generic text data crawled from the internet and ensures our
experiments are zero-shot as no task-specific data is seen
during compression. We followed existing work (Sun et al.
2023) and compressed all linear layers in MLP and MHA
in LLMs to the target compression ratio. For LMM bench-
mark, we use 64 samples, randomly chosen from the train
split of the multi-modal question answering dataset. We con-
sider two benchmarks: ScienceQA (Lu et al. 2022); and
TextVQA (Singh et al. 2019).

For LLM experiments, we consider the OPT (Zhang et al.
2022) and Qwen3 (Yang et al. 2025) models as they pro-
vide a wide range of model sizes. We show results on dif-
ferent sizes of models to provide a broader picture for the
performance of LatentLLM. We mainly focus on perplexity,
which is known to be a stable metric for evaluating the ac-
curacy of compression methods (Yao et al. 2022; Dettmers
and Zettlemoyer 2023). We consider the test sets of raw-
WikiText2 (WT2) (Merity et al. 2016) and the Penn Tree-
bank (PTB) (Marcus et al. 1994) as well as a subset of the
C4 validation data, all popular benchmarks in the LLM com-
pression literature (Frantar and Alistarh 2023; Frantar et al.
2022; Sun et al. 2023).

For LMM experiments, we use LLaVA (Liu et al. 2023)
and Qwen2.5-VL (Bai et al. 2025). We evaluate the capa-
bility of the multi-modal answer reasoning based on the
ScienceQA dataset, which contains 21K vision-language
multi-choice questions for three subjects: natural, social,
and language science. Some fractions of questions have im-
age and/or text contexts, and the problem levels range from
grade 1 to 12. In addition, we also evaluate TextVQA, which

1https://github.com/BaiTheBest/SparseLLM

Figure 5: WT2 perplexity vs. FLOPs of six OPT models
from 125M to 13B scales with varying compression ratios.

makes LMMs to read and reason about text in images to an-
swer visual reasoning questions for 28K images.

Computational Complexity When all linear modules are
compressed with LatentLLM, the inference complexity is
expected to be reduced with the compression ratio almost
linearly. Nevertheless LLMs/VLMs have extra complexity
other than linear affine transforms, the inference complexity
is not precisely proportional to the compression factor. We
show the complexity analysis in Table 2 for the compressed
OPT-6.7B models, based on the calflops library. We as-
sume the token length of 2048 at 4 batches. We found that
the FLOPs, multiply-accumulation operations (MACs), and
parameters are almost linearly reduced with the compression
factor. The inference throughput on A40 GPU can be also
monotonically increased by compressing LLMs. While we
used torch.compile(mode="max-autotune"), it
was not a perfectly linear speedup due to the sub-optimal
GPU kernel. The reduction of KV cache memory is signif-
icant because the latent dimension has quadratic relation to
the sparsity: r(d′ + d)− r2 = ρdd′.

Compression over Model Size We first look into the
compression capabilities of our LatentLLM across various
model sizes in comparison to baseline methods. Some re-
sults are shown for a size reduction over 10–40% in Table 3.
The perplexity results of the original un-compressed LLM
models are reported next to the names of the models in the
table.

We can see that the conventional plain SVD has a poor
performance, and that ASVD with a proper pre-conditioning
can significantly improve the perplexity. It was found that
the diagonal Hessian is worse than the diagonal ℓ2-norm,
whereas covariance pre-conditioning can be terrible in low
compression regimes for larger LLMs. In contrast, the supe-
riority of root covariance is remarkable. In addition, the joint
SVD used for LatentLLM offers an additional improvement
consistently across different model sizes and families. No-
tice that our methods can also achieve slightly better per-
formance than the original un-compressed LLMs for some

Subject Context Modality Grades

Method Compression NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

Original un-compressed 0% 72.47 69.18 65.73 73.51 68.82 65.99 72.72 65.19 70.03

Plain SVD (Identity) 10% 5.33 1.35 0.27 5.77 6.69 0.00 3.30 2.97 3.18
ASVD (Hessian) 10% 17.23 24.97 3.18 18.43 29.55 2.16 17.40 11.27 15.21
ASVD (ℓ2-norm) 10% 16.70 18.34 2.55 17.89 24.34 2.23 16.04 8.57 13.37
ASVD (Cov) 10% 41.21 27.22 37.91 41.30 35.15 38.33 38.62 35.27 37.42
ASVD (RootCov) 10% 64.08 56.13 57.36 64.03 60.98 57.35 62.70 57.02 60.67
LatentLLM (RootCov) 10% 68.52 64.23 61.36 69.06 65.20 61.53 68.72 60.45 65.76

Plain SVD (Identity) 30% 0.13 0.00 0.00 0.10 0.00 0.07 0.11 0.00 0.07
ASVD (Hessian) 30% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ASVD (ℓ2-norm) 30% 0.09 0.00 0.00 0.10 0.10 0.00 0.04 0.07 0.05
ASVD (Cov) 30% 41.25 27.33 37.36 41.40 35.25 37.84 38.47 35.27 37.33
ASVD (RootCov) 30% 56.66 51.18 52.27 56.74 56.27 51.99 55.73 51.94 54.37
LatentLLM (RootCov) 30% 64.03 56.24 55.27 64.47 61.77 55.40 62.78 55.37 60.13

Plain SVD (Identity) 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ASVD (Hessian) 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ASVD (ℓ2-norm) 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ASVD (Cov) 50% 40.94 26.88 36.91 41.20 35.10 37.28 38.18 34.74 36.95
ASVD (RootCov) 50% 52.58 45.11 46.00 52.93 50.07 45.99 51.28 45.75 49.30
LatentLLM (RootCov) 50% 55.55 47.24 49.55 56.01 54.09 48.78 54.55 48.12 52.25

Table 4: Accuracy in percent (↑) on ScienceQA dataset of LLaVA-7B model with different compression methods for 10%–50%
size reduction. Question subjects: natural science (NAT); social science (SOC); language science (LAN). Context modality:
text (TXT); image (IMG); or no context (NO). Grades: 1–6 (G1-6); 7–12 (G7-12).

Compression 10% 20% 30% 40% 50%

LLaVA-7B: Uncompressed Acc 61.32

Plain SVD (identity) 2.36 0.48 0.35 0.34 0.36
ASVD (Hessian) 23.88 9.60 1.24 0.21 0.31
ASVD (ℓ2-norm) 24.41 9.53 2.77 0.82 0.75
ASVD (Cov) 0.38 0.36 0.40 0.33 0.35
ASVD (RootCov) 52.51 49.91 45.53 38.47 27.36
LatentLLM (RootCov) 60.06 57.65 52.63 46.90 35.94

Qwen2.5-VL-7B-Instruct: Uncompressed Acc 82.11

Plain SVD (identity) 0.02 0.47 0.32 0.05 0.11
ASVD (Hessian) 58.76 7.03 0.23 0.45 0.41
ASVD (ℓ2-norm) 77.84 73.92 57.13 18.79 0.41
ASVD (Cov) 0.41 0.41 0.41 0.41 0.41
ASVD (RootCov) 79.46 74.76 66.31 51.80 34.91
LatentLLM (RootCov) 80.85 79.30 73.90 62.11 42.53

Table 5: Accuracy in percent (↑) on TextVQA dataset for
compressed LLaVA-7B and Qwen2.5-VL-7B.

cases. Figure 4 shows the plot at a wider range of com-
pression ratios for OPT-350M model, and Figure 5 plots the
performance of all six models in OPT family across FLOPs
when varying the compression ratios.

Multi-Modal Reasoning Capability We show the accu-
racy of latent LLaVA models for ScienceQA multi-modal
reasoning benchmark in Table 4. It is verified that our La-
tentLLM can significantly outperform other low-rank com-
pression methods across diverse reasoning problems over
different subjects/contexts/grades, approaching the perfor-

mance of the original un-compressed LLaVA model. It is
seen that ASVD without using proper pre-conditioning ma-
trix degrades the performance quickly with higher com-
pression ratios, while our LatentLLM keeps relatively
higher performance across all cases. Another benchmark on
TextVQA shown in Table 5 validates the clear superiority of
our LatentLLM over baselines for both LLaVA and Qwen-
VL models.

Discussion Our framework with optimal pre-conditioning
and joint tensor distillations can be readily applied to prun-
ing and quantization as well. See some results in Appendix.
Further fine-tuning is expected to be able to compensate for
the performance degradation by the latent reduction.

Summary
We introduced LatentLLM which jointly compresses mul-
tiple tensors through the use of high-order tensor-rank
decomposition. We also provided some new perspectives
for activation-aware compression when choosing the pre-
conditioner and junction matrix. With a proper selection, we
demonstrated that the model compression performance can
be significantly improved. Our latent LMMs showed a sig-
nificant advantage in multi-modal reasoning tasks compared
to other baseline methods.

References
Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.;
Aleman, F. L.; Almeida, D.; Altenschmidt, J.; Altman, S.;
Anadkat, S.; et al. 2023. GPT-4 technical report. arXiv
preprint arXiv:2303.08774.

Bai, G.; Chai, Z.; Ling, C.; Wang, S.; Lu, J.; Zhang, N.; Shi,
T.; Yu, Z.; Zhu, M.; Zhang, Y.; et al. 2024a. Beyond effi-
ciency: A systematic survey of resource-efficient large lan-
guage models. arXiv preprint arXiv:2401.00625.
Bai, G.; Li, Y.; Ling, C.; Kim, K.; and Zhao, L. 2024b.
SparseLLM: Towards global pruning of pre-trained lan-
guage models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.
Bai, S.; Chen, K.; Liu, X.; Wang, J.; Ge, W.; Song, S.; Dang,
K.; Wang, P.; Wang, S.; Tang, J.; et al. 2025. Qwen2.5-VL
technical report. arXiv preprint arXiv:2502.13923.
Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.;
Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y. T.; Li, Y.; Lundberg,
S.; et al. 2023. Sparks of artificial general intelligence: Early
experiments with GPT-4. arXiv preprint arXiv:2303.12712.
Chang, C.-C.; Lin, W.-C.; Lin, C.-Y.; Chen, C.-Y.; Hu, Y.-
F.; Wang, P.-S.; Huang, N.-C.; Ceze, L.; Abdelfattah, M. S.;
and Wu, K.-C. 2024. Palu: Compressing KV-cache with
low-rank projection. arXiv preprint arXiv:2407.21118.
Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q. V.; and
Salakhutdinov, R. 2019. Transformer-XL: Attentive lan-
guage models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.
DeepSeek-AI. 2025. DeepSeek-R1: Incentivizing Rea-
soning Capability in LLMs via Reinforcement Learning.
arXiv:2501.12948.
Denton, E. L.; Zaremba, W.; Bruna, J.; LeCun, Y.; and Fer-
gus, R. 2014. Exploiting linear structure within convolu-
tional networks for efficient evaluation. Advances in neural
information processing systems, 27.
Dettmers, T.; and Zettlemoyer, L. 2023. The case for 4-
bit precision: k-bit inference scaling laws. In International
Conference on Machine Learning, 7750–7774. PMLR.
Frantar, E.; and Alistarh, D. 2023. SparseGPT: Massive lan-
guage models can be accurately pruned in one-shot. In Inter-
national Conference on Machine Learning, 10323–10337.
PMLR.
Frantar, E.; Ashkboos, S.; Hoefler, T.; and Alistarh, D. 2022.
GPTQ: Accurate post-training quantization for generative
pre-trained transformers. arXiv preprint arXiv:2210.17323.
Hassibi, B.; Stork, D. G.; and Wolff, G. J. 1993. Optimal
brain surgeon and general network pruning. In IEEE inter-
national conference on neural networks, 293–299. IEEE.
Hsieh, C.-Y.; Li, C.-L.; Yeh, C.-K.; Nakhost, H.; Fujii, Y.;
Ratner, A.; Krishna, R.; Lee, C.-Y.; and Pfister, T. 2023. Dis-
tilling step-by-step! Outperforming larger language mod-
els with less training data and smaller model sizes. arXiv
preprint arXiv:2305.02301.
Hwang, I.; Park, H.; Lee, Y.; Yang, J.; and Maeng, S. 2024.
PC-LoRA: Low-Rank Adaptation for Progressive Model
Compression with Knowledge Distillation. arXiv preprint
arXiv:2406.09117.
Jiang, A. Q.; Sablayrolles, A.; Roux, A.; Mensch, A.;
Savary, B.; Bamford, C.; Chaplot, D. S.; Casas, D. d. l.;
Hanna, E. B.; Bressand, F.; et al. 2024. Mixtral of experts.
arXiv preprint arXiv:2401.04088.

Katz, D. M.; Bommarito, M. J.; Gao, S.; and Arredondo, P.
2024. GPT-4 passes the bar exam. Philosophical Transac-
tions of the Royal Society A, 382(2270): 20230254.
Kenton, J. D. M.-W. C.; and Toutanova, L. K. 2019. BERT:
Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of naacL-HLT, volume 1, 2.
Minneapolis, Minnesota.
LeCun, Y.; Denker, J.; and Solla, S. 1989. Optimal brain
damage. Advances in neural information processing sys-
tems, 2.
Ledoit, O.; and Wolf, M. 2004. A well-conditioned estima-
tor for large-dimensional covariance matrices. Journal of
multivariate analysis, 88(2): 365–411.
Li, Y.; Yu, Y.; Zhang, Q.; Liang, C.; He, P.; Chen, W.; and
Zhao, T. 2023. LoSparse: Structured compression of large
language models based on low-rank and sparse approxima-
tion. In International Conference on Machine Learning,
20336–20350. PMLR.
Liang, Y.; Long, J.; Shi, Z.; Song, Z.; and Zhou, Y. 2024.
Beyond linear approximations: A novel pruning approach
for attention matrix. arXiv preprint arXiv:2410.11261.
Lin, B.; Tang, Z.; Ye, Y.; Cui, J.; Zhu, B.; Jin, P.; Zhang,
J.; Ning, M.; and Yuan, L. 2024a. MoE-LlaVa: Mixture
of experts for large vision-language models. arXiv preprint
arXiv:2401.15947.
Lin, J.; Tang, J.; Tang, H.; Yang, S.; Chen, W.-M.; Wang, W.-
C.; Xiao, G.; Dang, X.; Gan, C.; and Han, S. 2024b. AWQ:
Activation-aware Weight Quantization for On-Device LLM
Compression and Acceleration. Proceedings of Machine
Learning and Systems, 6: 87–100.
Liu, A.; Feng, B.; Xue, B.; Wang, B.; Wu, B.; Lu, C.; Zhao,
C.; Deng, C.; Zhang, C.; Ruan, C.; et al. 2024. DeepSeek-v3
technical report. arXiv preprint arXiv:2412.19437.
Liu, H.; Li, C.; Wu, Q.; and Lee, Y. J. 2023. Visual Instruc-
tion Tuning.
Lu, P.; Mishra, S.; Xia, T.; Qiu, L.; Chang, K.-W.; Zhu, S.-
C.; Tafjord, O.; Clark, P.; and Kalyan, A. 2022. Learn to
Explain: Multimodal Reasoning via Thought Chains for Sci-
ence Question Answering. In The 36th Conference on Neu-
ral Information Processing Systems (NeurIPS).
Marcus, M.; Kim, G.; Marcinkiewicz, M. A.; MacIntyre,
R.; Bies, A.; Ferguson, M.; Katz, K.; and Schasberger, B.
1994. The penn treebank: Annotating predicate argument
structure. In Human Language Technology: Proceedings of
a Workshop held at Plainsboro, New Jersey, March 8-11,
1994.
Merity, S.; Xiong, C.; Bradbury, J.; and Socher, R.
2016. Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843.
Radford, A. 2018. Improving language understanding by
generative pre-training. Preprint.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):
1–67.

Saha, R.; Sagan, N.; Srivastava, V.; Goldsmith, A.; and Pi-
lanci, M. 2024. Compressing large language models using
low rank and low precision decomposition. Advances in
Neural Information Processing Systems, 37: 88981–89018.
Sainath, T. N.; Kingsbury, B.; Sindhwani, V.; Arisoy, E.; and
Ramabhadran, B. 2013. Low-rank matrix factorization for
deep neural network training with high-dimensional output
targets. In 2013 IEEE international conference on acoustics,
speech and signal processing, 6655–6659. IEEE.
Saxena, U.; Saha, G.; Choudhary, S.; and Roy, K. 2024.
Eigen attention: Attention in low-rank space for KV cache
compression. arXiv preprint arXiv:2408.05646.
Schotthöfer, S.; Zangrando, E.; Kusch, J.; Ceruti, G.; and
Tudisco, F. 2022. Low-rank lottery tickets: finding effi-
cient low-rank neural networks via matrix differential equa-
tions. Advances in Neural Information Processing Systems,
35: 20051–20063.
Schwartz, R.; Dodge, J.; Smith, N. A.; and Etzioni, O. 2020.
Green AI. Communications of the ACM, 63(12): 54–63.
Singh, A.; Natarjan, V.; Shah, M.; Jiang, Y.; Chen, X.;
Parikh, D.; and Rohrbach, M. 2019. Towards VQA Mod-
els That Can Read. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 8317–8326.
Su, J.; Ahmed, M.; Lu, Y.; Pan, S.; Bo, W.; and Liu, Y. 2024.
RoFormer: Enhanced transformer with rotary position em-
bedding. Neurocomputing, 568: 127063.
Sun, M.; Liu, Z.; Bair, A.; and Kolter, J. Z. 2023. A simple
and effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695.
Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.
Wang, C.; Wang, Z.; Xu, X.; Tang, Y.; Zhou, J.;
and Lu, J. 2024a. Q-VLM: Post-training Quantiza-
tion for Large Vision-Language Models. arXiv preprint
arXiv:2410.08119.
Wang, X.; Zheng, Y.; Wan, Z.; and Zhang, M. 2024b.
SVD-LLM: Truncation-aware singular value decomposition
for large language model compression. arXiv preprint
arXiv:2403.07378.
Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.;
Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler,
D.; et al. 2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.
Xu, C.; and McAuley, J. 2023. A survey on model com-
pression and acceleration for pretrained language models.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, 10566–10575.
Yang, A.; Li, A.; Yang, B.; Zhang, B.; Hui, B.; Zheng, B.;
Yu, B.; Gao, C.; Huang, C.; Lv, C.; et al. 2025. Qwen3
technical report. arXiv preprint arXiv:2505.09388.
Yang, Y.; Li, X.; Zhou, Z.; Song, S. L.; Wu, J.; Nie, L.; and
Ghanem, B. 2024. CorDA: Context-Oriented Decomposi-
tion Adaptation of Large Language Models. arXiv preprint
arXiv:2406.05223.

Yao, Z.; Yazdani Aminabadi, R.; Zhang, M.; Wu, X.; Li,
C.; and He, Y. 2022. ZeroQuant: Efficient and afford-
able post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:
27168–27183.
Yuan, Z.; Shang, Y.; Song, Y.; Wu, Q.; Yan, Y.; and Sun, G.
2023. ASVD: Activation-aware singular value decomposi-
tion for compressing large language models. arXiv preprint
arXiv:2312.05821.
Yuan, Z.; Shang, Y.; Zhou, Y.; Dong, Z.; Zhou, Z.; Xue, C.;
Wu, B.; Li, Z.; Gu, Q.; Lee, Y. J.; et al. 2024. LLM inference
unveiled: Survey and roofline model insights. arXiv preprint
arXiv:2402.16363.
Zhang, S.; Roller, S.; Goyal, N.; Artetxe, M.; Chen, M.;
Chen, S.; Dewan, C.; Diab, M.; Li, X.; Lin, X. V.; et al. 2022.
OPT: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068.
Zhu, X.; Li, J.; Liu, Y.; Ma, C.; and Wang, W. 2024. A survey
on model compression for large language models. Transac-
tions of the Association for Computational Linguistics, 12:
1556–1577.

Weight-Aware Compression
Plain SVD
Given a pretrained weight matrix W ∈ Rd′×d, we wish to approximate it with a low-rank structure:

Ŵ = B ×A, (21)

where Ŵ ∈ Rd′×d is an approximated weight, B ∈ Rd′×r and A ∈ Rr×d are low-rank matrices with a rank r ≤ d, d′. We
assume d′ ≤ d for simplicity, as modifying for d′ ≥ d is straightforward.

Consider the approximation loss:

L = ∥W − Ŵ∥2 (22)

= ∥W −BA∥2. (23)
The best solution is given by SVD of W as follows:

A = J+V, (24)
B = USJ, (25)

where U ∈ Rd′×r is r most-principal left-singular vectors, S = diag[σ1, . . . , σr] ∈ Rr×r is diagonal singular-values, and
V ∈ Rr×d is the most-principal right-singular vectors for W :

USV = svdr[W], (26)
where we assume the singular values are sorted in the descending order: σ1 ≥ σ2 ≥ · · · ≥ σr. The loss is the accumulation of
all the squared singular-values outside the rank r: Lmin =

∑
i>r σ

2
i .

Junction Matrix
There is no literature discussing the choice of a junction matrix J ∈ Rr×r, which has no impact on performance, provided that
SJJ+ = S is satisfied. There are many suitable choices for this matrix J , such as:
• Left singular: J = I;
• Right singular: J = S+;
• Symmetry singular: J = [S

1
2]+.

• Left block identity: J = [US]+:r
• Right block identity: J = [V]:r

Although there is no performance impact by the choice of J , it is notable that the block identity which is based on block LU
factorization can significantly reduce the number of parameters and FLOPs by r2. This parameter reduction is particularly
significant in high-dimensional (high-rank) latent cases. For example, when the weight is a size of d = d′ = 2048, even with
the half-rank latent r = d/2 = 1024, there is no parameter reduction as the dense compression and decompression matrices B
takes 2dr = d2 parameters. Hence, the 50% latent has no benefit in complexity but only for KV cache memory reduction as
discussed in DeepSeek-V3 (Liu et al. 2024). It is even worse for r > d/2: e.g., if we use 75% latent of r = 0.75d = 1536, the
total parameter and FLOPs increases by 50% of the original weight (i.e., 2rd− d2 = d2/2). However, using the block identity
form, we can save r2, and the total FLOPs will be always less than the original weight: 2rd− r2 < d2 for any r < d.

Activation-Aware Compression
Consider an input token X ∈ Rd×l for a context length l≫ d, the linear projection output Y ∈ Rd′×l is:

Y = WX. (27)
We assume that no bias is used for simplicity.

We wish to minimize the expected approximation error of output activation vectors between the true Y and the approximation
Ŷ ∈ Rd′×l:

Ŷ = ŴX, (28)

projected by a low-rank weight Ŵ = BA. Consider the loss function:

L = EX∥Y − Ŷ ∥2 (29)

= EX∥(W − Ŵ)X∥2 (30)

= EX∥(W −BA)X∥2 (31)

= tr[(W −BA)EX [XX⊤](W −BA)⊤] (32)

= tr[(W −BA)C(W −BA)⊤] (33)

= ∥WC
1
2 −BAC

1
2 ∥2, (34)

where C = EX [XX⊤] ∈ Rd×d is a (positive semidefinite) correlation matrix of the input vector.
The loss function of the activation-aware distillation in (34) is identical to the weight-aware distillation in (23) by transform-

ing as:

W →W ′ = WC
1
2 , (35)

A→ A′ = AC
1
2 . (36)

Hence, the optimal solution is obtained similarly.
Specifically, from (24), (25), and (26), we have

A′ = AC
1
2 = J+V ′, (37)

B = U ′S′J, (38)

where U ′ ∈ Rd′×d′
, S′ ∈ Rd′×d, and V ′ ∈ Rd×d are SVD of W ′ = WC

1
2 :

U ′S′V ′ = svd[WC
1
2]. (39)

From (37), we finally obtain optimal A as:

A = J+S′V ′[C
1
2]+. (40)

Pre-Conditioning Matrix
ASVD (Yuan et al. 2023) proposed to use a projection matrix P ∈ Rd×d on weights before SVD: svd[WP]. The optimal
projection P is apparently the square-root covariance P = C

1
2 , while there are many other approximated projections that were

considered in literature:
• Root-covariance: P = (XX⊤ + λI)

1
2

• Covariance (e.g., CorDA (Yang et al. 2024)): P = XX⊤

• Diagonal L2-norm (e.g., WandA (Sun et al. 2023)): P = diag[XX⊤]
1
2

• Diagonal L1-norm (e.g., AWQ (Lin et al. 2024b), ASVD (Yuan et al. 2023)): P = diag[∥[X]1,:∥1, . . . , ∥[X]d,:∥1]
• Diagonal Hessian (e.g., OBS (Hassibi, Stork, and Wolff 1993), GPTQ (Frantar et al. 2022), SparseGPT (Frantar and Alistarh

2023)): P = diag[(XX⊤ + λI)−1]
−1
2

• Identity (Plain SVD, e.g., (Sainath et al. 2013)): P = I

In the context of fine-tuning initialization, CorDA (Yang et al. 2024) uses covariance matrix C without square root, which
should be worse than the square-root covariance. Fig. 6 demonstrates the benefit for random weights approximation with covari-
ance drawn from the Wishart distribution. GPTQ (Frantar et al. 2022) and SparseGPT (Frantar and Alistarh 2023) use another
preconditioning matrix based on optimal brain surgeon (OBS) (Hassibi, Stork, and Wolff 1993) using Hessian, in the context
of quantization and pruning. Similarly, we can use it for low-rank compression as we have evaluated. In the context of pruning,
WandA (Sun et al. 2023) proposed a simpler diagonal projection based on ℓ2-norm, while it achieves an excellent performance.
AWQ and ASVD used the diagonal ℓ1-norm, while the theoretical justification is missing. They introduced another exponent
factor to adjust.

Bias Update
When the bias is there, we have

L = ∥(WX + b1⊤)− (BAX + b̂1⊤)∥2. (41)

The gradient with respect to b̂ is

∇b̂ = −2((WX + b1⊤)− (BAX + b̂1⊤))1. (42)
Hence, the optimal bias modification is:

b̂ = b+ (W −BA)µ, (43)

where µ = X1/1⊤1 ∈ Rd×1 is a mean bias of input activation. Plugging into the loss, we have

L = ∥(W −BA)(X − µ1⊤)∥2 (44)

= tr[(W −BA) (X − µ1⊤)(X − µ1⊤)⊤︸ ︷︷ ︸
C0∈Rd×d

(W −BA)⊤] (45)

= ∥(W −BA)C
1
2
0 ∥2. (46)

Hence, the optimal solution is the SVD of weight multiplied with square root of covariance C0 not auto-correlation (XX⊤):

C0 = (C − µµ⊤)l. (47)

Figure 6: Comparison of SVD, CorDA, and RootCorDA.

Activation-Aware Joint QKV Compression
Consider minimizing QKV activation:

L =

∥∥∥∥∥
[
Wq

Wk

Wv

]
︸ ︷︷ ︸

W∈R3d′×d

X −

[
Bq

Bk

Bv

]
︸ ︷︷ ︸

B∈R3d′×r

AX

∥∥∥∥∥
2

. (48)

In this case, the optimal solution is an SVD of WC
1
2 .

Note that this is different from QKV individual optimization:

L′ =
∑

i∈[q,k,v]

∥WiX −BiAiX∥2 (49)

=

∥∥∥∥∥
[
Wq

Wk

Wv

]
︸ ︷︷ ︸

A∈R3d′×d

X −

[
Bq O O
O Bk O
O O Bv

]
︸ ︷︷ ︸

B∈R3d′×3r

[
Aq

Ak

Av

]
︸ ︷︷ ︸

W∈R3r×d

X

∥∥∥∥∥
2

. (50)

The solution is 3 SVDs: WiC
1
2 .

The key difference: (i) the shared vs. non-shared compression matrix A; (ii) block-diagonal vs. dense decompression matrix
B. The number of parameters will be r(3d′ + d) from 3r(d′ + d), allowing 50% more rank for joint QKV when d′ = d. When
we use LU factorizatin, the number of parameters will be r(3d′+d−r) from 3r(d′+d−r). We show the benefit of joint-QKV
activation-aware distillation in Fig. 7.

Nevertheless, the relative magnitudes over Q/K/V are not well-treated for joint case, and it could be worse in the global
performance in the end.

Figure 7: Joint-QKV vs split-QKV approximation.

Split-Head Compression
Typically, the weight matrix is split into multiple heads, what happens if we use split-head activation loss? Consider

L =

h∑
i=1

∥WiX −BiAiX∥2 (51)

=

∥∥∥∥∥
W1

. . .
Wh


︸ ︷︷ ︸

W∈Rd′×d

X − diag[B1, . . . , Bh]︸ ︷︷ ︸
B∈Rd′×r

A1

. . .
Ah


︸ ︷︷ ︸
A∈Rr×d

X

∥∥∥∥∥
2

. (52)

where Wi ∈ Rd′/h×d, Bi ∈ Rd′/h×r/h, Ai ∈ Rr/h×d are the ith head approximation with h being the number of heads. The
solution is individual SVD of WiC

1
2 . However, as decompression matrix B is sparse block diagonal, it is not efficient than joint

head approximation. It is shown in Fig. 8.

Multi-Head Attention (MHA)
Typically, the attention projection uses a square weight d′ = d, but it is divided into multiple heads such that:

Wq =


Wq,1

Wq,2

...
Wq,h

 ∈ Rd×d, Wk =


Wk,1

Wk,2

...
Wk,h

 ∈ Rd×d, (53)

where Wq,i ∈ Rd/h×d and Wk,i ∈ Rd/h×d are the ith head projection weights, and h is number of heads. The analysis so far is
still valid for per-head low-rank approximation to regard d′ = d/h.

Figure 8: Split-head activation-aware approximation had terrible performance.

However, joint-head low-rank approximation may have a benefit over head-wise low-rank approximation. The ith head
attention map is given as:

Mi = X⊤W⊤
q,iWk,iX. (54)

When we jointly decompose the low-rank with independent rank rq and rk: Ŵq = BqAq and Ŵk = BkAk for Bq, A
⊤
q ∈

Rd×rq , Bk, A
⊤
k ∈ Rd×rk , we can write Ŵq,i = Bq,iAq and Ŵk,i = Bk,iAk for Bq,i ∈ Rd/h×rq and Bk,i ∈ Rd/h×rk , i.e., the

compression matrix A is shared, and decompression matrix B is individual over multiple heads. It suggests that the rank rq and
rk should not be lower than d/h, otherwise some heads can be redundant.

For arbitrary X (worst-case), we may consider minimizing

L =

h∑
i=1

∥W⊤
q,iWk,i︸ ︷︷ ︸

Gi∈Rd×d

−A⊤
q B⊤

q,iBk,i︸ ︷︷ ︸
Hi∈Rrq×rk

Ak∥2 (55)

=

h∑
i=1

∥Gi −A⊤
q HiAk∥2. (56)

Note that Gi = W⊤
q,iWk,i ∈ Rd×d is at most of rank d/h. And the rank of Hi = B⊤

q,iBk,i ∈ Rrq×rk is not greater than
r = min(rq, rk, d/h).

Note that there is no loss in generality to restrict that Aq and Ak are ortho-normal, i.e., AqA
⊤
q = Irq and AkA

⊤
k = Irk , as a

full matrix Hi can absorb any non-ortho-normal impact. Then, we have

L =

h∑
i=1

tr[GiG
⊤
i +A⊤

q Hi AkA
⊤
k︸ ︷︷ ︸

Irk

H⊤
i Aq −A⊤

q HiAkG
⊤
i −GiA

⊤
k H

⊤
i Aq] (57)

=

h∑
i=1

∥Gi∥2 + tr[HiH
⊤
i AqA

⊤
q︸ ︷︷ ︸

Irq

]− tr[HiAkG
⊤
i A

⊤
q +AqGiA

⊤
k H

⊤
i] (58)

=

h∑
i=1

∥Gi∥2 + ∥Hi∥2 − 2tr[HiAkG
⊤
i A

⊤
q]. (59)

The gradients:

∇Hi
L = 2Hi − 2AqGiA

⊤
k . (60)

The KKT condition for Hi given Aq and Ak is thus:

Hi = AqGiA
⊤
k (61)

= AqW
⊤
q,iWk,iA

⊤
k . (62)

Putting it back to the loss, we obtain:

L =

h∑
i=1

∥Gi∥2 + ∥Hi∥2 − 2tr[HiAkG
⊤
i A

⊤
q] (63)

=
∑
i

∥Gi∥2 + ∥AqGiA
⊤
k ∥2 − 2tr[AqGiA

⊤
k AkG

⊤
i A

⊤
q] (64)

=

h∑
i=1

∥Gi∥2 + ∥AqGiA
⊤
k ∥2 − 2∥AqGiA

⊤
k ∥2 (65)

=

h∑
i=1

∥Gi∥2 − ∥AqGiA
⊤
k ∥2. (66)

Let’s rewrite as

L =
∑
i

∥Gi∥2 − ∥(Ak ⊗Aq)vec[Gi]∥2 (67)

=
∑
i

∥Gi∥2 −
∑
i

∥(Ak ⊗Aq)vec[Gi]∥2 (68)

=
∑
i

∥Gi∥2 − ∥(Ak ⊗Aq) [vec[G1], vec[G2], . . . , vec[Gh]]︸ ︷︷ ︸
G∈Rdd×h

∥2 (69)

= ∥G∥2 − ∥(Ak ⊗Aq)G∥2 (70)

= ∥G∥2 − ∥(Ih ⊗Ak ⊗Aq)vec[G]∥2. (71)

This is the 3-mode tensor-rank decomposition problem involving the high-order SVD (HOSVD) for folding G into the size of
d× d× h, but with a restriction that the first mode plane is identity (it may suggest that we may be able to improve by relaxing
this constraint).

HOSVD has no simple solution, while alternating method works well in practice. Specifically, each tensor plane is alternat-
ingly obtained by left singular of the unfolded tensor in different axis. Given Ak, the best Aq is the rq left singular:

A⊤
q ← LeftSingularrq([G1A

⊤
k , G2A

⊤
k , . . . , GhA

⊤
k]︸ ︷︷ ︸

Rd×rkh

) (72)

= LeftSingularrq(
∑
i

GiA
⊤
k AkG

⊤
i). (73)

The loss will be the residual accumulation of the eigenvalues beyond the rank rq. Then given Aq, the best Ak is the rk left
singular:

A⊤
k ← LeftSingularrk([G

⊤
1 A

⊤
q , G

⊤
2 A

⊤
q , . . . , G

⊤
hA

⊤
q]︸ ︷︷ ︸

Rd×rqh

) (74)

= LeftSingularrk(
∑
i

G⊤
i A

⊤
q AqGi). (75)

The loss will be the residual accumulation of the eigenvalues beyond the rank rk. Iterating the above often achieves a good
solution. NOTE: singular vectors of

∑
i GiG

⊤
i and

∑
i G

⊤
i Gi can be a good initialization of Aq and Ak.

NOTE: the non-uniform choice of ranks rq and rk can be optimized to minimize the loss, rather than using the same rank. It
can be adaptively adjusted from the eigenvalue distributions.

Once we obtained the HOSVD solution for tensor planes Aq and Ak, the tensor core Hi ∈ Rrq×rk is generated by (62) as
Hi = AqGiA

⊤
k = AqW

⊤
q,iWk,iA

⊤
k . Given optimized Hi, any arbitrary Bq,i and Bk,i provides the same error as long as it

holds:

Hi = B⊤
q,iBk,i. (76)

The solution is

Bq,i = J⊤
i Wq,iA

⊤
q , (77)

Bk,i = J+
i Wk,iA

⊤
k , (78)

where Ji ∈ Rd/h×d/h is any arbitrary full-rank matrix of our choice. The most natural choice is identity: Ji = Id/h.

Nevertheless, another simple solution will be

Bq,i = Id/h×rq , (79)

Bk,i =

[
Hi

O(d/h−rq)×rk

]
, (80)

when rq ≤ d/h. This has a benefit that query decompression does not require any memory and key decompression is a block
sparse.

Another solution will be

Bq,i =

[
H⊤

i
O(d/h−rk)×rq

]
, (81)

Bk,i = Id/h×rk , (82)

when rk ≤ d/h. Similar benefit, but probably removing the requirement of query decompression is more beneficial than key
decompression in practice.

When rk, rq ≥ d/h (in most case?), we can select Ji such that Bq,i or Bk,i is block matrix to save (d/h)2 parameters from
(rq + rk)d/h. For this case, fine-tuning two decompression Bq,i and Bk,i rather than a product Hi will be more parameter-
efficient.

Activation-Aware Multi-Head Latent Attention
Consider the loss:

L =
∑
i

∥Mi − M̂i∥2 (83)

=
∑
i

∥X⊤ (Gi −A⊤
q HiAk)︸ ︷︷ ︸

∆i∈Rd×d

X∥2 (84)

=
∑
i

tr[X⊤∆iXX⊤∆⊤
i X] (85)

=
∑
i

tr[∆i XX⊤︸ ︷︷ ︸
C∈Rd×d

∆⊤
i XX⊤] (86)

=
∑
i

tr[∆iC∆⊤
i C] (87)

=
∑
i

tr[∆iC
1
2C

1
2∆⊤

i C
1
2C

1
2] (88)

=
∑
i

∥C 1
2∆iC

1
2 ∥2 (89)

=
∑
i

∥C 1
2GiC

1
2︸ ︷︷ ︸

G′
i

−C
1
2A⊤

q︸ ︷︷ ︸
A′⊤

q

Hi AkC
1
2︸ ︷︷ ︸

A′
k

∥2, (90)

where C is a positive semi-definite of rank no greater than min(d, l).
In fact, the solution is same as the case without X comparing (56) and (90), where we can regard as

Gi → G′
i = C

1
2GiC

1
2 , (91)

Aq → A′
q = AqC

1
2 , (92)

Ak → A′
k = AkC

1
2 . (93)

Here, we can consider AqC
1
2 and AkC

1
2 are instead orthogonal, and thus the solution can be given by HOSVD likewise.

Fig. 9 shows the comparison between adaptive and non-adaptive distillation with activation/attention-aware methods.

Bias Update
Some LLMs use bias for QKV. For this case, we need to modify the bias term as well. We have

L =
∑
i

∥(Wq,iX + bq,i1
⊤)⊤(Wk,iX + bk,i1

⊤)− (Ŵq,iX + b̂q,i1
⊤)⊤(Ŵk,iX + b̂k,i1

⊤)∥2 (94)

=
∑
i

∥∥∥([Wq,i bq,i]︸ ︷︷ ︸
W ′

q,i∈Rd/h×(d+1)

[
X
1⊤

]
︸ ︷︷ ︸

X′∈R(d+1)×l

)⊤(
[Wk,i bk,i]︸ ︷︷ ︸

W ′
k,i∈Rd/h×(d+1

[
X
1⊤

])
−
([

Ŵq,i b̂q,i
]︸ ︷︷ ︸

Ŵ ′
q,i∈Rd/h×(d+1)

[
X
1⊤

])⊤([
Ŵk,i b̂k,i

]︸ ︷︷ ︸
Ŵ ′

k,i∈Rd/h×(d+1)

[
X
1⊤

])∥∥∥2
(95)

=
∑
i

∥X ′⊤(W ′⊤
q,iW

′
k,i − Ŵ ′⊤

q,iŴ
′
k,i)X

′∥2 (96)

=
∑
i

∥C̃ 1
2 (W ′⊤

q,iW
′
k,i − Ŵ ′⊤

q,iŴ
′
k,i)C̃

1
2 ∥2 (97)

where we have a modified covariance:
C̃ = X ′X ′⊤ ∈ R(d+1)×(d+1) (98)

=

[
X
1⊤

] [
X⊤ 1

]
(99)

=

[
lC lµ
lµ⊤ l

]
= l

[
C µ
µ⊤ 1

]
(100)

= l

[
C

1
2 O

µ⊤C
−1
2 (1− µ⊤C+µ)

1
2

] [
C

1
2 C

−1
2 µ

O (1− µ⊤C+µ)
1
2

]
(101)

Figure 9: Attention-Aware vs. Activation-Aware Approximation. Loss is attention map error. Random query/key projections
with Wishart sample correlation (0.9 decaying). WandA uses diagonal correlation.

where we assume C is normalized as C = XX⊤/l, and µ ∈ Rd×1 is a mean of input tokens: µ = X1/l. Then, we can omit l.
Similar format but it cannot be solved by the same way as we have a structured low-rank expression:

Ŵ ′⊤
q,iŴ

′
k,i =

[
A⊤

q B
⊤
q,i

b̂⊤q,i

] [
Bk,iAk b̂k,i

]
(102)

=

[
A⊤

q Od×1

O1×rq 1

]
︸ ︷︷ ︸
A′⊤

q ∈R(d+1)×(rq+1)

H′
i∈R(rq+1)×(rk+1)︷ ︸︸ ︷[

B⊤
q,i

b̂⊤q,i

]
︸ ︷︷ ︸

B′⊤
q,i∈R(rq+1)×d

[
Bk,i b̂k,i

]︸ ︷︷ ︸
B′

k,i∈Rd×(rk+1)

[
Ak Ork×1

O1×d 1

]
︸ ︷︷ ︸
A′

k∈R(rk+1)×(d+1)

. (103)

We may use the HOSVD to decompose with one more rank for bias, while the compression matrix A′
q and A′

k needs to be a
particular format. Nonetheless, we can modify the bias by the KKT condition:

A′
qC̃GiC̃A′⊤

k = A′
qC̃A′⊤

q H ′
iA

′
kC̃A′⊤

k . (104)

Hence we have

H ′
i = (A′

qC̃A′⊤
q)+A′

qC̃GiC̃A′⊤
k (A′

kC̃A′⊤
k)+ (105)

= (A′
qC̃A′⊤

q)+A′
qC̃W ′⊤

q,i︸ ︷︷ ︸
B⊤

q,i

W ′
k,iC̃A′⊤

k (A′
kC̃A′⊤

k)+︸ ︷︷ ︸
Bk,i

. (106)

Figure 10: Sparse approximation for Attention-Aware vs. Activation-Aware distillation. No markers are sparse approximation.
Sparse is better than low-rank.

Thus, given optimized Aq and Ak, we have optimized decompression matrix with updated bias:

B′
q,i =

[
Bq,i b̂q,i

]
(107)

= J⊤
i W ′

q,iC̃A′⊤
q (A′

qC̃A′⊤
q)+ (108)

= J⊤
i [Wq,i bq,i] C̃A′⊤

q (A′
qC̃A′⊤

q)+ (109)

= J⊤
i [Wq,i bq,i]

[
CA⊤

q µ
µ⊤A⊤

q 1

] [
AqCA⊤

q Aqµ
µ⊤A⊤

q 1

]+
(110)

= J⊤
i [Wq,i bq,i]

[
CA⊤

q µ
µ⊤A⊤

q 1

] [
I O

−µ⊤A⊤
q 1

] [
(AqCA⊤

q −Aqµµ
⊤A⊤

q)
+ O

O 1

] [
I −Aqµ
O 1

]
(111)

= J⊤
i [Wq,i bq,i]

[
(C − µµ⊤)A⊤

q (AqCA⊤
q −Aqµµ

⊤A⊤
q)

+ −(C − µµ⊤)A⊤
q (AqCA⊤

q −Aqµµ
⊤A⊤

q)
+Aqµ+ µ

O 1

]
(112)

= J⊤
i

[
Wq,i(C − µµ⊤)A⊤

q (AqCA⊤
q −Aqµµ

⊤A⊤
q)

+ −Wq,i(C − µµ⊤)A⊤
q (AqCA⊤

q −Aqµµ
⊤A⊤

q)
+Aqµ+Wq,iµ+ bq,i

]
.

(113)

It gives the bias modifications:

b̂q = diag[Ji]
(
bq +Wqµ−Wq(C − µµ⊤)A⊤

q (AqCA⊤
q −Aqµµ

⊤A⊤
q)

+Aqµ
)
, (114)

b̂k = diag[J+
i]

(
bk +Wkµ−Wk(C − µµ⊤)A⊤

k (AkCA⊤
k −Akµµ

⊤A⊤
k)

+Akµ
)
. (115)

We define the centered auto-correlation:

C0 = C − µµ⊤. (116)

Then, we assume that the optimal compression matrices Aq and Ak are orthogonal on C
1
2
0 :

AqC0A
⊤
q = Irq , (117)

AkC0A
⊤
k = Irk . (118)

In this case, the bias modification can reduce to

b̂q = diag[Ji]
(
bq +Wqµ−WqC0A

⊤
q Aqµ

)
, (119)

b̂k = diag[J+
i]

(
bk +Wkµ−WkC0A

⊤
k Akµ

)
. (120)

For this case, we have

A′
qC̃A⊤

q =

[
AqCA⊤

q Aqµ
µ⊤A⊤

q 1

]
, (121)

(A′
qC̃A⊤

q)
+ =

[
I −Aqµ

−µ⊤A⊤
q 1 + µ⊤A⊤

q Aqµ

]
, (122)

A′
q(A

′
qC̃A′⊤

q)+A′⊤
q =

[
A⊤

q Aq −A⊤
q Aqµ

−µ⊤A⊤
q Aq 1 + µ⊤A⊤

q Aqµ

]
, (123)

A′
q(A

′
qC̃A′⊤

q)+A′⊤
q C̃ =

[
A⊤

q AqC0 O
µ⊤ − µ⊤A⊤

q AqC0 1

]
, (124)

C̃A′
q(A

′
qC̃A′⊤

q)+A′⊤
q =

[
C0A

⊤
q Aq µ− C0A

⊤
q Aqµ

O 1

]
, (125)

C̃A′
q(A

′
qC̃A′⊤

q)+A′⊤
q C̃ =

[
C0A

⊤
q AqC0 + µµ⊤ µ

µ⊤ 1

]
. (126)

Plugging the optimized Hi, the loss is expressed as

L =
∑
i

∥∥C̃ 1
2W ′⊤

q,iW
′
k,iC̃

1
2 − C̃

1
2A′⊤

q (A′
qC̃A′⊤

q)+A′
qC̃W ′⊤

q,iW
′
k,iC̃A′⊤

k (A′
kC̃A′⊤

k)+A′
kC̃

1
2

∥∥2 (127)

=
∑
i

∥C̃ 1
2W ′⊤

q,iW
′
k,iC̃

1
2 |2 − ∥C̃ 1

2A⊤
q HiAkC̃

1
2 ∥2 (128)

=
∑
i

∥C̃ 1
2W ′⊤

q,iW
′
k,iC̃

1
2 |2 − ∥C̃ 1

2A′⊤
q (A′

qC̃A′⊤
q)+A′

qC̃W ′⊤
q,iW

′
k,iC̃A′⊤

k (A′
kC̃A′⊤

k)+A′
kC̃

1
2 ∥2 (129)

(130)

=
∑
i

∥C̃ 1
2W ′⊤

q,iW
′
k,iC̃

1
2 |2 − tr[C̃A′⊤

q (A′
qC̃A′⊤

q)+A′
qC̃ W ′⊤

q,iW
′
k,iC̃A′⊤

k (A′
kC̃A′⊤

k)+A′
kC̃W ′⊤

k,iW
′
q,i︸ ︷︷ ︸

Gq,i∈R(d+1)×(d+1)

]. (131)

Focusing on optimizing Aq, the second term will be∑
i

tr
[([

C0A
⊤
q AqC0 O
O 0

]
+

[
µ
1

] [
µ
1

]⊤)
Gq,i

]
=

∑
i

tr
[[

C0A
⊤
q AqC0 O
O 0

]
Gq,i

]
+ c.c. (132)

= tr
[
C0A

⊤
q AqC0Id×(d+1)

∑
i

Gq,iI(d+1)×d

]
+ c.c. (133)

= ∥AqC0(Id×(d+1)

∑
Gq,iI(d+1)×d)

1
2 ∥2 + c.c.. (134)

Hence the optimal Aq is the right-singular vectors:

AqC
1
2
0 = RightSingularrq

[
C

1
2
0 Id×(d+1)(

∑
i

Gq,i)I(d+1)×dC
1
2
0

]
. (135)

In fact, we can re-write Gq,i as

Gq,i =

[
W⊤

q,i

b⊤q,i

]
[Wk,i bk,i]

([
C0A

⊤
k AkC0 O
O 0

]
+

[
µ
1

] [
µ
1

]⊤)[
W⊤

k,i

b⊤k,i

]
[Wq,i bq,i] (136)

=

[
W⊤

q,i

b⊤q,i

](
Wk,iC0A

⊤
k AkC0W

⊤
k,i + (Wk,iµ+ bk,i)(Wk,iµ+ bk,i)

⊤
)
[Wq,i bq,i] . (137)

Hence, we have

AqC
1
2
0 = RightSingularrk

[∑
i

C
1
2
0 W

⊤
q,iWk,iC0A

⊤
k AkC0W

⊤
k,iWq,iC

1
2
0

+
∑
i

C
1
2
0 W

⊤
q,i(Wk,iµ+ bk,i)(Wk,iµ+ bk,i)

⊤Wq,iC
1
2
0

]
. (138)

The first term is the solution if no bias and mean are present.
Similarly the solution for Ak is given by

AkC
1
2
0 = RightSingularrk

[
C

1
2
0 Id×(d+1)(

∑
i

Gk,i)I(d+1)×dC
1
2
0

]
(139)

= RightSingularrq
[∑

i

C
1
2
0 W

⊤
k,iWq,iC0A

⊤
q AqC0W

⊤
q,iWk,iC

1
2
0

+
∑
i

C
1
2
0 W

⊤
k,i(Wq,iµ+ bq,i)(Wq,iµ+ bq,i)

⊤Wk,iC
1
2
0

]
. (140)

where
Gk,i = W ′⊤

k,iW
′
q,iC̃A′⊤

q (A′
qC̃A′⊤

q)+A′
qC̃W ′⊤

q,iW
′
k,i (141)

=

[
W⊤

k,i

b⊤k,i

]
Wq,iC0A

⊤
q AqC0W

⊤
q,i [Wk,i bk,i] +

[
W⊤

k,i

b⊤k,i

]
(Wq,iµ+ bq,i)(Wq,iµ+ bq,i)

⊤ [Wk,i bk,i] . (142)

Grouped Query Attention (GQA)
MHA (e.g., for Llama-2) uses h-heads for query, key, and value. However, Llama-3 uses grouped query attention (GQA), where
the number of heads for key and value are smaller than the number of heads for query. Let nq be the query group size. Then,
the number of query heads is nqh, whereas h is the number of KV heads. Suppose nq is the integer so that simple repetition
can be used. Q and K projections:

Wq =


Wq,1

Wq,2

...
Wq,nqh

 ∈ Rnqhd
′×d, Wk =


Wk,1

Wk,2

...
Wk,h

 ∈ Rhd′×d, (143)

for Wq,i ∈ Rd′×d, Wk,i ∈ Rd′×d with the head dimension d′. Llama-3 uses repeat-interleave to match the number of heads by
repeating the KV projections nq-times:

W ′
k =



Wk,1

Wk,1

...
Wk,1

...
Wk,h


∈ Rnqhd

′×d. (144)

For such GQA, we have attention map for the jth head in the ithe group (j ∈ Z+
h , i ∈ Z+

nq
):

Mi,j = X⊤W⊤
q,i,jWk,iX, (145)

where we use an index convention: Wq,i,j = Wq,inq+j .
Consider the loss:

L =
∑
i,j

∥Mi,j − M̂i,j∥2 (146)

=
∑
i,j

∥X⊤ (

Gi,j∈Rd×d︷ ︸︸ ︷
W⊤

q,i,jWk,i−A⊤
q

Hi,j∈Rrq×rk︷ ︸︸ ︷
B⊤

q,i,jBk,i Ak)︸ ︷︷ ︸
∆i,j∈Rd×d

X∥2 (147)

=
∑
i,j

∥C 1
2Gi,jC

1
2 − C

1
2A⊤

q Hi,jAkC
1
2 ∥2. (148)

Hence the solution can be obtained with HOSVD likewise MHA in Sec. .

Positional Encoding
Additive PE
Consider additive PE for a token X ∈ Rd×l:

X ′ = X + E, (149)
where E ∈ Rd×l is a positional embedding matrix. Often it is sinusoidal like

Ei,j = exp(ȷ2πfij/l), (150)
with a predefined frequency fi for i ∈ Zd. Note that complex rotation is not used in typical case, and instead split into cos and
sin. Many work also considered trainable PE (Radford 2018; Kenton and Toutanova 2019).

In this additive PE case, the solution is same by replacing the correlation matrix C with
C ′ = EX [X ′X ′⊤] (151)

= EX [(X + E)(X + E)⊤] (152)

= C + EE⊤ + EX [XE⊤ + EX⊤]. (153)
For zero-mean token case, is reduces to C + EE⊤. For static token case, we may use (X + E)(X + E)⊤ directly.

Nevertheless, some PE methods (Dai et al. 2019) use different additive PE for query and key individually:
Xq = X + Eq, (154)
Xk = X + Ek. (155)

In this case, the attention map will have bias terms:
Mi = X⊤

q W⊤
q,iWk,iXk (156)

= X⊤GiX +X⊤GiEk + E⊤
q GiX + E⊤

q GiEk. (157)
There are many variants to relax them or generalize them.

Consider loss:
L =

∑
i

∥X⊤
q ∆iXk∥2 (158)

=
∑
i

tr[∆i XkX
⊤
k︸ ︷︷ ︸

Ck∈Rd×d

∆⊤
i XqX

⊤
q︸ ︷︷ ︸

Cq∈Rd×d

] (159)

=
∑
i

tr[∆iCk∆
⊤
i Cq] (160)

=
∑
i

tr[∆iC
1
2

k C
1
2

k ∆
⊤
i C

1
2
q C

1
2
q] (161)

=
∑
i

tr[C
1
2
q ∆iC

1
2

k C
1
2

k ∆
⊤
i C

1
2
q] (162)

=
∑
i

∥C
1
2
q ∆iC

1
2

k ∥
2 (163)

=
∑
i

∥C
1
2
q GiC

1
2

k︸ ︷︷ ︸
G′

i

−C
1
2
q A

⊤
q︸ ︷︷ ︸

A′⊤
q

Hi AkC
1
2

k︸ ︷︷ ︸
A′

k

∥2. (164)

Hence, we can still solve it with HOSVD.

Concatenative PE
Another PE uses concatenation:

Qi =

[
Wq,iX
Eq,i

]
, (165)

Ki =

[
Wk,iX
Ek,i

]
. (166)

Then, the attention map will be
Mi = Q⊤

i Ki (167)

= X⊤GiX + E⊤
q,iEk,i, (168)

which has just a bias term E⊤
q Ek and there is no impact in loss function with low-rank approximation.

Multiplicative PE
Consider a multiplicative PE for token X:

X ′ = X ⊙ E, (169)

where ⊙ denotes Hadamard product. We just need to replace the correlation with C ′ = X ′X ′⊤ to solve in a straightforward
manner.

However, rotary PE (RoPE) (Su et al. 2024) uses multiplicative PE on query and key, not token X . More precisely, we can
represent per token:

qi,m = Θi,mWq,ixm, (170)
ki,m = Θi,mWk,ixm, (171)

where Θi,m is a block diagonal rotation matrix for ith head and mth token, such that Θ⊤
i,mΘi,n = Θi,n−m.

For example, Llama-2 uses the same RoPE for all heads with block rotation:

Θi,m =

[
cos(mΦ) − sin(mΦ)
sin(mΦ) cos(mΦ)

]
∈ Rd/h×d/h, (172)

Φ = diag
[
{θ−2ih/d}d/2h−1

i=0

]
∈ Rd/2h×d/2h, (173)

with a base rope theta of θ = 104.
We have the loss:

L = EX

∑
i,m,n

∥q⊤i,mki,m − q̂⊤i,mk̂i,m∥2 (174)

= EX

∑
i,m,n

∥x⊤
m (W⊤

q,iΘi,n−mWk,i −A⊤
q B

⊤
q,iΘi,n−mBk,iAk)︸ ︷︷ ︸

∆i,n−m∈Rd×d

xn∥2 (175)

= EX

∑
i,m,n

tr[∆i,n−mxnx
⊤
n∆

⊤
i,n−mxmx⊤

m] (176)

=
∑
i,m,n

tr[∆i,n−mC∆⊤
i,n−mC] (177)

=
∑
i,m,n

∥C 1
2∆i,n−mC

1
2 ∥2 (178)

=
∑
i,m,n

∥C 1
2W⊤

q,iΘi,n−mWk,iC
1
2︸ ︷︷ ︸

W ′
i,n−m

−C
1
2A⊤

q︸ ︷︷ ︸
A′⊤

q

B⊤
q,iΘi,n−mBk,i︸ ︷︷ ︸

Hi,n−m

AkC
1
2︸ ︷︷ ︸

A′
k

∥2 (179)

where we assumed xm and xn are independent. Then, we can solve it with HOSVD. However, considering all token lengths
over m and n is not practical, and we may need to consider attention windows such as |n−m| ≤ 5 to optimize. When a causal
mask is used, we do not need to sum over m > n but only m ≥ n.

NOTE: we can generalize RoPE with other unitary rotations.
Fig. 11 shows the result of HOSVD with/without RoPE consideration. The loss is calculated over 10-token window, with

RoPE base theta of 104, used in Llama-2, while the hiiden size is still 768. HOSVD without RoPE consideration was already a
good approximation as it is optimal at diagonal token. RoPE-aware HOSVD offers additional 1–2 dB gain.

Joint Value-Output Compression
Many LLMs have output projection after QKV attention. The attention output will be

Y =
∑
i

Wo,iWv,iXσ(M⊤
i), (180)

where Wo,i ∈ Rd×d/h is the ith head output projection, and Y ∈ Rd×l is the attention output. This motivates us to optimize
value projection and output projection jointly.

NOTE: Wo,iWv,i can be triangularized by LU factorization to save the number of parameters from 2d2 to 2d2−d2/h without
any performance loss.

Figure 11: RoPE-Attention-Aware Distillation: 10-token window.

As σ(Mi) is just weighting X , we may assume that the statistics still holds as E[Xσ(Mi)σ(Mi)
⊤X⊤] = C for uncorrelated

tokens. Hence, we end up with optimizing

L = ∥WoWvC
1
2 −Bo AoBv︸ ︷︷ ︸

H

AvC
1
2 ∥2. (181)

Hence, both projections can be combined together.
Nevertheless, when we consider minimizing individual head projection loss for arbitrary attention weights:

L =
∑
i

∥Wo,iWv,iC
1
2︸ ︷︷ ︸

Gi∈Rd×d

−Bo Ao,iBv,i︸ ︷︷ ︸
Hi∈Rro×rv

AvC
1
2︸ ︷︷ ︸

A′
v

∥2. (182)

Then the solution is HOSVD:
Bo = RightSingularro [

∑
i

GiA
′⊤
v A′

vG
⊤
i], (183)

A′
v = RightSingularrv [

∑
i

G⊤
i BoB

⊤
o Gi], (184)

Ao,i = B⊤
o Wo,iJi (185)

Bv,i = J+
i Wv,iA

′⊤
v , (186)

for arbitrary full-rank matrix Ji ∈ Rd/h×d/h. Selecting Ji can save the number of parameters by up to d/h× d/h.

Bias Update
Some LLMs such as OPT uses bias in QKVO. Let’s consider bias impact. The attention output will be:

Y =
∑
i

Wo,i(Wv,iX + bv,i1
⊤)σ(Mi) + bo,i1

⊤ (187)

=
∑
i

Wo,iWv,iXσ(Mi) +Wo,ibv,i1
⊤σ(Mi) + bo,i1

⊤. (188)

Considering any arbitrary attention map Mi, we may want to optimize:

L =
∑
i

∥Wo,i(Wv,iX + bv,i1
⊤) + bo,i1

⊤ − Ŵo,i(Ŵv,iX + b̂v,i1
⊤)− b̂o,i1

⊤∥2. (189)

The gradient with respective to b̂o is given

−
(
Wo,i(Wv,iX + bv,i1

⊤) + bo,i1
⊤ − Ŵo,i(Ŵv,iX + b̂v,i1

⊤)− b̂o,i1
⊤)1. (190)

Thus the KKT condition gives:

b̂o,i = bo,i +Wo,i(Wv,iµ+ bv,i)− Ŵo,i(Ŵv,iµ+ b̂v,i). (191)

Plugging into the loss gives:

L =
∑
i

∥Wo,iWv,i(X − µ1⊤)− Ŵo,iŴv,i(X − µ1⊤)∥2 (192)

=
∑
i

∥Wo,iWv,i︸ ︷︷ ︸
Gi∈Rd×d

C
1
2
0 −Bo Ao,iBv,i︸ ︷︷ ︸

Hi∈Rro×rv

AvC
1
2
0 ∥2. (193)

Here, C0 = (X − µ1⊤)(X − µ1⊤)⊤ is centered covariance (it can be normalized). Hence, this is solved by HOSVD:

Bo = RightSingularro
[∑

i

GiC0A
⊤
v AvC0G

⊤
i

]
, (194)

AvC
1
2
0 = RightSingularro

[∑
i

C
1
2
0 G

⊤
i BoB

⊤
o GiC

1
2
0

]
. (195)

Note that b̂v has no impact as it can be absorbed by b̂o. Hence, we can keep the original bias or changed to zero bias.

Attention-Aware Joint VO Compression
The output projection module takes the input token:

Xo,i = Wv,iXσ(M⊤
i). (196)

The covariance of the token is

Co,i = Xo,iX
⊤
o,i (197)

= Wv,iXσ(M⊤
i)σ(Mi)W

⊤
v,i. (198)

Over the heads, we have cross-correation terms:

Xo =


Wv,1Xσ(M⊤

1)
Wv,2Xσ(M⊤

2)
...

Wv,hXσ(M⊤
h)

 (199)

= diag
[
Wv,1,Wv,2, . . . ,Wv,h

]︸ ︷︷ ︸
W ′

v∈Rhdh×hd

(Ih ⊗X)


σ(M⊤

1)
σ(M⊤

2)
...

σ(M⊤
h)


︸ ︷︷ ︸

X′∈Rhd×l

. (200)

We consider using the covariance of output projection module not value projection module instead. The covariance of the output
projection Co ∈ Rhdh×hdh is given as

Co = XoX
⊤
o (201)

= W ′
v X ′X ′⊤︸ ︷︷ ︸
Cv∈Rhd×hd

W ′⊤
v . (202)

Using this attention-aware token statistics Cv can be more accurate to optimize, rather than simple token statistics C.

The value projection module takes the input token X typically. However, there is no impact when we instead take the
attention-weighted token for each head before value projection: X ′. Even though we have no statistics on this, we can predict
it from Co as Co = W ′

vCvW
′⊤
v :

Cv = W ′+
v Co[W

′+
v]⊤. (203)

Note that this is at most the rank of hdh.
The loss will be

L = ∥
∑
i

Wo,iWv,iXσ(M⊤
i)− Ŵo,iŴv,iXσ(M⊤

i)∥2 (204)

= ∥WoW
′
vX

′ − ŴoŴ
′
vX

′∥2 (205)

= ∥WoW
′
vC

1
2
v − ŴoŴ

′
vC

1
2
v ∥2 (206)

= ∥WoC
1
2
o − ŴoŴ

′
vW

′+
v C

1
2
o ∥2. (207)

Here we have

Ŵ ′
vW

′+
v = diag[Ŵv,1W

⊤
v,1(Wv,1W

⊤
v,1)

+, Ŵv,2W
⊤
v,2(Wv,2W

⊤
v,2)

+ . . . , Ŵv,hW
⊤
v,h(Wv,hW

⊤
v,h)

+] ∈ Rhdh×hdh . (208)

We write:

L =
∥∥∑

i

Wo,i[C
1
2
o]i −Bo Ao,iBv,i︸ ︷︷ ︸

Hi∈Rro×rv

AvW
+
v,i[C

1
2
0]i

∥∥2 (209)

=
∥∥WoC

1
2
o −Bo

∑
i

HiAvW
+
v,i[C

1
2
0]i

∥∥2 (210)

=
∥∥WoC

1
2
o −Bo [H1 · · · Hh]︸ ︷︷ ︸

H∈Rro×hrv

(Ih ⊗Av)diag[W
+
v,1, . . .W

+
v,h]C

1
2
0

∥∥2. (211)

Note that Hi is of rank up to min(ro, rv, dh).
Gradient:

∇HL = −
(
Bo

)⊤(
WoC

1
2
o −BoH(Ih ⊗Av)W

′+
v C

1
2
0

)(
(Ih ⊗Av)W

′+
v C

1
2
0

)⊤
, (212)

∇Ao,j
L = −

(
Bo

)⊤(
WoC

1
2
o −BoH(Ih ⊗Av)W

′+
v C

1
2
0

)(
Bv,jAvW

+
v,j [C

1
2
0]j

)⊤
, (213)

∇Bv,j
L = −

(
BoAo,j

)⊤(
WoC

1
2
o −BoH(Ih ⊗Av)W

′+
v C

1
2
0

)(
AvW

+
v,j [C

1
2
0]j

)⊤
, (214)

∇Bo
L = −

(
WoC

1
2
o −BoH(Ih ⊗Av)W

′+
v C

1
2
0

)(
H(Ih ⊗Av)W

′+
v C

1
2
0

)⊤
, (215)

∇Av
L = −

∑
j

(
BoHj

)⊤(
WoC

1
2
o −Bo

∑
i

HiAvW
+
v,i[C

1
2
0]i

)(
W+

v,j [C
1
2
0]j

)⊤
. (216)

The optimal Bo is the left-singular of WoC
1
2
0 , having unitary condition: B⊤

o Bo = Iro .
From the first KKT, we have a linear system to solve for H:

H


AvW

+
v,1[C

1
2
0]1

...

AvW
+
v,h[C

1
2
0]h



AvW

+
v,1[C

1
2
0]1

...

AvW
+
v,h[C

1
2
0]h


⊤

= B⊤
o WoC

1
2
o


AvW

+
v,1[C

1
2
0]1

...

AvW
+
v,h[C

1
2
0]h


⊤

. (217)

Hence, we have

H = B⊤
o WoC0[W

′+
v]⊤(Ih ⊗A⊤

v)
(
(Ih ⊗Av)W

′+
v C0[W

′+
v]⊤(Ih ⊗A⊤

v)
)+

. (218)

Plugging into the loss, we have

L = ∥WoC
1
2
0 ∥2 −

∥∥∥B⊤
o WoC0[W

′+
v]⊤(Ih ⊗Av)

⊤
(
(Ih ⊗Av)W

′+
v C0[W

′+
v]⊤(Ih ⊗Av)

⊤
)− 1

2
∥∥∥2 (219)

The last KKT condition requires solving in vectorization:∑
i,j

(GjG
⊤
i ⊗H⊤

j Hi)vec[Av] =
∑
j

vec[HjB
⊤
o WoC

1
2G⊤

j], (220)

where Gi ∈ Rd×hdh is defined:

Gi = W+
v,i[C

1
2
0]i. (221)

MLP-Aware Joint Compression
SparseLLM (Bai et al. 2024b) proposed the way to sparsify MLP layer in LLM models as it consumes two thirds of trainable
parameters. The key idea is to minimize the MLP loss, not local loss. LLM uses typically 2-layer MLP:

z = W1x+ b1, (222)
a = σ(z), (223)
y = W2a+ b2. (224)

The first linear layer typically upsamples by a factor of four, and then the second linear layer downsamples to the same dimen-
sion. Activation-aware low-rank approximation can minimize loss individually for z given x and y given a, but not the MLP
output y given x.

SparseLLM uses the closed-form solution to minimize:

L = α∥W1x+ b1 − z∥2 + β∥a− σ(z)∥2 + γ∥W2a+ b2 − y∥2, (225)

for auxiliary variables a and z, given pre-trained input x and output y.
Optimizing a can be obtained by ridge regression:

a⋆ = (γW⊤
2 W2 + βI)+(βσ(z) + γW⊤

2 (y − b2)). (226)

Optimal z can be also obtained closed-form way with case for ReLU:

z− = W1x+ b1, (227)

z+ =
1

α+ β
(αz− + βa), (228)

depending on [z]i’s sign.
The same approach can be used for low-rank approximation. Given z, we can optimize low-rank matrix Ŵ1 = B1A1 by

SVD of (z− b1)x
+C

1
2
x , where (z− b1)x

+ = (z− b1)x
⊤C+

x corresponds to the effective weight matrix to map x onto z. Given

a, we approximate Ŵ2 = B2A2 by SVD of (y − b2)a
+C

1
2
a = (y − b2)a

⊤C
−1
2

a , given correlation Ca = aa⊤.

Sparse Matrix
Consider low-rank plus sparse decomposition:

Ŵ = BA+D, (229)

where D ∈ Rd′×d is a sparse matrix such that ∥D∥0 ≤ κ. As discussed so far, given a D matrix, the best low-rank matrices are
SVD of (W −D)C

1
2 . Given BA, finding sparse D is an NP-hard problem, and often it is solved by greedy or relaxed methods

such as matching pursuit and proximal gradient. Considering the ℓ1 relaxation, we have

L′ = ∥(D +BA−W)C
1
2 ∥2 + λ(∥D∥1 − κ). (230)

Fast iterative shrinkage-threshold algorithm (FISTA) uses iterations with Nesterov’s accelerating technique:

Dk = Tλµk
[Dk−1 − 2µk(Dk−1 +BA−W)C], (231)

µk+1 =
1

2
(1 +

√
1 + 4µ2

k), (232)

Dk ← Dk +
µk − 1

µk+1
(Dk −Dk−1), (233)

for iterations k = 1, 2, . . . with a stepsize µ1 = 1. Tα is a soft shrinkage operator:

Tα[x] = sign[x](x− α)+. (234)

Figure 12: Random weight approximation with/without correlation. Correlation is sampled from Wishart distribution with
covariance of identity or off-diagonal decaying of 0.9 factor. Weight is normal distributed.

We may iterate SVD and FISTA. The choice of λ is crucial to have a target sparsity. It is not easy to adjust λ such that the target
sparsity is achieved beforehand.

Alternatively, we use a regular gradient method with straight-through estimator (STE):

D = D −D.detach︸ ︷︷ ︸
STE Trick

+Sκ[D.detach], (235)

where Sκ[·] is a hard shrinkage operator, i.e., sparcification operator passing only κ elements having largest magnitude. This
STE method has a benefit over FISTA: i) the sparsity can be specified; ii) any other loss function including the final downstream
task loss can be incorporated; and iii) the quantization-aware training can be readily integrated in the STE projection. Never-
theless, soft shrink and hard shrink are actually differentiable, and we may not need to use STE. Fig. 12 shows the comparison
of STE and Hard/Softshrink. In this experiment, Hardshrink works best.

We also notice that sparse approximation can be better than low-rank approximation. And, also joint low-rank plus sparse
approximation did not work well as shown in Fig. 13.

However, unstructured sparse matrix may require index storage to memorize the non-zero entry locations. When we use a
mask, it requires d′d binary memory as well as non-zero values in D. When the sparsity is small, keeping index will be more
efficient, i.e., keeping log2(dd

′)τ . Fig. 14 shows the case with sparsification for low-rank adapter B,A, starting RootCorDA
of rank 640 and 512. Although sparsified low-rank approximation has a benefit, it does not outperform sparse approximation
alone.

Another possibility using sparse approximation is to sparsify LoRA matrices B and A. However, doing so may be poor
because the product of two sparse matrices can be much more sparse: e.g., 50% sparse B and A will result in 25% sparse BA.
Hence, using sparse matrices for B and A may be a bad solution. Similarly, using sparse Wq and Wk may be a poor combination
for attention map approximation.

WandA (Sun et al. 2023), SparseGPT (Frantar and Alistarh 2023) and SparseLLM (Bai et al. 2024b) use non-iterative
solutions by considering only diagonal covariance:

C → C ⊙ Id. (236)

Figure 13: Low-rank plus sparse approximation does not outperform sparse-alone approximation.

This does not require iterative compressed sensing. However, the diagonal approximation has a degraded performance as in
Fig. 15.

Quantization-Aware Distillation
We can use STE for quantization-aware distillation in a straightforward manner. Whatever the loss, we can use STE for the
trainable parameters, e.g., for B and A low-rank matrices:

B ← B −B.detach +Q[B.detach], (237)
A← A−A.detach +Q[A.detach], (238)

where we may consider a simple chunk-wise q-bit uniform quantization:

x′ = Q[x] (239)

= round
[
(x− xmin) ·

2q − 1

xmax − xmin

]
· xmax − xmin

2q − 1
+ xmin, (240)

where xmin and xmax are determined from a chunk of x.

LLM Models
Parameters for some major transformer models are listed in Table 11. OPT model variants are listed in Table 6. Table 7 shows
parameters of Qwen3 models.

For LMM models, we used LLaVa: liuhaotian/llava-v1.6-vicuna-7b. It has Vicuna-7B model for LLM and
ViT based on CLIP for the vision encoder. The Vicuna is an instruction-tuned version of LLaMa, having 32 transformer layers.
CLIP ViT has 24 transformer layers.

Figure 14: Sparsification of B and A low-rank matrices.

Table 6: OPT Models (Zhang et al. 2022)

Models # layers L # heads h hidden size d head dim dh di = 4d Huggingface ID

125M 12 12 768 64 3072 facebook/opt-125m
350M 24 16 1024 64 4096 facebook/opt-350m
1.3B 24 32 2048 64 8192 facebook/opt-1.3b
2.7B 32 32 2560 80 10240 facebook/opt-2.7b
6.7B 32 32 4096 128 16384 facebook/opt-6.7b
13B 40 40 5120 128 20480 facebook/opt-13b
30B 48 56 7168 128 28672 facebook/opt-30b
66B 64 72 9216 128 36864 facebook/opt-66b

175B 96 96 12288 128 49152

Table 7: Qwen3 Models

Models # layers L # heads h # KV heads hkv hidden size d head dim dh di Huggingface ID
0.6B 28 16 8 1024 128 3072 Qwen/Qwen3-0.6B
1.7B 28 16 8 2048 128 6144 Qwen/Qwen3-1.7B
4B 36 32 8 2560 128 9728 Qwen/Qwen3-4B
8B 36 32 8 4096 128 12288 Qwen/Qwen3-8B

14B 40 40 8 5120 128 17408 Qwen/Qwen3-14B
32B 64 64 8 5120 128 25600 Qwen/Qwen3-32B

Figure 15: Comparison with WandA.

Compression 10% 20% 30% 40%

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

OPT-125M (WT2: 27.7, PTB: 39.0, C4: 26.6)

Plain SVD (Identity) 393.8 608.8 274.6 668.9 1098.0 559.0 1298.3 1888.7 806.5 3306.5 2985.9 1637.0
ASVD (Hessian) 57.8 92.8 45.0 106.9 169.8 79.9 288.1 530.4 215.0 838.9 1581.9 608.2
ASVD (ℓ2-norm) 49.7 74.7 42.2 87.3 126.8 72.0 256.0 282.1 188.3 906.9 864.3 528.4
ASVD (Cov) 87.5 121.5 67.6 115.7 157.0 83.1 163.1 242.8 109.9 248.3 390.6 158.4
ASVD (RootCov) 40.5 64.4 34.5 54.8 86.8 42.7 88.8 148.9 61.5 177.5 306.7 116.8
LatentLLM (RootCov) 29.0 42.3 27.6 32.9 50.9 30.4 43.4 68.7 37.4 73.3 116.9 55.7

OPT-350M (WT2: 22.0, PTB: 31.1, C4: 22.6)

Plain SVD (Identity) 112.3 130.8 82.8 211.3 226.8 151.5 378.1 392.0 258.7 705.5 635.5 509.8
ASVD (Hessian) 64.0 89.1 50.9 104.6 134.4 80.3 202.1 212.0 145.9 557.3 558.6 371.6
ASVD (ℓ2-norm) 40.0 59.9 36.6 59.4 78.0 49.8 117.5 134.2 86.9 308.7 283.9 201.1
ASVD (Cov) 78.0 90.6 61.7 100.8 111.0 72.7 311.2 356.8 129.4 1485.3 922.7 548.2
ASVD (RootCov) 30.8 42.2 28.5 39.0 51.4 33.6 71.6 86.1 49.5 118.5 132.1 73.0
LatentLLM (RootCov) 23.1 33.3 23.6 25.9 37.0 25.8 32.9 45.0 30.6 51.3 63.4 42.5

OPT-1.3B (WT2: 14.6, PTB: 20.3, C4: 16.1)

Plain SVD (Identity) 9428.1 10670.8 4865.4 16461.2 20589.0 11039.8 18105.3 17360.8 12565.2 22155.9 15820.3 16566.2
ASVD (Hessian) 23.8 40.6 24.9 63.0 173.7 52.8 825.8 927.9 385.0 4912.3 3086.3 2138.9
ASVD (ℓ2-norm) 20.3 32.3 21.6 28.7 60.2 27.7 74.5 217.4 58.5 592.4 1072.0 336.7
ASVD (Cov) 29750.9 31499.1 18646.3 19716.9 21757.2 14967.2 21738.3 24300.2 16428.7 22776.5 23591.7 14922.1
ASVD (RootCov) 17.7 27.9 18.9 21.9 35.3 22.2 33.9 55.8 29.7 75.0 107.9 51.1
LatentLLM (RootCov) *14.5 21.5 16.6 15.8 24.3 17.8 20.2 31.6 21.3 34.1 58.1 30.6

OPT-2.7B (WT2: 12.5, PTB: 18.0, C4: 14.3)

Plain SVD (Identity) 1922.0 2250.3 900.7 7446.2 7042.4 5113.6 11253.8 10109.6 7742.6 26177.5 29321.3 17035.3
ASVD (Hessian) 18.2 31.9 20.0 31.6 96.9 28.0 216.2 852.3 74.8 2714.9 2894.0 626.0
ASVD (ℓ2-norm) 16.9 27.1 18.7 23.1 44.6 23.4 53.0 190.7 43.2 524.3 981.5 229.3
ASVD (Cov) 16419.9 15136.0 10680.6 15495.8 14896.4 10891.6 17392.3 15994.8 11926.0 17976.5 16298.1 11566.8
ASVD (RootCov) 14.5 22.1 16.5 17.1 26.7 18.8 24.1 36.3 23.7 48.4 66.5 37.1
LatentLLM (RootCov) *12.3 18.8 14.7 13.6 20.6 15.7 16.5 24.3 18.1 24.5 36.0 24.2

OPT-6.7B (WT2: 10.9, PTB: 15.8, C4: 12.7)

Plain SVD (Identity) 14839.0 28665.9 22936.1 67517.7 116974.8 110860.5 123286.4 213333.5 190378.4 27304.0 31719.7 24071.3
ASVD (Hessian) 14.3 22.0 16.6 17.3 27.3 20.1 26.0 51.0 28.8 73.3 252.2 67.6
ASVD (ℓ2-norm) 12.6 19.6 15.1 14.6 23.0 17.2 18.7 32.1 21.4 30.6 73.2 33.7
ASVD (Cov) 9111.6 9171.3 7220.2 9842.6 9465.6 7175.0 11848.0 10046.0 6973.6 8514.7 7931.2 6660.3
ASVD (RootCov) 11.8 17.7 14.2 13.5 19.5 15.4 17.0 23.9 17.8 27.2 36.1 24.0
LatentLLM (RootCov) *10.7 16.1 13.0 11.5 17.4 13.7 13.5 19.2 15.3 18.0 24.2 18.4

OPT-13B (WT2: 10.1, PTB: 14.5, C4: 12.1)

Plain SVD (Identity) 892.2 1003.5 789.3 2157.4 2068.3 1716.1 3612.9 3381.8 2806.9 5838.7 5069.1 4292.5
ASVD (Hessian) 12.5 18.6 14.3 14.6 22.0 15.8 19.1 29.7 18.7 29.5 48.9 25.1
ASVD (ℓ2-norm) 11.2 16.8 13.4 12.2 18.6 14.4 14.0 21.9 16.3 18.2 29.0 20.3
ASVD (Cov) 13999.3 11053.5 8991.2 10250.7 8883.2 6556.4 12885.3 11756.7 7658.0 12625.5 10709.9 7972.3
ASVD (RootCov) 10.9 15.9 13.1 11.9 17.0 13.9 14.3 20.0 15.3 20.2 24.1 18.3
LatentLLM (RootCov) 10.2 14.8 12.4 10.7 15.4 13.0 12.0 16.7 13.9 14.8 19.2 15.8

Table 8: Perplexity (↓) of OPT models with different SVD compression methods for 10–40% size reduction. Asterisk “*”
indicates the better performance than the original un-compressed LLM.

Compression 10% 20% 30% 40%

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Qwen3-0.6B (WT2: 21.0, PTB: 43.8, C4: 30.3)

Plain SVD (Identity) 2.7e6 6.1e6 2.6e6 1.7e7 4.9e7 1.8e7 2.8e7 2.4e7 2.5e7 4.3e7 5.4e7 3.4e7
ASVD (Hessian) 1.6e6 6.3e6 1.5e6 2.3e6 4.2e6 3.0e6 4.2e6 3.4e6 4.9e6 6.8e6 1.3e7 6.4e6
ASVD (ℓ2-norm) 9593.9 1.4e4 3297.9 3.1e5 8.0e5 1.4e5 4.0e5 4.5e5 2.2e5 8.0e4 1.0e5 3.1e4
ASVD (Cov) 1811.5 4.7e4 606.8 7388.4 1.3e5 1288.4 1.1e4 7.0e4 2398.6 1.7e4 2.6e4 5406.7
ASVD (RootCov) 145.6 379.2 130.2 484.1 1054.6 250.6 3531.1 1.4e4 996.7 2.4e4 5.8e4 2496.1
LatentLLM (RootCov) 30.4 60.3 44.2 59.9 118.3 77.6 232.6 510.3 161.2 1951.6 6794.9 688.9

Qwen3-1.7B (WT2: 16.7, PTB: 33.8, C4: 22.4)

Plain SVD (Identity) 1.8e7 1.6e7 1.1e7 1.3e7 1.1e7 1.1e7 1.0e7 1.0e7 6.5e6 1.9e7 1.7e7 1.5e7
ASVD (Hessian) 1.1e5 6.8e5 3.4e5 5.2e6 8.0e6 4.6e6 4.4e6 6.7e6 4.0e6 3.0e6 1.6e7 3.2e6
ASVD (ℓ2-norm) 72.5 138.4 102.8 1679.1 2719.6 1639.8 4842.6 1.2e4 3960.3 2.8e5 2.8e5 9.8e4
ASVD (Cov) 860.6 3378.6 338.3 1989.8 1.0e4 516.1 6645.8 2.4e4 906.1 1.2e4 4.6e4 1796.1
ASVD (RootCov) 37.5 63.2 43.9 66.3 114.8 62.5 147.8 287.6 100.0 387.2 1066.1 193.7
LatentLLM (RootCov) 22.3 47.8 28.4 27.9 51.5 35.3 48.8 81.4 53.3 137.5 264.9 98.6

Qwen3-4B (WT2: 13.7, PTB: 24.7, C4: 19.9)

Plain SVD (Identity) 5.0e4 5.2e4 3.7e4 6.5e5 1.7e6 4.0e5 3.1e6 5.0e6 1.8e6 3.8e7 3.3e7 4.8e7
ASVD (Hessian) 682.9 1372.1 598.5 2782.5 4110.1 1377.6 4.5e4 2.9e4 2.3e4 4.1e5 4.5e5 3.1e5
ASVD (ℓ2-norm) 29.3 46.7 34.8 46.1 73.2 52.8 80.6 153.6 101.2 229.8 451.1 245.2
ASVD (Cov) 1.9e5 1.1e6 2.5e4 1.5e5 4.9e5 2.4e4 1.5e6 3.3e6 3.0e5 9.2e5 1.7e6 5.1e5
ASVD (RootCov) 23.1 36.0 27.0 40.0 55.5 35.4 84.1 108.7 58.4 195.3 225.9 115.0
LatentLLM (RootCov) 15.8 32.9 21.6 18.7 37.1 24.5 35.1 47.0 32.1 90.8 122.9 63.5

Qwen3-8B (WT2: 9.7, PTB: 17.2, C4: 15.4)

Plain SVD (Identity) 2.4e5 8.7e4 4.5e4 9.0e6 1.9e6 8.8e5 2.8e7 3.8e7 1.8e7 5.3e7 1.0e8 5.2e8
ASVD (Hessian) 33.6 78.3 40.7 90.8 573.7 115.2 1250.8 1.3e4 854.4 5324.6 3.1e4 4872.0
ASVD (ℓ2-norm) 18.8 32.2 25.1 26.0 43.9 32.0 40.6 71.8 47.7 98.6 171.1 92.1
ASVD (Cov) 1.3e5 4.7e5 4.4e4 1.2e5 3.1e5 4.4e4 8.3e4 2.3e5 3.4e4 6.1e4 1.2e5 2.7e4
ASVD (RootCov) 16.7 25.0 21.8 26.0 32.6 26.3 49.3 60.5 38.6 119.2 136.9 71.1
LatentLLM (RootCov) 11.8 21.2 17.9 14.2 23.1 19.9 22.4 29.5 24.8 53.9 68.5 40.8

Table 9: Perplexity (↓) of Qwen3 models with different SVD compression methods for 10–40% size reduction.

Compression 10% 20% 30% 40% 50%

LLaVA-7B: Uncompressed Acc 61.32

Plain SVD (identity) 2.36 0.48 0.35 0.34 0.36
ASVD (Hessian) 23.88 9.60 1.24 0.21 0.31
ASVD (ℓ2-norm) 24.41 9.53 2.77 0.82 0.75
ASVD (Cov) 0.38 0.36 0.40 0.33 0.35
ASVD (RootCov) 52.51 49.91 45.53 38.47 27.36
LatentLLM (RootCov) 60.06 57.65 52.63 46.90 35.94

Qwen2.5-VL-7B-Instruct: Uncompressed Acc 82.11

Plain SVD (identity) 0.02 0.47 0.32 0.05 0.11
ASVD (Hessian) 58.76 7.03 0.23 0.45 0.41
ASVD (ℓ2-norm) 77.84 73.92 57.13 18.79 0.41
ASVD (Cov) 0.41 0.41 0.41 0.41 0.41
ASVD (RootCov) 79.46 74.76 66.31 51.80 34.91
LatentLLM (RootCov) 80.85 79.30 73.90 62.11 42.53

Qwen2.5-VL-3B-Instruct: Uncompressed Acc 78.17

Plain SVD (identity) 0.01 0.08 0.09 0.09 0.01
ASVD (Hessian) 0.14 0.31 0.31 0.31 0.34
ASVD (ℓ2-norm) 44.23 0.14 0.00 0.41 0.37
ASVD (Cov) 0.41 0.41 0.41 0.41 0.41
ASVD (RootCov) 73.78 67.30 54.20 33.93 13.99
LatentLLM (RootCov) 76.44 74.29 64.28 45.80 19.67

Table 10: Accuracy in percent (↑) on TextVQA dataset for compressed LLaVA-7B and Qwen2.5-VL-7/3B.

Table 11: Transformer Models

ViT-16/B Llama-2-7B Llama-3.2-1B
ID google/vit-base-patch16-224 meta-llama/Llama-2-7b-hf meta-llama/Llama-3.2-1B-Instruct

hidden size d 768 4096 2048
hidden act gelu silu silu

intermediate size di 3072 (4d) 11008 (2.68d) 8192 (4d)
head dim dh = d/h 64 128 64

num attention heads h 12 32 32
num key value heads hkv 12 32 8

num hidden layers L 12 32 16
qkv bias True False False
mlp bias True False False

rope theta θ — 1e4 5e5
max position embeddings 197 4096 131072

OPT-350M BLOOM-560M Qwen2-0.5B
ID facebook/opt-350m bigscience/bloom-560m Qwen/Qwen2-0.5B

hidden size 1024 1024 896
hidden act relu gelu silu

intermediate size 4096 4096 4864
head dim 64 64 64

num attention heads 16 16 14
num key value heads 16 16 2
num hidden layers 24 24 24

qkv bias True True True
mlp bias True True False

rope theta — — 1e6
max position embeddings 2048 2048 131072

RoBERTa-350M Phi-3.5 mini Gemma-2B
ID FacebookAI/roberta-base microsoft/Phi-3.5-mini-instruct google/gemma-2b

hidden size 768 3072 2048
hidden act gelu silu gelu

intermediate size 3072 (4d) 8192 16384
head dim 64 96 256

num attention heads 12 32 8
num key value heads 12 32 1
num hidden layers 12 32 18

qkv bias True False False
mlp bias True False False

rope theta — 1e4 1e4
max position embeddings 514 131072 8192

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2026-018.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35

