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This paper presents an optimization-based method for spacecraft rendezvous to the Gate-
way that (i) enforces passive safety and an approach-cone path constraint in continuous
time, (ii) satisfies decision-point specifications, and (iii) accounts for NRHO insertion,
actuation, and navigation uncertainties via chance constraints and stabilizing feedback.
The approach employs sequential convex programming within the continuous-time succes-
sive convexification (CT-SCVX) framework, in which continuous-time path constraints are
reformulated as isoperimetric integral constraints, thereby decoupling continuous-time
feasibility (solution quality) from the chosen time-discretization density. In addition,
time dilation is used to treat the actuation time instants as optimization variables. A
numerical case study for an NRHO apolune rendezvous to the Gateway, validated through
Monte Carlo simulation, demonstrates satisfaction of passive-safety and approach-cone
constraints with high probability and with comparable fuel usage to recent NRHO ren-
dezvous studies.
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I. Introduction
NASA’s Artemis IV mission will deploy a space station, known as the Gateway [1], on a near rectilinear halo
orbit (NRHO) [2] around the Earth–Moon L2 point. Visiting and servicing spacecraft must rendezvous with
the Gateway, a critical maneuver for many space operations [3, 4]. A rendezvous maneuver to the Gateway
must (i) satisfy passive safety at all times, (ii) enforce multiple decision points along the trajectory according
to specified guidelines [5], (iii) ensure fuel efficiency, and (iv) account for uncertainty arising from various
sources (e.g., orbital insertion, actuation error, and navigation measurements). Passive safety is a particularly
challenging constraint: it requires that, if the spacecraft thrusters fail completely at any time during the
rendezvous, the spacecraft’s uncontrolled motion (free drift) remains outside a keep-out zone for a specified
time interval [6].

In recent years, passively safe rendezvous on NRHO has received considerable attention. Approaches
include center-/unstable-manifold-based design [7, 8]; leveraging natural motion for far-range rendezvous in
ephemeris models [9]; six-degree-of-freedom (6-DoF) close-range rendezvous [10]; MPC-based guidance [11];
backward reachable set (BRS) safety constraints [12, 13]; adjoint methods with ephemeris validation [14]; and
linear covariance (LinCov) design and analysis under uncertainty [15–18]. Here, our goal is to compute a
fuel-optimal rendezvous trajectory, from orbital insertion to the start of the proximity phase, that optimizes
actuation time instants and ensures safety at all times in the presence of uncertainty.

Optimization-based methods are well suited for generating trajectories of nonlinear systems subject to complex
constraints [19, 20]. They can incorporate constraints related to safety [21, 22], temporal logic [23, 24], and
multi-phase dynamics [25, 26]. These methods have been successfully applied across a wide range of spacecraft
applications, including rendezvous [27, 28], and can be tailored for resource-constrained, radiation-hardened
onboard processors [29, 30]. Recent advances have improved robustness to numerical ill-conditioning caused
by orders-of-magnitude differences in trajectory-optimization parameters [31–33]. In addition, optimization-
based methods can account for uncertainty through deterministic reformulation of chance constraints [34, 35],
covariance steering [36–38], conditional value-at-risk minimization [39], and stochastic reachability [40].

However, existing optimization-based rendezvous methods do not ensure safety at all times. They impose the
passive-safety constraint at discrete time nodes, similar to widely used direct shooting and collocation methods
for numerical optimal control [19]. These methods either explicitly parametrize the free-drift trajectory [10, 21]
or use time samples of the backward reachable sets of the keep-out zone [12], which can lead to inter-sample
constraint violations [41] and can significantly increase the size of the trajectory-optimization problem when
high accuracy is desired. Furthermore, recent approaches that account for uncertainty in NRHO rendezvous
rely on LinCov methods [15–18], that generally do not enforce chance constraints to control the joint probability
of satisfying multiple path constraints over the entire maneuver horizon.

In this work, we aim to address all requirements (i)–(iv) on the rendezvous maneuver in a unified framework.
While several methods address subsets of these requirements, we are not aware of a single formulation
that satisfies them simultaneously. We propose an optimization-based method for spacecraft rendezvous to
the Gateway that (i) ensures passive safety at all times and enforces the approach-cone path constraint in
continuous time; (ii) satisfies the specifications for key decision points along the rendezvous trajectory; and
(iii) accounts for uncertainty due to NRHO insertion, actuation error, and navigation measurements via chance
constraints, while employing a stabilizing feedback mechanism to bound the effect of these uncertainties. We
leverage a sequential convex programming (SCP) approach, based on the recently proposed continuous-time
successive convexification (CT-SCVX) framework [42], in which continuous-time path constraints are converted
to integral constraints through an isoperimetric reformulation [43]. Relative to our recent work [13], the
proposed approach also optimizes impulse times via time dilation [29, 42]. However, unlike [13], it cannot
handle continuous control input parameterizations and does not ensure underburn safety.

The rest of the paper is organized as follows. Section II describes the problem formulation, including the
spacecraft dynamical model and the path constraints. Sections III and IV present the optimal control problem
and the SCP-based solution approach, respectively. Section IV then provides numerical results for a realistic
case study involving the Gateway, and Section V offers concluding remarks.
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II. Problem Formulation
This section presents the guidelines and specifications for rendezvous of a spacecraft with the Gateway on
NRHO, the spacecraft dynamical and actuation model, and the path constraints imposed on the spacecraft
trajectory. We also introduce a reformulation of the path constraints that enables tractable enforcement of their
continuous-time satisfaction without resorting to expensive mesh refinement.

A. Specifications for NRHO Rendezvous
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Fig. 1 Schematic of the rendezvous of a spacecraft to the Gateway on NRHO. Figure taken from [13].

We adopt the International Rendezvous System Interoperability Standards (IRSIS) guidelines for rendezvous
of a spacecraft with the Gateway on an NRHO [5]. After the spacecraft is inserted onto the NRHO, the
rendezvous maneuver starts near the NRHO apolune, the farthest point on the NRHO from the Moon, at a
distance of 400–2000 km [44] from the Gateway and ends at a point located 500 m from the Gateway. The
entire rendezvous maneuver must be completed within 48 hours. The maneuver is divided into three phases,
separated by four decision points, denoted D1–D4. These phases are defined relative to three nested spherical
avoid sets: the rendezvous sphere, the approach sphere, and the keep-out sphere. Specifically, D1 marks the
start of rendezvous after NRHO insertion, D2 the entry into the rendezvous sphere, D3 the entry into the
approach sphere, and D4 the start of the proximity phase upon entering the keep-out sphere.

Between D1 and D2, the spacecraft must remain passively safe for 24 hours with respect to the rendezvous
sphere. That is, in the event of a total failure of the spacecraft thrusters, the free-drift trajectory of the spacecraft
must not enter the rendezvous sphere for 24 hours. Between D2 and D3, the spacecraft must remain passively
safe for 24 hours with respect to the approach sphere, and between D3 and D4 it must remain passively safe
for 24 hours with respect to the keep-out sphere. The radii of the rendezvous, approach, and keep-out spheres
are 10 km, 1 km, and 200 m, respectively. Furthermore, D4 lies along the Sun–Gateway axis, and the spacecraft
must approach the Gateway within an approach cone about this axis to ensure that the Gateway is illuminated
and visible to the spacecraft’s optical navigation sensors.

We consider three sources of uncertainty in this work: (i) NRHO insertion error, (ii) actuation error in the
spacecraft thrusters, and (iii) noise in relative range and range-rate measurements. Figure 1 illustrates the
overall maneuver, the decision points, and the sources of uncertainty considered in this work.

The objective is to compute a fuel-efficient rendezvous maneuver that meets all specified requirements and
constraints while explicitly accounting for uncertainties. To achieve this, we first describe the spacecraft dy-
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namical model, the path constraints, and the discretized optimal control problem for fuel-efficient rendezvous
in the deterministic setting. Then we introduce uncertainties to formulate a stochastic optimal control problem
and develop an SCP-based solution approach.

B. Spacecraft Dynamical & Actuation Model

The (uncontrolled) natural motion of the spacecraft, also referred to as the free drift, is governed by gravitational
accelerations from the Moon, Earth, and Sun, along with higher-order effects such as solar radiation pressure
(SRP) and the Moon’s J2 perturbation. This motion can be expressed in a Gateway-centered inertial frame as

ẋ(t) = f (t, x(t)), (1)

where the state x(t) = (r(t), v(t)) ∈ R6 consists of the spacecraft position r(t) ∈ R3 and velocity v(t) ∈ R3. A
complete description of the dynamical model used in this work is provided in [13].

We assume an impulsive thruster model with at most N velocity impulses applied over a finite time horizon
[0, tf], referred to as the maneuver horizon. The impulses occur at time instants

0 = t1 < . . . < tN = tf,

where t2, . . . , tN are decision variables. The decision points D1, D2, D3, and D4 occur at time instants tN1 , tN2 ,
tN3 , and tN4 , respectively, where 1 = N1 < N2 < N3 < N4 = N are fixed integers.

C. Path Constraints

The spacecraft is required to approach the Gateway from within a specified approach cone and to maintain
passive safety throughout the rendezvous maneuver. First, the approach-cone constraint requires that the
spacecraft approaches the Gateway from within a cone with specified axis eac and half-angle θac, i.e.,

cos θac∥r(t)∥ ≤ r(t)⊤eac. (2)

Since the Euclidean norm is non-differentiable at the origin, we rewrite (2) using a differentiable vector-valued
path-constraint function gac as

gac(r(t)) ≜

[
∥ cos θacr(t)∥2 − (r(t)⊤eac)2

−r(t)⊤eac

]
≤ 02. (3)

Next, we consider the passive-safety constraint, which requires that, in the event of a total failure of the
spacecraft thrusters at any time instant during the rendezvous maneuver, the free-drift trajectory of the
spacecraft must not enter a specified avoid set around the Gateway for a specified duration ts, referred to as
the safety duration. The rendezvous, approach, and keep-out sets are modeled as spheres of radii ars, aas, and
akos, respectively, centered at the origin.

For a given t ∈ [0, tf], let the corresponding spacecraft state be x(t). The free-drift trajectory over the safety
horizon [t, t + ts] starting from x(t) is obtained by solving the initial-value problem

dx̌(γ, t, x(t), ts)

dγ
= f (t + γ, x̌(γ, t, x(t), ts)), γ ∈ [0, ts], (4a)

x̌(0, t, x(t)) = x(t), (4b)

where x̌(γ, t, x(t), ts) is the state at time t + γ along the free-drift trajectory starting from x(t). The corre-
sponding position (i.e., the first three components) is denoted ř(γ, t, x(t), ts). According to the specification in
Section II.A, the passive-safety constraint can be stated as

∥ř(γ, t, x(t), ts)∥ ≥ ars, ∀ γ ∈ [0, ts], ∀ t ∈ [tN1 , tN2 ], (5a)
∥ř(γ, t, x(t), ts)∥ ≥ aas, ∀ γ ∈ [0, ts], ∀ t ∈ (tN2 , tN3 ], (5b)
∥ř(γ, t, x(t), ts)∥ ≥ akos, ∀ γ ∈ [0, ts], ∀ t ∈ (tN3 , tN4 ]. (5c)
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D. Continuous-Time Constraint Satisfaction

The approach-cone and passive-safety constraints described above must hold at all times over the maneuver
horizon, which poses a challenge for numerical optimal control methods that discretize the trajectory and
impose the constraints only at discrete time instants. Next, we present computationally tractable reformulations
of the approach-cone and passive-safety constraints that ensure their satisfaction in continuous time. Owing
to the choice of an impulsive thruster model, we also show that the reformulated constraints can be expressed
solely as functions of the spacecraft states immediately before and after each impulse, i.e., x(t−k ) and x(t+k ) for
k = 1, . . . , N.

We first consider the approach-cone constraint in (3). Imposing this condition only at discrete time instants
can lead to inter-sample constraint violations. To enforce continuous-time satisfaction in a tractable manner,
we use the isoperimetric reformulation

gac(r(t)) ≤ 02, ∀ t ∈ [0, tf] ⇐⇒
∫ tf

0
∥gac(r(t))∥2

+dt = 0. (6)

The single integral constraint in (6) ensures satisfaction of the approach-cone constraint at all times over the
maneuver horizon. Since we assume an impulsive thruster model, the spacecraft trajectory is in free drift
between impulse time instants. Therefore, by leveraging the notation for the free-drift position trajectory
introduced in (5), we can rewrite the integral constraint in (6) as∫ tk+1−tk

0
∥gac(ř(γ, tk, x(t+k ), tk+1 − tk))∥2

+dγ = 0, k = 1, . . . , N − 1. (7)

Next we consider the passive-safety constraint. We require continuous-time safety over both the maneuver
and safety horizons. First, to ensure continuous-time satisfaction of the passive-safety constraint across the
safety horizon we use again an isoperimetric reformulation

∥ř(γ, t, x(t), ts)∥ ≥ a□, ∀ γ ∈ [0, ts] ⇐⇒ Γ(t, x(t), a□) ≜
∫ ts

0
∥(a□)2 − ∥ř(γ, t, x(t), ts)∥2∥2

+dγ = 0, (8)

where □ ∈ {rs, as, kos} depending on the choice of t as specified in (5). Next, observe that, due to the
impulsive thruster model, it suffices to impose the passive-safety constraint on the states immediately before
and after each impulse. Thus, (5) can be equivalently stated as

Γ(tk, x(t+k ), ars) = 0, Γ(tk, x(t−k ), ars) = 0, k = N1, . . . , N2, (9a)
Γ(tk, x(t+k ), aas) = 0, Γ(tk, x(t−k ), aas) = 0, k = N2 + 1, . . . , N3, (9b)
Γ(tk, x(t+k ), akos) = 0, Γ(tk, x(t−k ), akos) = 0, k = N3 + 1, . . . , N4. (9c)

For convenience of notation in the subsequent development, we define

ak ≜


ars, k = N1, . . . , N2,
aas, k = N2 + 1, . . . , N3,
akos, k = N3 + 1, . . . , N4,

(10)

to schedule the avoid-set radius across the maneuver horizon. Then the passive-safety constraints (9) can be
compactly written as

Γ(tk, x(t+k ), ak) = 0, Γ(tk, x(t−k ), ak) = 0, k = 1, . . . , N. (11)

III. Stochastic Optimal Control Problem
This section presents the formulation of the stochastic optimal control problem for fuel-efficient rendezvous
on NRHO in the presence of uncertainty. We first describe the steps required to construct the optimal control
problem in the deterministic setting. In particular, we explain how time dilation is used to parametrize the
impulse time instants as explicit decision variables. Then we extend the deterministic setting to account for
uncertainties and formulate the stochastic optimal control problem, which models the approach-cone and
passive-safety constraints as chance constraints. We also describe an approach for approximating the state
distribution as Gaussian, which enables tractable reformulations of the chance constraints.
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A. Time Dilation & Discretization

Since the impulse time instants t2, . . . , tN are decision variables, we explicitly parametrize them via time
dilation. Let τ ∈ [0, 1] be a normalized time. For each k = 1, . . . , N − 1, we define a dilation factor sk > 0 that
maps the normalized interval [0, 1] to the actual time interval [tk, tk+1] as

dt
dτ

= sk, τ ∈ [0, 1], (12)

with boundary conditions t(0) = tk and t(1) = tk+1. This yields the linear mapping t(τ) = tk + skτ for
τ ∈ [0, 1]. Then sk = tk+1 − tk, for k = 1, . . . , N − 1, and the total maneuver time is given by tf = ∑N−1

k=1 sk.

Next, we use multiple shooting to parametrize a continuous-time spacecraft trajectory over the maneuver
horizon with the states immediately before each impulse, denoted by xk, for k = 1, . . . , N. Let uk denote the
velocity impulse applied at time tk. The spacecraft state immediately after the kth impulse is then given by
x+k = xk + Buk, where B = [03×3 I3]

⊤. After the kth impulse, the spacecraft trajectory satisfies the time-dilated
free-drift dynamics

dx(t(τ))
dτ

= sk f (t(τ), x(t(τ))), τ ∈ [0, 1]. (13)

The state immediately before the (k + 1)th impulse can be obtained by integrating (13) over τ ∈ [0, 1] with
initial condition x+k . This yields the discretized dynamics

xk+1 = F(tk, x+k , sk) ≜ x+k +
∫ 1

0
sk f (tk + skτ, x(tk + skτ))dτ, (14a)

tk+1 = tk + sk, (14b)

where x(tk + skτ), for τ ∈ [0, 1], is the solution to (13) with initial condition x+k .

With time dilation, the isoperimetric approach-cone constraint in (6) can be expressed as

Ω(tk, x+k , sk) ≜
∫ 1

0
sk∥gac(ř(τ, tk, x+k , sk))∥2

+dτ = 0, k = 1, . . . , N − 1. (15)

Finally, the passive-safety constraints in (11) remain unchanged under time dilation and are expressed as

Γ(tk, x+k , ak) = 0, Γ(tk, xk, ak) = 0, k = 1, . . . , N. (16)

B. Deterministic Optimal Control Problem

In the absence of uncertainty, the fuel-efficient rendezvous maneuver can be obtained by solving an optimal
control problem with constraints (14a)–(14b), (15), and (16), along with boundary conditions on time and
state. However, imposing equality constraints (15) and (16) leads to a loss of linear independence constraint
qualification (LICQ) at all feasible points, which is detrimental to the convergence of optimization algorithms.
As a remedy, we relax the equality constraints to inequality constraints with a tolerance ϵ > 0, which can be
made arbitrarily small and hence without any practical impact on constraint satisfaction [42]. The resulting
optimal control problem is

minimize
tk , xk , uk , sk

N−1

∑
k=1

∥uk∥2 (17a)

subject to xk+1 = F(tk, xk + Buk, sk), k = 1, . . . , N − 1, (17b)
tk+1 = tk + sk, k = 1, . . . , N − 1, (17c)
smin

k ≤ sk ≤ smax
k , k = 1, . . . , N − 1, (17d)

Ω(tk, xk + Buk, sk) ≤ ϵ, k = 1, . . . , N − 1, (17e)
Γ(tk, xk, ak) ≤ ϵ, k = 1, . . . , N, (17f)
Γ(tk, xk + Buk, ak) ≤ ϵ, k = 1, . . . , N, (17g)
∥rNj∥ ≤ b+j , r⊤Nj

eac ≥ b−j , j = 2, 3, (17h)
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x1 = xi, t1 = 0, (17i)
xN + BuN = xf, tN ≤ tf,max, (17j)

where xi and xf are the given initial and final states, respectively. Bounds b+j and b−j , for j = 2, 3, constrain

the range of the spacecraft at the decision points D2 and D3, respectively. Bounds smin
k and smax

k , for k =

1, . . . , N − 1, enforce operational limits on the impulse time instants, and tf,max is the maximum allowable
maneuver duration. When relaxing (15) and (16) to inequalities, lower-bound constraints are not required
since Ω and Γ are nonnegative by construction.

C. Accounting for Uncertainty

In realistic operations, various sources of uncertainty affect the rendezvous maneuver, such as NRHO insertion
error, actuation errors in the spacecraft thrusters, and navigation error (such as noise in relative range and
range-rate measurements). More precisely, the initial spacecraft state, the impulses, and the estimate of the
spacecraft state at each impulse time instant are all uncertain.

Let xi ∼ N (xi, Σi) denote the true initial state of the spacecraft at NRHO insertion. For k = 1, . . . , N, let the
actuation error while imparting the kth commanded impulse be modeled as a zero-mean Gaussian random
vector µk ∼ N (03, Σact). Let sk, for k = 1, . . . , N − 1, denote the dilation factors and tk, for k = 1, . . . , N,
denote the impulse time instants. We assume that there is no uncertainty in the measurement of time, i.e., the
dilation factors sk are deterministic, and as a result the impulse time instants tk are deterministic. We assume
that navigation is based on relative range and range-rate measurements. The measurement time instants are
assumed to coincide with the impulse time instants. The measurement noise at time tk, which is additive,
is modeled as a zero-mean Gaussian random vector νk ∼ N (06, Σrr

k ). Let xk, for k = 1, . . . , N, denote the
true spacecraft state immediately before the kth impulse at tk. Let xm

k = xk + νk denote the corresponding
measurement of the spacecraft state. The impulse imparted at tk consists of the (deterministic) commanded
impulse uk, a feedback component denoted by Λ(xm

k ), and an additive actuation error µk. The measured state
immediately after the kth impulse is denoted by xm+

k = xm
k + B(uk + Λ(xm

k ) + µk).

By accounting for these uncertainties, we formulate the stochastic counterpart of (17)

minimize
tk , xm

k , xk , uk , sk

N−1

∑
k=1

∥uk∥2 (18a)

subject to xk+1 = F(tk, xk + B(uk + Λ(xm
k ) + µk), sk), k = 1, . . . , N − 1, (18b)

tk+1 = tk + sk, k = 1, . . . , N − 1, (18c)
smin

k ≤ sk ≤ smax
k , k = 1, . . . , N − 1, (18d)

P(Ω(tk, xm+
k , sk) ≤ ϵ) ≥ βac, k = 1, . . . , N − 1, (18e)

P(Γ(tk, xm
k , ak) ≤ ϵ) ≥ βps, k = 1, . . . , N, (18f)

P(Γ(tk, xm+
k , ak) ≤ ϵ) ≥ βps, k = 1, . . . , N, (18g)

∥E(rNj)∥ ≤ b+j , E(rNj)
⊤eac ≥ b−j , j = 2, 3, (18h)

E(xm
1 ) = xi, t1 = 0, (18i)

E(xm+
N ) = xf, tN ≤ tf,max, (18j)

where (18e)–(18g) are approach-cone and passive-safety chance constraints, respectively, with specified
probability levels βac, βps ∈ (0, 1). Although it is the true state of the spacecraft that must satisfy the approach-
cone and passive-safety chance constraints, we do not have direct access to it due to navigation error. Therefore,
we impose these chance constraints on the measured state, which is sufficient to ensure that the true state also
satisfies them with the same probability levels.

Solving (18) requires a tractable characterization of the chance constraints (18e)–(18g), which in turn often
requires quantifying the state distribution along the trajectory. However, since the spacecraft dynamics (1) are
nonlinear, exactly propagating the state distribution is challenging in general. On the other hand, the distribu-
tion of the spacecraft state at NRHO insertion, the actuation errors, and the navigation errors throughout the
maneuver are modeled as Gaussian. Therefore, when the spacecraft dynamics are linearized about a reference
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solution, the state distribution across the maneuver horizon can be approximated as Gaussian, and hence fully
characterized by its mean and covariance.

To that end, let t̄k, x̄k, ūk, for k = 1, . . . , N, and s̄k for k = 1, . . . , N − 1, denote a reference solution. Let the
evaluation of F and its gradients at the reference solution be denoted as

F̄k = F(t̄k, x̄k + Būk, s̄k), k = 1, . . . , N − 1, (19a)
Tk = ∇1F(t̄k, x̄k + Būk, s̄k), k = 1, . . . , N − 1, (19b)
Ak = ∇2F(t̄k, x̄k + Būk, s̄k), k = 1, . . . , N − 1, (19c)
Sk = ∇3F(t̄k, x̄k + Būk, s̄k), k = 1, . . . , N − 1, (19d)
wk = F̄k − Tk t̄k − Ak(x̄k + Būk)− Sk s̄k, k = 1, . . . , N − 1. (19e)

Using the reference solution and the gradients defined above, we obtain a linearized approximation of the
dynamics of the spacecraft states immediately before each impulse as

xk+1 = Tktk + Akxk + AkB(uk + µk) + Sksk + wk, k = 1, . . . , N − 1, (20a)
x1 = xi, (20b)

where we ignore the feedback component for now, and incorporate it later once the dynamics of the measured
state are introduced. Since the initial state and actuation errors are modeled as Gaussian, the linearity of (20a)
ensures that xk is also Gaussian for each k = 1, . . . , N. Let xk, for k = 1, . . . , N, denote the mean spacecraft
state immediately before each impulse, which satisfies

xk+1 = Tktk + Akxk + AkBuk + Sksk + wk, k = 1, . . . , N − 1, (21a)
x1 = xi. (21b)

Due to the presence of navigation error, we do not have direct access to xk. Instead, we obtain a measurement
xm

k = xk + νk. Then the measured spacecraft state immediately before each impulse satisfies

xm
k+1 = Tktk + Akxm

k + AkB(uk + µk) + Sksk + wk + νk+1 − Akνk, k = 1, . . . , N − 1, (22a)
xm

1 = xi + ν1. (22b)

For k = 1, . . . , N, the measured spacecraft states xm
k are also Gaussian with mean xk (satisfying (21a)–(21b))

and covariance denoted by Σm
k . However, in the absence of a feedback mechanism, the covariance of the

measured states can grow unbounded over time, which can lead to overly conservative chance constraints.
To mitigate this issue, we introduce a stabilizing feedback law based on the Fixed-Time-of-Arrival (FTA)
approach, which has significant flight heritage. Specifically, we modify (22a) to include an affine feedback
term Λ(xm

k ) = Kk(xm
k − xk) added to the commanded impulse uk, with gain Kk ∈ R3×6 given by

Kk = −(RAkB)−1RAk, (23)

with R = [I3 03×3]. Such a feedback mechanism greedily drives the spacecraft position to the reference
position at the next impulse time instant in the absence of actuation and navigation errors. The measured state
immediately after the kth impulse is given by

xm+
k = xm

k + B(uk + Kk(xm
k − xk) + µk), k = 1, . . . , N. (24)

The linearized closed-loop dynamics of the measured spacecraft states immediately before each impulse are

xm
k+1 = Tktk + (Ak + AkBKk)xm

k + AkB(uk − Kkxk + µk) + Sksk + wk + νk+1 − Akνk, k = 1, . . . , N − 1, (25a)
xm

1 = xi + ν1. (25b)

Then, the covariance of the measured spacecraft states immediately before each impulse satisfies

Σm
k+1 = (Ak + AkBKk)Σ

m
k (Ak + AkBKk)

⊤ + AkBΣactB⊤A⊤
k + Σrr

k+1 + AkΣrr
k A⊤

k , k = 1, . . . , N − 1, (26a)
Σm

1 = Σi + Σrr
1 . (26b)
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IV. Sequential Convex Programming Solution Approach
This section presents the sequential convex programming (SCP) solution approach to solve the stochastic
optimal control problem (18). We first obtain deterministic reformulations for the chance constraints and then
present the SCP algorithm that uses these reformulations.

A. Deterministic Reformulation of Chance Constraints

We now derive deterministic reformulations for the chance constraints (18e)–(18g). As with the dynamics,
we linearize the approach-cone and passive-safety constraints about a reference solution to obtain tractable
approximations. Specifically, let t̄k, x̄k, ūk, for k = 1, . . . , N, and s̄k for k = 1, . . . , N − 1, denote the reference
solution. Let the evaluation of Ω and Γ and their gradients at the reference solution be denoted as

Ω̄k = Ω(t̄k, x̄k + Būk, s̄k), k = 1, . . . , N − 1, (27a)
Gn,k = ∇nΩ(t̄k, x̄k + Būk, s̄k), k = 1, . . . , N − 1, n = 1, 2, 3, (27b)

gk = Ω̄k − G1,k t̄k − G2,k(x̄k + Būk)− G3,k s̄k, k = 1, . . . , N − 1, (27c)
Γ̄−

k = Γ(t̄k, x̄k, ak), k = 1, . . . , N, (27d)
H−

n,k = ∇nΓ(t̄k, x̄k, ak), k = 1, . . . , N, n = 1, 2, (27e)
h−k = Γ̄−

k − H−
1,k t̄k − H−

2,k x̄k, k = 1, . . . , N, (27f)
Γ̄+

k = Γ(t̄k, x̄k + Būk, ak), k = 1, . . . , N, (27g)
H+

n,k = ∇nΓ(t̄k, x̄k + Būk, ak), k = 1, . . . , N, n = 1, 2, (27h)
h+k = Γ̄+

k − H+
1,k t̄k − H+

2,k(x̄k + Būk), k = 1, . . . , N, (27i)

where Ω and Γ are differentiable functions, and the computation of their gradients is detailed in Appendix A.
The chance constraints (18e)–(18g) can be approximated using linearizations of the approach-cone and passive-
safety constraints as

P(G1,ktk + G2,kxm+
k + G3,ksk + gk ≤ ϵ) ≥ βac, k = 1, . . . , N − 1, (28a)

P(H−
1,ktk + H−

2,kxm
k + h−k ≤ ϵ) ≥ βps, k = 1, . . . , N, (28b)

P(H+
1,ktk + H+

2,kxm+
k + h+k ≤ ϵ) ≥ βps, k = 1, . . . , N. (28c)

We now leverage a widely used deterministic reformulation for chance constraints of the form P(a⊤z ≤ b) ≥ β,
where z ∼ N (µz, Σz), β ∈ (0, 1) is the specified probability level, and a ∈ Rn, b ∈ R are known,

a⊤µz +
√

Qn(β)a⊤Σza ≤ b =⇒ P(a⊤z ≤ b) ≥ β, (29)

where Qn(β) is the quantile function of a chi-squared distribution with n degrees of freedom. Then satisfaction
of the following deterministic constraints implies satisfaction of the chance constraints (28):

G1,ktk + G2,k(xk + Buk) + G3,ksk + gk +
√

Q6(βac)G2,kΣm
k G⊤

2,k ≤ ϵ, k = 1, . . . , N − 1, (30a)

H−
1,ktk + H−

2,kxk + h−k +
√

Q6(βps)H−
2,kΣm

k (H−
2,k)

⊤ ≤ ϵ, k = 1, . . . , N, (30b)

H+
1,ktk + H+

2,k(xk + Buk) + h+k +
√

Q6(βps)H+
2,kΣm

k (H+
2,k)

⊤ ≤ ϵ, k = 1, . . . , N. (30c)

For convenience of notation, we define

ḡk ≜ gk +
√

Q6(βac)G2,kΣm
k G⊤

2,k, k = 1, . . . , N − 1, (31a)

h̄−k ≜ h−k +
√

Q6(βps)H−
2,kΣm

k (H−
2,k)

⊤, k = 1, . . . , N, (31b)

h̄+k ≜ h+k +
√

Q6(βps)H+
2,kΣm

k (H+
2,k)

⊤, k = 1, . . . , N. (31c)

The reformulated constraints (30a)–(30c) are approximate, due to the linearizations with respect to an arbitrary
reference solution. However, by iteratively updating the reference solution, we can obtain increasingly accurate
approximations, which is a key feature of the solution approach described next.
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B. Sequential Convex Programming

Sequential convex programming (SCP) algorithms are widely used for solving optimal control problems.
They consist of iteratively solving convex subproblems obtained by linearizing and exactly penalizing the
nonconvex constraints (typically about the solution of the subproblem from the previous SCP iterate), and by
penalizing deviations from the previous iterate in the objective function. The application of SCP to solve (18)
involves certain subtleties due to the presence of chance constraints. We treat (i) the impulse time instants
tk, for k = 1, . . . , N, (ii) the mean spacecraft state immediately before each impulse xk, for k = 1, . . . , N, (iii)
the commanded impulses uk, for k = 1, . . . , N, and (iv) the dilation factors sk, for k = 1, . . . , N − 1, as the
decision variables of the subproblem. We use the previous SCP iterate as the reference solution to obtain
the linearized dynamics constraint (21a), the reformulated chance constraints (30a)–(30c), and the covariance
of the measured spacecraft states (26a)–(26b) (which also requires recomputation of the FTA feedback gains
in (23)). These constraints are exactly penalized in the subproblem objective function using an ℓ1-norm penalty.
The boundary conditions (18i) and (18j) are imposed on the mean spacecraft state, since the expected value of
the measured state is equal to the mean state.

At an arbitrary SCP iterate, let t̄k, x̄k, ūk, for k = 1, . . . , N, and s̄k for k = 1, . . . , N − 1, denote the reference
solution, i.e., the solution of the previous SCP iterate. The SCP subproblem is formulated as

minimize
tk , xk , uk , sk

N−1

∑
k=1

∥uk∥2 +
wpx

2

N

∑
k=1

(∥xk − x̄k∥2 + ∥uk − ūk∥2) (32a)

+
wpx

2
(tN − t̄N)

2 +
wpx

2

N−1

∑
k=1

((tk − t̄k)
2 + (sk − s̄k)

2)

+ wep
N−1

∑
k=1

∥xk+1 − Tktk − Ak(xk + Buk)− Sksk − wk∥1

+ wep
N−1

∑
k=1

|G1,ktk + G2,k(xk + Buk) + G3,ksk + ḡk − ϵ|+

+ wep
N

∑
k=1

|H−
1,ktk + H−

2,kxk + h̄−k − ϵ|+

+ wep
N

∑
k=1

|H+
1,ktk + H+

2,k(xk + Buk) + h̄+k − ϵ|+

subject to tk+1 = tk + sk, k = 1, . . . , N − 1, (32b)
smin

k ≤ sk ≤ smax
k , k = 1, . . . , N − 1, (32c)

∥rNj∥ ≤ b+j , r⊤Nj
eac ≥ b−j , j = 2, 3, (32d)

x1 = xi, t1 = 0, (32e)
xN + BuN = xf, tN ≤ tf,max, (32f)

where wpx > 0 and wep > 0 are the weights for the proximal term (penalizing deviation from the previous
iterate) and the exact penalty terms, respectively. These weights can be adaptively tuned in conjunction with
line searches to ensure guaranteed convergence of SCP, i.e., tk → t̄k, xk → x̄k, uk → ūk, for k = 1, . . . , N, and
sk → s̄k, for k = 1, . . . , N − 1, as the SCP iterates progress. The convergence of the SCP algorithm is assessed
using the following termination criteria: (i) the maximum change in decision variables across successive
iterates is below a specified tolerance, and (ii) the maximum constraint violation across the exact penalty terms
is below a specified tolerance. The components of the SCP algorithm are illustrated as a block diagram in
Figure 2. Note that, at convergence, the linearized dynamics constraint (21a) and the reformulated chance
constraints (30a)–(30c) are equivalent to

xk+1 = F(tk, xk + Buk, sk), k = 1, . . . , N − 1, (33a)

Ω(tk, xk + Buk, sk) +
√

Q6(βac)G2,kΣm
k G⊤

2,k ≤ ϵ, k = 1, . . . , N − 1, (33b)

Γ(tk, xk, ak) +
√

Q6(βps)H−
2,kΣm

k (H−
2,k)

⊤ ≤ ϵ, k = 1, . . . , N, (33c)

Γ(tk, xk + Buk, ak) +
√

Q6(βps)H+
2,kΣm

k (H+
2,k)

⊤ ≤ ϵ, k = 1, . . . , N.. (33d)
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Fig. 2 Block diagram of the sequential convex programming solution approach for solving the stochastic
optimal control problem (18).

In other words, at convergence, the expected values of the true and measured spacecraft states immediately
before each impulse satisfy the actual nonlinear dynamics of the spacecraft (14a). The expected values of the
measured spacecraft states before the impulse satisfy the approach-cone constraints (15) with a safety margin,
and the expected values of the measured spacecraft states before and after the impulse satisfy the passive-safety
constraints (16) with a safety margin. The safety margins in (33b)–(33d) approximately correspond to the βac

and βps confidence sets of the measured spacecraft states. A β confidence set of a random variable is the set
containing the realizations of the random variable with probability β.

V. Numerical Results
This section demonstrates the proposed SCP-based approach through a numerical case study of spacecraft
rendezvous with the Gateway, using the specifications in Section II.A. The parameter values are listed in
Table 2 and include: (i) the number of nodes in the time grid for each phase; (ii) bounds on the time between
successive thruster firings; (iii) the covariances of the spacecraft state at NRHO insertion, the relative-range
measurements at the decision points, and the actuation error; (iv) chance-constraint confidence levels; (v)
parameters of the approach-cone constraint and the range constraints at D2 and D3; and (vi) the initial and
final values of the mean spacecraft state. These values are based on related case studies in [44]. The initial
and final positions, as well as the approach-cone axis, are specified in the Sun-Referenced LVLH frame. We
use the rotation matrix TLVLH to transform position and velocity from the Sun-Referenced LVLH frame to the
Gateway-centered inertial frame used in the dynamical model (1). The matrix rE in Table 2 selects the position
components from the state vector.

At far range (near D1), the spacecraft relies on ground-based orbit determination; at mid range (beyond
D2), it uses line-of-sight (LOS) and Gateway-relative measurements. Accordingly, we specify the covariance
of the relative-range measurements at the decision points and linearly interpolate these values between
successive decision points. This simplification is physically reasonable because the range decreases roughly
monotonically from D1 to D4, and it preserves tractability of the SCP formulation and the chance-constraint
representation. The bounds on the time between successive thruster firings, smin

k and smax
k for k = 1, . . . , N − 1,

are chosen to balance operational limits on thruster firing frequency with the time required for the spacecraft
to traverse each phase.

We initialize the state with a straight-line profile by linearly interpolating the boundary conditions at D1 and
D4 across the intermediate nodes, and we set the control input to zero. We use two layers of scaling within the
SCP algorithm to ensure reliable numerical performance. First, we scale the continuous-time dynamics (1)
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by choosing physically meaningful units (hr, km, km/hr) so that the state and control profiles have similar
magnitudes [31]. Second, after constructing the convex subproblem (32), we apply an affine scaling to the
decision variables to ensure comparable orders of magnitude and precondition the constraint matrices via
row normalization [33], which improves SCP convergence [45]. After scaling and preconditioning, choosing ϵ
in (17e)–(17g) on the order of 10−3–10−4 yields no physically meaningful violations of the original (unrelaxed)
constraints.

We performed a 1000-sample Monte Carlo simulation using a rendezvous maneuver computed via the
proposed method. Table 1 summarizes fuel consumption and constraint satisfaction across the samples.
Notably, none of the samples violate the passive-safety constraint. This behavior reflects the conservativeness
of the chance-constraint reformulation described in Section IV.A: even relatively small values of βps (e.g.,
around 0.8) can yield a high percentage of safe outcomes in Monte Carlo simulations. For a detailed discussion
of the conservativeness of chance-constraint formulations, we refer the reader to [46].

The computed rendezvous maneuver and the Monte Carlo simulation are visualized as follows. Figure 3
displays the position trajectories of the Monte Carlo samples in the Sun-Referenced LVLH frame (coordinates
r1, r2, r3), where blue curves denote samples and black curves denote the mean trajectory; dots indicate dis-
cretization nodes. The avoid sets for the three phases are shown in red. The spacecraft follows a roundabout
path to the Gateway to maintain passive safety. Figure 4 presents histograms of the closed-loop impulse magni-
tudes across the three-phase maneuver, denoted as ∆vk, for k = 1, . . . , N. The first three rows show phase-wise
histograms of impulse magnitudes, and the fourth row shows the histogram of total fuel consumption (∆v).

Table 1 Fuel consumption and constraint satisfaction in 1000-sample Monte Carlo simulation

Statistic Value

Mean / Minimum / Maximum fuel consumption 18.5 / 13.3 / 25.9 m/s

Samples violating passive-safety constraint 0 %

Samples violating approach-cone constraint 0.5 %

The proposed approach is more fuel-efficient than our prior work [13] because it optimizes the impulse
time instants. However, it does not guarantee underburn safety, which we do not evaluate in this case
study. Direct comparison of fuel-consumption statistics with other NRHO rendezvous methods is difficult
because published simulations use different key parameters (Table 2), particularly the spacecraft state at
NRHO insertion [14–18, 44]. Nonetheless, our method achieves fuel consumption in a comparable range
while uniquely ensuring continuous-time satisfaction of the passive-safety and approach-cone path chance
constraints.
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Table 2 Parameter values for the three-phase rendezvous maneuver to the Gateway

Parameter Value

N2, N3, N 4, 8, 12

rrs, ras, rkos [km] 10, 1, 0.2

ts [hr] 24

tf,max [hr] 48

smin
k [hr] 30, 8, 2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1

smax
k [hr] 35, 15, 5, 3, 3, 3, 3, 3, 3, 3, 3

Σi [km2, km2/hr2] blkdiag(33.33I3, 6I3)
2

Σrr
1 [km2, km2/hr2] blkdiag(6.66I3, 0.25I3)

2

Σrr
N2

[km2, km2/hr2] blkdiag(0.08I3, 0.04I3)
2

Σrr
N3

[km2, km2/hr2] blkdiag(0.009I3, 0.03I3)
2

Σrr
N [km2, km2/hr2] blkdiag(0.006I3, 0.01I3)

2

Σact [km2/hr2] 10−3 I2
3

βps, βac 0.8, 0.8

θac, eac 55◦, TLVLH rE⊤(0, 0, 1)

xi, xf [km, km/hr] TLVLH(0,−600, 800, 2.5, 30,−20), TLVLH(0, 0, 0.5, 0, 0, 0)

b+2 , b−2 , b+3 , b−3 [km] 55, 45, 6.5, 3.5
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Fig. 3 Monte Carlo simulation of the NRHO rendezvous maneuver.
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VI. Conclusion
We proposed a method for safe, fuel-efficient spacecraft rendezvous with the Gateway using sequential convex
programming. The approach (i) enforces passive safety at all times and satisfies the approach-cone path
constraint in continuous time; (ii) meets the requirements for decision points along the rendezvous trajectory
in accordance with IRSIS guidelines; and (iii) models uncertainties from NRHO insertion, actuation errors, and
navigation measurements via chance constraints while employing a stabilizing feedback mechanism to bound
the dispersions. To prevent inter-sample violations that may occur when constraints are imposed only at
time nodes, we reformulated the continuous-time path constraints as integral constraints via an isoperimetric
construction. We demonstrated the method on a realistic Gateway rendezvous case study and validated it
through Monte Carlo simulations. The results confirmed that the probabilistic constraints (passive-safety and
approach-cone) were satisfied with sufficiently high probability, and achieved a fuel consumption comparable
to those reported in recent NRHO rendezvous studies.

A. Gradient of Ω and Γ

The gradient of Γ (in constraint (16)) with respect to the first and second arguments and evaluated at tk, xk, ak
for some k = 1, . . . , N is given by

∇nΓ(tk, xk, ak) = −4
∫ ts

0
∥a2

k − ∥ř(γ, tk, xk, ts)∥2∥+∥ř(γ, tk, xk, ts)∥∇n+1ř(γ, tk, xk, ts)dγ, n = 1, 2, (34)

where ∇n+1ř(γ, tk, xk, ts) is the sensitivity of the position along the free-drift trajectory with respect to changes
in initial time (tk), for n = 1, and initial state (xk), for n = 2. These sensitivities can be computed by solving
the initial-value problem

d
dγ

∇2 x̌(γ, tk, xk, ts) = ∇1 f (tk + γ, x̌(γ, tk, xk, ts)) +∇2 f (tk + γ, x̌(γ, tk, xk, ts))∇2 x̌(γ, tk, xk, ts), γ ∈ [0, ts],

∇2 x̌(0, tk, xk, ts) = 06,
d

dγ
∇3 x̌(γ, tk, xk, ts) = ∇2 f (tk + γ, x̌(γ, tk, xk, ts))∇3 x̌(γ, tk, xk, ts), γ ∈ [0, ts],

∇3 x̌(0, tk, xk, ts) = I6,

where the first three rows of ∇n x̌(γ, tk, xk, ts) yield ∇n ř(γ, tk, xk, ts) for n = 2, 3.

The gradient of Ω (in (15)) evaluated at tk, x+k , sk for some k = 1, . . . , N − 1 is given by

∇1Ω(tk, x+k , sk) = 2
∫ 1

0
sk∥gac(ř(τ, tk, x+k , sk))∥2

+∇gac(ř(τ, tk, x+k , sk))∇2ř(τ, tk, x+k , sk)dτ, (35a)

∇2Ω(tk, x+k , sk) = 2
∫ 1

0
sk∥gac(ř(τ, tk, x+k , sk))∥2

+∇gac(ř(τ, tk, x+k , sk))∇3ř(τ, tk, x+k , sk)dτ, (35b)

∇3Ω(tk, x+k , sk) = 2
∫ 1

0
sk∥gac(ř(τ, tk, x+k , sk))∥2

+∇gac(ř(τ, tk, x+k , sk))∇4ř(τ, tk, x+k , sk)dτ (35c)

+
∫ 1

0
∥gac(ř(τ, tk, x+k , sk))∥2

+dτ,

where ∇n+1ř(τ, tk, x+k ) is the sensitivity of the position along the free-drift trajectory with respect to changes
in initial time (tk), for n = 1, initial state (x+k ), for n = 2, and time-interval length (i.e., dilation factor sk), for
n = 3. These sensitivities can be computed by solving the initial-value problem

d
dτ

∇2 x̌(τ, tk, x+k , sk) = sk∇2 f (tk + skτ, x̌(τ, tk, x+k , sk))∇2 x̌(τ, tk, x+k , sk) τ ∈ [0, 1],

+ sk∇1 f (tk + skτ, x̌(τ, tk, x+k , sk)),
∇2 x̌(0, tk, x+k , sk) = 06,

d
dτ

∇3 x̌(τ, tk, x+k , sk) = sk∇2 f (tk + skτ, x̌(τ, tk, x+k , sk))∇3 x̌(τ, tk, x+k , sk), τ ∈ [0, 1],

∇3 x̌(0, tk, x+k , sk) = I6,
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d
dτ

∇4 x̌(τ, tk, x+k , sk) = sk∇2 f (tk + skτ, x̌(τ, tk, x+k , sk))∇4 x̌(τ, tk, x+k , sk) τ ∈ [0, 1],

+ skτ∇1 f (tk + skτ, x̌(τ, tk, x+k , sk)) + f (tk + skτ, x̌(τ, tk, x+k , sk)),
∇4 x̌(0, tk, x+k , sk) = 06
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