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Abstract
Classical powered descent guidance (PDG) algorithms focus on low-level trajectory op- timiza-
tion, such as minimizing propellant consumption subject to soft-landing constraints. However,
in future missions to unexplored bodies, the dominant challenge is high-level decision making:
during descent, the lander must continuously trade off gathering information about terrain
hazards, preserving divert options, and committing to a final landing site. In this paper we
formalize such a powered descent decision-making (PDDM) problem as a belief Markov deci-
sion process whose objective is to maximize the probability of a safe landing. Directly solving
the resulting belief- and set-valued optimal control problem is intractable, so we propose a
reachability-steering guidance algorithm with a one-step utility function with precomputed
constrained controllable sets. The utility function balances exploitation of the current safest
candidate site against the preservation of backup divert options, while the containment con-
straint in the visibility-safe controllable set guarantees recursive feasibility along the descent.
Offline, the controllable sets are computed efficiently using constrained zonotopes combined
with a lossless convexification of the PDG problem. Numerical simulations with stochastic
safety belief evolution demonstrate that the proposed approach improves the probability of
a safe landing relative to a greedy retargeting baseline. Moderate weighting of divert op-
tions yields trajectories that remain resilient to the stochastic safety belief process without
incurring excessive conservatism in fuel usage.
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Classical powered descent guidance (PDG) algorithms focus on low-level trajectory op-
timization, such as minimizing propellant consumption subject to soft-landing constraints.
However, in future missions to unexplored bodies, the dominant challenge is high-level decision
making: during descent, the lander must continuously trade off gathering information about
terrain hazards, preserving divert options, and committing to a final landing site. In this paper
we formalize such a powered descent decision-making (PDDM) problem as a belief Markov
decision process whose objective is to maximize the probability of a safe landing. Directly
solving the resulting belief- and set-valued optimal control problem is intractable, so we propose
a reachability-steering guidance algorithm with a one-step utility function with precomputed
constrained controllable sets. The utility function balances exploitation of the current safest
candidate site against the preservation of backup divert options, while the containment con-
straint in the visibility-safe controllable set guarantees recursive feasibility along the descent.
Offline, the controllable sets are computed efficiently using constrained zonotopes combined
with a lossless convexification of the PDG problem. Numerical simulations with stochastic
safety belief evolution demonstrate that the proposed approach improves the probability of a
safe landing relative to a greedy retargeting baseline. Moderate weighting of divert options
yields trajectories that remain resilient to the stochastic safety belief process without incurring
excessive conservatism in fuel usage.

I. Introduction
Autonomous safe landing on unexplored planets or small bodies inherently poses a decision-making problem. In

these scenarios, the locations of safe landing sites are not known a priori. Instead, the spacecraft must sense the terrain
during descent and, based on incrementally revealed information about the target surface, iteratively steer toward
safer-appearing regions. This process must be repeated under strict resource constraints, such as limited fuel and
actuator capability. In practice, both the quality of terrain sensing and the maneuverability of a lander are limited.
Consequently, it is impractical to exhaustively evaluate landing safety across the terrain and simply select the safest
landing target. As the lander descends, it faces a trade-off between the range of observable and reachable terrain and the
quality of safety information; more precise information becomes available at lower altitudes, but the set of reachable and
visible landing sites diminishes correspondingly. Managing this trade-off constitutes a decision-making problem, which
we refer to as the Powered Descent Decision-Making (PDDM) problem [1]. In this work, we focus on solving PDDM
with the objective of maximizing the probability of a safe landing (PSL), defined as the probability that the terminal
landing site is free of hazards.

Modeling and solving the PDDM problem is nontrivial. Conventional powered descent guidance (PDG) problems
are typically posed as optimal control problems, where the objectives are directly linked to control commands and lander
states (e.g., minimizing fuel consumption while being close to a predetermined landing site), which enables relatively
straightforward formulations [2]. In contrast, PDDM under a safety-maximization objective must account for terrain
topography, which is an external and uncertain state. The intermediate lander state and control inputs interact with this
topography through visibility, reachability, and sensing quality. As a result, formulating a suitable optimization problem
that incorporates these interdependencies is not straightforward. Moreover, even if such a formulation is established,
it inherently involves belief states about landing safety and reachable and visible sets of the terrain for each lander
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state. Solving such a set-based optimal control problem with a nonlinear safety belief field is most likely going to be
computationally intractable for onboard computational resources.

The present paper develops a formal decision-making framework for maximizing the PSL. First, we present a
problem formulation that models PDDM as a belief Markov decision process (belief MDP), capturing belief evolution in
landing safety and its coupling with lander dynamics, sensing opportunities, and terrain visibility. Second, we introduce
a reachability-steering method where a heuristic objective function is proposed with recursive feasibility based on the
surface points visible and reachable from next-observation state. Third, we present a tractable solution approach built on
controllable sets represented as constrained zonotopes (CZs). We decompose the original nonlinear and belief-dependent
trajectory optimization problem into two computationally efficient components: (i) a small-scale nonlinear optimization
problem for selecting a target region, and (ii) a convex optimization problem for set-based powered-descent guidance.
Finally, we validate the proposed method through extensive simulations using a representative simulated test environment,
demonstrating its performance, robustness, and statistical behavior.

In summary, this paper contributes: (i) a PDDM problem formulation in a belief MDP framework, capturing
uncertainty in terrain safety and its interaction with lander dynamics; (ii) a reachability-steering solution based on
a one-step heuristic function with recursive feasibility; (iii) a principled decomposition of the PDDM optimization
problem into a nonlinear target-region selection step and a convex set-based guidance step with an outer-loop iteration
for the recursive feasibility; and (iv) extensive statistical evaluation on representative scenarios that demonstrate the
effectiveness of the proposed approach.

A. Background and Related Works

1. Hazard Detection and Avoidance for Planetary Landing
Early planetary landers lacked onboard hazard-detection and avoidance (HDA) systems, so risk had to be mitigated

before launch. Engineers developed the vehicles so that they can tolerate moderate rocks and slopes [3], and mission
planners restricted landing ellipses to exceptionally smooth terrain, insisting that roughly 95–99% of each ellipse be
obstacle-free [4, 5]. Because these safety predictions were drawn from coarse orbital imagery and statistical investigations,
they often gave incomplete estimates of the true surface hazards, resulting sometimes in unsafe touchdowns, which has
driven the development of online HDA technologies [6, 7].

Two technical capabilities are essential for autonomous landing: autonomous Precision Landing (PL) and autonomous
Hazard Detection and Avoidance (HDA) [8]. Central to autonomous PL is the need for detailed reconnaissance data that
provides preferred landing sites and precise navigation relative to the selected sites. Meanwhile, autonomous HDA
hinges on the capabilities of hazard detection sensors and algorithms tailored to assess and mitigate landing risks in real
time. The demand for autonomous PL and HDA technologies is influenced by the amount of prior knowledge about
the terrain and the available sensor systems on the spacecraft. The technical capabilities of autonomous PL and HDA
have been demonstrated in real missions; autonomous PL was first demonstrated by NASA’s Mars 2020 mission, while
autonomous HDA was first demonstrated by CNSA’s Chang’e-3 lunar lander [9, 10]. As the feasibility of autonomous
spacecraft landing is increasingly demonstrated, the demand for even more advanced capabilities grows, with the aim of
achieving anytime and anywhere global and safe landing capabilities across the solar system—a milestone proposed by
NASA’s Precision Landing and Hazard Avoidance (PL&HA) program [11, 12]. In this work we focus on developing a
guidance algorithm for autonomous HDA.

We define an HDA guidance algorithm as a method that adjusts the descent trajectory of a planetary lander equipped
with hazard detection capabilities to maximize the probability of a safe landing, which is a new class of guidance
problems. We briefly review conventional PDG algorithms for planetary landers first, followed by a review of recent
studies related to the HDA guidance problem.

2. Conventional PDG Algorithms
Conventional PDG algorithms for planetary landing aim at providing the optimal command profile that minimizes

propellant consumption while satisfying specified landing conditions and constraints. Such guidance algorithms can be
categorized into two broad classes: closed-form guidance and computational guidance.

Closed-form PDG algorithms compute state-feedback control commands using an analytical thrust acceleration
vector, achieving strong efficiency without significantly compromising performance. A representative example is the
classical optimal feedback guidance based on zero-effort-miss (ZEM) and zero-effort-velocity (ZEV) [13]. Due to its
simple structure and tractability, ZEM and ZEV approaches have been widely exploited in mission planning, system
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design, and landing site selection. Recent works in this category have achieved improved performance and robustness
by utilizing analytic gravity-turn trajectories [14] or by modeling the guidance sequence in multiple subphases [15].

Computational PDG algorithms, in contrast, transform the optimal control problem into a trajectory optimization
problem to be solved numerically. These include indirect and direct methods. Indirect methods often achieve lower cost
but require careful initialization and are sensitive to modeling errors. A recent example is the G-POLAR algorithm [16],
which solves an eight-variable zero-finding problem with a smoothed optimization landscape. Direct methods using
convex optimization [17–19] have become especially prominent thanks to lossless convexification techniques. These
methods reformulate the PDG problem into a sequence of second-order cone programs (SOCPs), with guaranteed
convergence within a finite number of iterations and computational efficiency compatible with real-time implementation.

3. HDA Guidance Algorithms
HDA guidance seeks to optimize a lander’s descent trajectory so as to maximize the probability of a safe landing

when the locations of hazard-free sites are uncertain. The core difficulty stems from limited sensor resolution and
accuracy: acquiring submeter-scale topography from altitudes of 1–2 km is challenging, and sensors small and light
enough for planetary missions often can only offer coarse data early in the descent. Consequently, the terrain topography,
and therefore the safety map, remains uncertain until sufficiently close to the surface. HDA guidance is therefore a
sequential decision-making problem: control actions must simultaneously gather information, preserve reachability of
promising sites, and maximize the probability of a safe landing.

Greedy retargeting represents the simplest strategy. At every update, the lander selects the best site still reachable
with the available fuel. Rogata et al. [20] implemented such a scheme using the E-Guidance law; Zhao et al. [21]
extended the idea with low-resolution imagery and terminal sliding-mode control. While computationally light, these
approaches can be overly myopic when early estimates of terrain safety are unreliable.

Deferred decision trajectory optimization (DDTO) is another related approach [22, 23]. It maintains reachability
to a set of candidate targets/landing sites for as long as possible to improve resilience to unmodeled disturbances and
to provide time to gather information about target viability. DDTO has been extended to adaptively update the target
collection [24] and has been integrated into a closed-loop, set-based optimal control framework [25]. In related work,
Srinivas et al. [26] use precomputed controllable sets to enable rapid retargeting. However, DDTO approaches optimize
for selected landing-site candidates, rather than concurrently optimizing for both the trajectory and the selection of
landing sites to maximize the probability of safe landing.

Learning-based methods have also been proposed. Iiyama et al. [27] treated HDA as a POMDP and trained a
deep reinforcement learning agent to jointly select targets and tune guidance parameters. While capable of handling
high-dimensional beliefs, DRL-based methods require extensive simulations in environments representative of all
potential terrains—an impractical requirement for risk-averse landing missions.

A closely related line of work by some of the authors introduced the first predictive HDA guidance formulation
under stochastic safety-map uncertainty [28]. The HDA problem was posed as a belief-dependent optimization problem,
and two predictive guidance strategies, greedy and reachability-steering, were developed using Gaussian random fields
and neural-network–based reachable-set evaluation. Reference [28] highlighted the importance of forecasting sensing
quality and reachability structure, but relied on coarse reachable set approximations and lacked real-time capability. The
subsequent study [1] introduced an efficient reachability-steering algorithm based on the decomposition with the target
region selection and the constrained trajectory optimization, but lacked formal guarantees. The present paper builds on
both of these preliminary efforts, replacing the earlier approximations with a formal decision-making framework, a
set-based feasibility analysis using constrained zonotopes, and a recursively feasible integration with powered-descent
guidance.

II. Preliminaries
This section summarizes the PDG models and computational tools used throughout the paper. Section II.A

reviews the 3-DOF powered-descent dynamics and state and input constraints. Section II.B recalls the standard
lossless convexification framework for PDG. Section II.C introduces a recently proposed dynamic-programming-based
perspective with an augmented fuel-to-go state, and Section II.D reviews constrained zonotopes and set operations used
for tractable controllable set computations.
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A. Powered Descent Dynamics and Constraints
The 3-DOF motion of a planetary lander in terminal descent is often described in a topocentric Cartesian coordinate

frame by the system of equations
¤𝑟 = 𝑣, ¤𝑣 = 𝑇/𝑚 + 𝑔, ¤𝑚 = −𝛼mf∥𝑇 ∥, (1)

where 𝑟 = [𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧] ∈ R3 is the position, 𝑣 = [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧] ∈ R3 is the velocity, 𝑚 ∈ R is the mass, 𝑇 = [𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧] ∈
R

3 is the thrust force, 𝑔 ∈ R3 is the constant gravitational acceleration, and 𝛼mf > 0 is a mass-flow parameter. The
thrust vector is constrained by

0 < 𝑇min ≤ ∥𝑇 ∥ ≤ 𝑇max, ∥𝑇 ∥ cos 𝜃𝑝 ≤ 𝑇𝑧 , (2)

where 𝑇min and 𝑇max are the minimum and maximum thrust magnitudes, and 𝜃𝑝 is the maximum thrust pointing angle.
The terminal conditions for soft landing are defined by 𝑚dry ≤ 𝑚(𝑡 𝑓 ), 𝑟𝑧 (𝑡 𝑓 ) = 0, and 𝑣(𝑡 𝑓 ) = 0, where 𝑚dry is the dry
mass and 𝑟𝑧 (𝑡 𝑓 ) is the touchdown altitude. To avoid the lander approaching too close to the surface before landing, we
enforce the following affine glide slope constraint [2]

𝐻gs
(
𝑟 (𝑡) − 𝑟 (𝑡 𝑓 )

)
≤ 0, (3)

where {𝑥 ∈ R3 | row 𝑗 (𝐻gs) 𝑥 ≤ 0,∀ 𝑗} represents intersection of half-spaces with a maximum glide slope angle
𝜃gs from the 𝑥-𝑦 plane. For example, a four-sided (i.e., upside-down pyramid) glide slope constraint is given by
row 𝑗 (𝐻gs) = [cos 𝜃 𝑗 sin 𝜃gs, sin 𝜃 𝑗 sin 𝜃gs, − cos 𝜃gs] where 𝜃 𝑗 = (𝜋/4) 𝑗 for 𝑗 ∈ {0, 1, 2, 3}. Alternatively, one can
enforce a conic glide slope constraint, as is done in [29].

B. Lossless Convexification via Pontryagin Maximum Principle
The following lossless convexification (LCvx) technique is often used to obtain a convex PDG problem [2]. Define a

new lander state 𝑥 = [𝑟; 𝑣; 𝑧] with the change of variables 𝑢 := 𝑇/𝑚, 𝜎 := ∥𝑇 ∥/𝑚, and 𝑧 := ln𝑚 to obtain the linear
dynamics

¤𝑟 = 𝑣, ¤𝑣 = 𝑢 + 𝑔, ¤𝑧 = −𝛼mf 𝜎. (4)

With the log-mass transformation, we obtain the thrust bounds 𝜎 ∈ [𝜎min (𝑧), 𝜎max (𝑧)], where 𝜎min (𝑧) = 𝑇min𝑒
−𝑧

and 𝜎max (𝑧) = 𝑇max𝑒
−𝑧 . We approximates these bounds as constants 𝜎̃min = 𝑇min/𝑚dry and 𝜎̃max = 𝑇max/𝑚wet, which

does not incur a significant penalty when realistic numerical parameters are used [25]. We can also construct 𝑧-dependent
convex bounds via quadratic approximation at the price of an increased complexity [17].

The remaining nonconvex constraint ∥𝑢∥ = 𝜎 is relaxed to ∥𝑢∥ ≤ 𝜎, resulting in the convex state and control
constraints for 𝑡 ∈ [𝑡0, 𝑡 𝑓 ):

∥𝑢∥ ≤ 𝜎 (5a)
𝜎 cos 𝜃𝑝 ≤ 𝑢𝑧 (5b)
𝜎̃min ≤ 𝜎 ≤ 𝜎̃max (5c)
𝐻gs

(
𝑟 (𝑡) − 𝑟 (𝑡 𝑓 )

)
≤ 0 (5d)

with the terminal set for soft landing

Xsoft :=
{
𝑥 𝑓 | 𝑟𝑧, 𝑓 = 0, 𝑣 𝑓 = 03, ln𝑚dry ≤ 𝑧 𝑓

}
. (6)

We can show that minimizing fuel consumption
∫ 𝑡 𝑓

𝑡0
𝜎 𝑑𝑡 in the relaxed system drives the relaxed constraint ∥𝑢∥ ≤ 𝜎

to be tight, and recovers the optimal solution for the original problem with the approximated thrust bounds, using
Pontryagin’s Maximum Principle [29].

C. Lossless Convexification via Dynamic Programming
Similar lossless convexification results can be obtained using Dynamic Programming [25, 30], with a slightly

increased conservativeness. Consider a discrete time model for the linear dynamics (4),

𝑥+𝑖+1 = 𝐴 𝑥+𝑖 + 𝐵 𝑢+𝑖 + 𝑑, (7)
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where 𝑢+ = [𝑢;𝜎] is the input, and the additional state 𝑐 of the augmented state 𝑥+ = [𝑟; 𝑣; 𝑧; 𝑐] representing the
cost-to-go (fuel-to-go) state. With zero-order-hold discretization, the matrices 𝐴, 𝐵 and vector 𝑑 are obtained as

𝐴 =


𝐼3 Δ𝑡 𝐼3 0 0
0 𝐼3 0 0
0 0 1 0
0 0 0 1


, 𝐵 =


1
2Δ𝑡

2𝐼3 0
Δ𝑡 𝐼3 0

0 −𝛼mfΔ𝑡

0 −𝛼mfΔ𝑡


, 𝑑 =


1
2Δ𝑡

2𝑔

Δ𝑡 𝑔

0
0


, (8)

which gives 𝑐𝑖+1 = 𝑐𝑖 − 𝛼mfΔ𝑡 𝜎𝑖 . Then, we replace the control input lower bound of 𝜎̃min ≤ 𝜎𝑖 with the conservative
approximation

𝜎̃min ≤ 𝑢𝑖,𝑧 . (9)

Next, we recursively construct a controllable set, the set of all initial states from which a given terminal state set is
reachable with all state and control constraints (see Chapter 10 of [31]). Here, we consider the terminal set for pinpoint
landing, where the terminal state is at the origin with zero velocity and 𝑚 𝑓 ≥ 𝑚dry. At termination, the fuel-to-go
satisfies 𝑐 𝑓 ≥ 0.

C+𝑓 = X
+
pinpoint :=

{
𝑥 𝑓 | 𝑟 𝑓 = 03, 𝑣 𝑓 = 03, 𝑧 𝑓 ≥ ln𝑚dry, 𝑐 𝑓 ≥ 0

}
(10a)

C+𝑖 = Proj𝑥+
{
[𝑥+; 𝑢+] ∈ X+ ×U+

��� 𝐴𝑥+ + 𝐵𝑢+ + 𝑑 ∈ C+𝑖+1}, 𝑖 = 𝑁 𝑓 − 1, . . . , 0, (10b)

where 𝑥+
𝑖
∈ X+ and 𝑢+

𝑖
∈ U+ denote the state and control constraints (3), (5a), (5c), (9) for all 𝑖 ∈ {0, . . . 𝑁 𝑓 − 1}. The

subscript 𝑓 represents the discrete time step 𝑖 = 𝑁 𝑓 , corresponding to 𝑡 = 𝑡 𝑓 .
The minimum fuel guidance optimization, min𝑢+ Σ𝑖𝜎𝑖 , is equivalent to minimizing the initial cost-to-go variable 𝑐0

with the state containment constraints with controllable sets:

min
𝑢+

𝑐0 s.t. 𝑥+𝑖+1 = 𝐴 𝑥+𝑖 + 𝐵 𝑢+𝑖 + 𝑑, 𝑥+𝑖+1 ∈ C𝑖+1, 𝑢+𝑖 ∈ U+, ∀𝑖 = 0, . . . , 𝑁 𝑓 − 1 (11)

and with dynamic programming we can show that the optimal solution satisfies the lossless property, i.e., ∥𝑢𝑖 ∥ =
𝜎𝑖 [25, 30].

Informally, the tightness of ∥𝑢𝑖 ∥ ≤ 𝜎𝑖 is enforced by minimizing 𝑐𝑖 because (i) 𝑐𝑖 = 𝑐𝑖+1+𝛼mfΔ𝑡𝜎𝑖 is a monotonically
increasing function of 𝜎𝑖 and (ii) there is no additional lower bound on 𝜎𝑖 . This is why 𝜎̃min ≤ 𝜎𝑖 is replaced with
𝜎̃min ≤ 𝑢𝑖,𝑧 . Note that 𝑐𝑖’s role cannot be replaced by 𝑧𝑖 because it is restricted by dynamics and boundary conditions,
i.e., 𝑧0 = ln𝑚wet and 𝑧𝑖 ≥ ln𝑚dry prohibit unconstrained minimization of 𝑧𝑖 . It is possible to remove 𝑧𝑖 to make the
augmented state seven dimensional, but a boundary-condition feasibility check is required every step (see Remark 7
of [25]).

D. Constrained Zonotope for Controllable Set Recursion
The controllable-set recursion (10) requires repeatedly propagating sets backward through Minkowski sum with

inputs, affine dynamics, and intersecting them with state constraints,

C+𝑓 = X
+
pinpoint, C+𝑖 = X+ ∩ 𝐴−1 (C+𝑖+1 ⊕ (

−𝐵U+ − 𝑑
) )
, ∀𝑖 = 𝑁 𝑓 − 1, . . . , 0. (12)

We can make the recursion (12) tractable by using constrained zonotopes (CZs), which provide an efficient polytope
description compatible with the required set operations [25, 30].

A constrained zonotope is defined as

CZ = { 𝑥 = 𝐺𝜉 + 𝑐cz | ∥𝜉∥∞ ≤ 1, 𝐴eq𝜉 = 𝑏eq }, (13)

where 𝐺 and 𝑐cz specify the geometric shape and location, and the linear equalities restrict the latent parameter 𝜉 so
that (13) represents a full-dimensional polytope. Constrained zonotopes are equivalent to bounded polytopes, but
admit closed-form expressions for affine maps, Minkowski sums, and intersections [32], which enable an exact and
computationally efficient implementation of the controllable-set recursion (12). Additionally, we need appropriate box
bounds on position 𝑟𝑖 and velocity 𝑣𝑖 to ensure bounded X+. The implementation is based on the recently released
Python package, pycvxset [33].
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III. Powered Descent Decision Making Problem
This section formulates the powered descent decision-making (PDDM) problem addressed in this paper. Section III.A

introduces the terrain-safety belief model and the probabilistic objective based on sensor observations. Section III.B
then formulates the resulting sequential decision-making problem.

In the following we consider two sampling periods for time discretization, one for guidance and the other for terrain
sensing. We denote guidance time step sequence by Tguidance := {𝑡𝑖}𝑖∈I and terrain sensing time step sequence by
Tsensing := {𝑡𝑘}𝑘∈K . The subscript 𝑖 and 𝑘 are also used for variables corresponding to the guidance time or terrain
sensing time sequences. We denote the time at touchdown by 𝑡 𝑓 and the final sensing time by 𝑡𝑁 , and use the subscripts
𝑓 and 𝑁 for variables at these time instants. We assume Tsensing ⊂ Tguidance and 𝑡𝑁 < 𝑡 𝑓 . Also, we define T 𝑘

guidance as the
guidance time discretizations between two sensing time instants

T 𝑘
guidance =

{
Tguidance ∩ [𝑡𝑘 , 𝑡𝑘+1), if 𝑘 ≠ 𝑁

Tguidance ∩ [𝑡𝑁 , 𝑡 𝑓 ), otherwise.
(14)

A. Terrain Sensing and Landing Safety
At the terrain sensing steps 𝑡 ∈ Tsensing, the estimated landing safety 𝑠𝑘 over the terrain is updated. Let

𝑠(𝛾) : R2 → {0, 1} be the true landing safety for terrain’s local horizontal coordinate 𝛾 ∈ R2, where 1 and 0 denote
safe and unsafe, respectively. Terrain sensing provides estimated landing safety probability 𝑝𝑘 (𝛾) := E[𝑠(𝛾) |G𝑘] for
any surface point within the sensor field of view (FOV), which is defined as a function of the lander state, F𝑘 (𝑥𝑘). Here,
G𝑘 = 𝜎(𝑠0− , 𝑦 [0:𝑘 ]) is the filtration and 𝑝𝑘 takes into account all the past measurements 𝑦 [0:𝑘 ] . The 𝑠𝑘 is updated as

𝑠𝑘 (𝛾) =
{
𝑝𝑘 (𝛾) if 𝛾 ∈ F𝑘
𝑠𝑘−1 (𝛾) otherwise.

(15)

We assume that the reliability of the landing safety estimate is inversely proportional to the distance from the terrain.
Given the best-effort estimate of landing safety after all terrain sensing operations, 𝑠𝑁 , the optimal landing site is

the safest reachable site at 𝑡𝑁 . In other words, the landing site deterministically depends on 𝑠𝑁 , therefore our objective
is reduced to the maximization of the reachable safest landing site at 𝑡𝑁 . Formally, we define the reachable surface R𝑘

as the set of landing sites reachable from 𝑥𝑘 while satisfying all physical and operational constraints for landing. Then,
our objective is

max
𝑢
E[𝐽safe], where 𝐽safe :=

{
max𝛾∈R𝑁

𝑠𝑁 (𝛾) if R𝑁 ≠ ∅
0 otherwise.

(16)

where R𝑁 is the set of reachable landing sites from 𝑥𝑁 and 𝐽safe is a random variable due to 𝑠𝑁 .

B. Optimal Hazard Detection and Avoidance Guidance Problem
The objective of HDA guidance is to maximize the probability of a safe landing, (16), which is a function of the final

terrain-safety estimate 𝑠𝑁 . The lander does not have access to 𝑠𝑁 until time 𝑡𝑁 , but control actions must be selected
sequentially as new sensing information becomes available. To make the connection between guidance and sensing
clearer, let 𝜋𝑘 denote a policy at time 𝑡𝑘 that selects an ideal next sensing state set X𝑘+1

sensing based on the current lander
state 𝑥𝑘 and terrain safety estimate 𝑠𝑘 ,

X𝑘+1
sensing ← 𝜋𝑘 (𝑥𝑘 , 𝑠𝑘). (17)

For a given sensing state setX𝑘+1
sensing, the lander computes a dynamically feasible, minimum-fuel trajectory by solving

a guidance optimization problem over the time grid T 𝑘
guidance. We define the corresponding solution mapping

S𝑘 :
(
𝑥𝑘 ,X𝑘+1

sensing

)
→

(
𝑢★[𝑡𝑘 ,𝑡𝑘+1 ) , 𝛾

′★
𝑘+1, 𝑥𝑘+1

)
, (18)
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where 𝑢★[𝑡𝑘 ,𝑡𝑘+1 ) , 𝛾
′★
𝑘+1, and 𝑥𝑘+1 are given by the solution of

min
{𝑢𝑖 }, 𝛾′

∑︁
𝑡𝑖∈T𝑘

guidance

∥𝑢𝑖 ∥ (19a)

subject to 𝑥𝑖+1 = 𝑓 (𝑥𝑖 , 𝑢𝑖), ∀𝑡𝑖 ∈ T 𝑘
guidance, (19b)

𝑥𝑖+1 ∈ X(𝛾′), 𝑢𝑖 ∈ U, ∀𝑡𝑖 ∈ T 𝑘
guidance, (19c)

𝑥(𝑡𝑘+1) ∈ X𝑘+1
sensing. (19d)

Here, 𝛾′ ∈ R2 denotes a virtual landing site, and the state constraint set X(𝛾′) depends on 𝛾′ through the glide-slope
constraint. Using S𝑘 (18), the HDA guidance problem can be written as the following bilevel optimization problem,

max
{𝜋𝑘 }

E𝜋 [𝐽safe] (20a)

subject to X𝑘+1
sensing = 𝜋𝑘 (𝑥𝑘 , 𝑠𝑘), 𝑘 = 0, . . . , 𝑁 − 1, (20b)(
𝑢★[𝑡𝑘 ,𝑡𝑘+1 ) , 𝛾

′★
𝑘+1, 𝑥𝑘+1

)
= S𝑘

(
𝑥𝑘 ,X𝑘+1

sensing

)
, 𝑘 = 0, . . . , 𝑁 − 1, (20c)

𝑠𝑘+1 ∼ T𝑘 ( · |𝑠𝑘 , 𝑥𝑘+1) , 𝑘 = 0, . . . , 𝑁 − 1, (20d)

where 𝑠𝑘 is the landing safety belief state with the transition T𝑘 .
In (20), the upper-level problem selects the ideal next sensing state set through the policy 𝜋𝑘 to maximize the

terminal landing safety probability, while the lower-level problem computes a dynamically feasible, minimum-fuel
trajectory that steers the lander to the selected sensing state set. Feasibility beyond the final sensing time 𝑡𝑁 is implicitly
enforced through the objective (16). Poorly designed policies 𝜋𝑘 may result in a terminal state 𝑥𝑁 from which no
feasible landing trajectory exists, in which case the reachable safe landing set satisfies R𝑁 = ∅ and 𝐽safe = 0.

IV. Reachability-Steering Approach
Problem (20) is modeled as a belief Markov decision process (belief MDP) where 𝑠 is the belief state. In theory, the

optimal policy 𝜋∗
𝑘

is obtained by solving the following Bellman recursion,

𝑉 𝜋∗
𝑁 (𝑥𝑁 , 𝑠𝑁 ) = max

𝛾∈𝑅𝑁

𝑠𝑁 (𝛾)

𝑉 𝜋∗

𝑘 (𝑥𝑘 , 𝑠𝑘) = max
X𝑘+1

sensing

E𝑠𝑘+1

[
𝑉 𝜋∗

𝑘+1 (𝑥𝑘+1, 𝑠𝑘+1)
�� 𝑥𝑘 , 𝑠𝑘 ,X𝑘+1

sensing

]
= max
X𝑘+1

sensing

∫
𝑠𝑘+1

P(𝑠𝑘+1 | 𝑥𝑘 , 𝑠𝑘 ,X𝑘+1
sensing)𝑉

𝜋∗

𝑘+1 (𝑥𝑘+1, 𝑠𝑘+1) 𝑑𝑠𝑘+1,

(21)

however, solving (21) is intractable. Unlike typical POMDPs where the main issue is the infinite realizations of
the continuous belief state, the challenge for HDA is the difficulty of modeling the safety map belief dynamics,
P(𝑠𝑘+1 | 𝑥𝑘 , 𝑠𝑘 ,X𝑘+1

sensing). For environments requiring online HDA, prior terrain knowledge is insufficient to construct
or validate an accurate safety belief dynamics model, as doing so would require detailed information about terrain
topography realizations and their associated sensing outcomes. Indeed, if the terrain were sufficiently well known to
support a validated belief dynamics model a priori, online HDA would no longer be required. In the absence of such
information, any belief dynamics model is necessarily assumption-driven. Accordingly, the HDA guidance solution is
primarily shaped by the choice of these assumptions, and our approach seeks to minimize reliance on belief dynamics
modeling while remaining resilient to uncertainty.

A. Utility Functions for Divert-Aware Resilient Guidance
A simple approach is to keep targeting the safest landing site. However, such a greedy policy is equivalent to the

constant safety belief assumption (see Appendix VII.A), and there is a risk of steering toward an isolated site that later
turns out unsafe. For instance, suppose there exists an isolated landing site 𝛾𝐴 with 𝑠𝑘 (𝛾𝐴) = 0.8, while an entire region
{𝛾𝐵𝑖
}𝑖 has moderate but consistent safety 𝑠𝑘 (𝛾𝐵𝑖

) = 0.7. Greedy HDA would always steer toward 𝛾𝐴 as long as it is
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reachable. However, if 𝛾𝐴 is later revealed unsafe, there is no alternate and the mission fails. By contrast, region 𝐵

provides multiple divert options and could be less risky overall. This motivates an approach that balances the best
available candidate and the number and quality of backup options.

1. One-Step Utility Function with Belief Propagation
To formalize the aforementioned trade-off, let 𝑠𝐿 ∈ [0, 1) be a minimum safety threshold for a site to qualify as a

divert candidate. At step 𝑘 + 1, one heuristic that approximates the value function 𝑉 𝜋∗ (𝑥𝑘+1, 𝑠𝑘+1) and also captures the
balance between the safest site and other divert options is

𝐽′𝑘+1 (R𝑘+1, 𝑠𝑘+1) := 𝐽′best (R𝑘+1, 𝑠𝑘+1) + 𝜆𝑘𝐽
′
divert (R𝑘+1, 𝑠𝑘+1), (22)

where 𝜆𝑘 > 0 balances the two terms

𝐽′best (R𝑘+1, 𝑠𝑘+1) = max
𝛾∈R𝑘+1

𝑠𝑘+1 (𝛾), (23a)

𝐽′divert (R𝑘+1, 𝑠𝑘+1) =
∫
M𝑘+1

𝑠𝑘+1 (𝛾) 𝑑𝛾, M𝑘+1 := {𝛾 ∈ R𝑘+1 : 𝑠𝑘+1 (𝛾) ≥ 𝑠𝐿}. (23b)

The first term favors the most promising site, while the second rewards the total “safe probability mass” of divert
options above threshold. However, 𝐽′

𝑘+1 (R𝑘+1, 𝑠𝑘+1) requires propagating the belief to obtain 𝑠𝑘+1 and we propose an
approximation for tractability.

2. One-Step Utility Function without Belief Propagation
Because 𝑠𝑘+1 is unknown at step 𝑘 , we approximate it using the current map 𝑠𝑘 but only over the next sensor footprint

F𝑘+1 (𝑥𝑘+1), reflecting that (i) only points in F𝑘+1 will be updated and (ii) their estimates will be more reliable at lower
altitude. This yields the surrogate

𝐽𝑘+1 (R𝑘+1, F𝑘+1, 𝑠𝑘) := 𝐽best (R𝑘+1, F𝑘+1, 𝑠𝑘) + 𝜆𝑘𝐽divert (R𝑘+1, F𝑘+1, 𝑠𝑘), (24)

with

𝐽best (R𝑘+1, F𝑘+1, 𝑠𝑘) = max
𝛾∈R𝑘+1∩F𝑘+1

𝑠𝑘 (𝛾) (25a)

𝐽divert (R𝑘+1, F𝑘+1, 𝑠𝑘) =
∫
M̃𝑘+1

𝑠𝑘 (𝛾) 𝑑𝛾, M̃𝑘+1 = {𝛾 ∈ R𝑘+1 ∩ F𝑘+1 : 𝑠𝑘 (𝛾) ≥ 𝑠𝐿}. (25b)

However, the score 𝐽𝑘+1 is well-defined only if R𝑘+1 ∩ F𝑘+1 ≠ ∅. For example, the lander may have such a large
horizonal velocity that no reachable landing site lies inside the nadir sensor footprint. Even if the current state 𝑥𝑘 is not
ill-posed, there is no guarantee that from 𝑥𝑘+1 onward R 𝑗+1 ∩ F𝑗+1 remains nonempty. Therefore, without additional
safeguards, recursive optimization could fail at a later step.

3. One-Step Utility Function with Recursive Feasibility
To enforce feasibility guarantee over subsequent optimization steps, we embed visibility into the operational

constraints. Consider a nadir-pointing sensor FOV of a pyramid shape with the footprint:

F𝑘 = {𝛾 ∈ R2 | 𝐻fov
(
𝑟𝑘 − 𝑟 𝑓 (𝛾)

)
≤ 0} (26)

where 𝑟 𝑓 (𝛾)⊤ = [𝛾𝑥 , 𝛾𝑦 , 0] and row 𝑗 (𝐻fov) = [cos 𝜃 𝑗 cos(𝜃fov/2), sin 𝜃 𝑗 cos(𝜃fov/2), − sin(𝜃fov/2)] and 𝜃 𝑗 = (𝜋/4) 𝑗
for 𝑗 ∈ {0, 1, 2, 3}. Equation (26) shows that restricting the landing site to be within sensor footprint is mathematically
equivalent to the glide slope constraint (3) with 𝜃gs replaced by (𝜋 − 𝜃fov)/2. Therefore, by tightening the glide slope
angle to 𝜃′gs := max

(
𝜃gs, 𝜋/2 − 𝜃fov/2

)
, we obtain the following visibility-safe reachable surface, which is a set of

reachable terminal landing sites that are visible at all times onward.

R̄𝑘 :=
(
R𝑘 with glide slope angle 𝜃′gs

)
⊆ F𝑘 . (27)
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Since R̄𝑘+1 ⊆ F𝑘+1, the explicit FOV mask in (24) is redundant once the tightened glide slope constraint is in force.
This leads to the final surrogate used by the Reachability–Steering HDA:

𝐽𝑘+1 (R̄𝑘+1, 𝑠𝑘) := 𝐽best (R̄𝑘+1, 𝑠𝑘) + 𝜆𝑘𝐽divert (R̄𝑘+1, 𝑠𝑘), (28)

with

𝐽best (R̄𝑘+1, 𝑠𝑘) = max
𝛾∈R̄𝑘+1

𝑠𝑘 (𝛾) (29a)

𝐽divert (R̄𝑘+1, 𝑠𝑘) =
∫
M̄𝑘+1

𝑠𝑘 (𝛾) 𝑑𝛾, M̄𝑘+1 = {𝛾 ∈ R̄𝑘+1 : 𝑠𝑘 (𝛾) ≥ 𝑠𝐿}. (29b)

Remark IV.1 (Adaptive choice of 𝑠𝐿) The threshold 𝑠𝐿 may be chosen adaptively from the current belief map, e.g., as
the 𝑞-quantile of {𝑠𝑘 (𝛾) | 𝛾 ∈ R̄𝑘}. This ensures that M̄𝑘+1 is nonempty, while still emphasizing sites with relatively
high safety probability.

B. Reachability steering
Using the utility function 𝐽𝑘+1 (R̄𝑘+1, 𝑠𝑘) (28), we formalize a reachability-steering approach for the HDA guidance

problem (20). At each sensing time 𝑡𝑘 , we recursively select the next sensing state 𝑥𝑘+1 that maximizes 𝐽𝑘+1 (R̄𝑘+1, 𝑠𝑘),
which depends on 𝑥𝑘+1 through R̄𝑘+1. With the solution mapping (18), we propose the following reachability-steering
guidance

max
𝑥𝑘+1

𝐽𝑘+1
(
R̄𝑘+1, 𝑠𝑘

)
(30a)

subject to
(
𝑢★[𝑡𝑘 ,𝑡𝑘+1 ) , 𝛾

′★
𝑘+1, 𝑥𝑘+1

)
= S𝑘 (𝑥𝑘 , {𝑥𝑘+1}) , (30b)

for 𝑘 = 0, . . . , 𝑁 − 1. The constraint (30b) restricts the next sensing state 𝑥𝑘+1 to be reachable from 𝑥𝑘 .

V. Real-Time Reachability-Steering Algorithm
The reachability steering (30) is a challenging noncovex optimization problem, and we propose a tractable solution

approach based on decomposition and iteration. Namely, we decompose the master problem (30) into two computationally
tractable subproblems: (i) a target region selection (TRS) problem (§V.A) and (ii) a constrained minimum fuel guidance
problem (§V.B), with an outer-loop iteration for the recursive feasibility (§V.C).

A. Target Region Selection
We parameterize a candidate reachable surface, which we call a target region, by a convex polygon circumscribing a

circle of diameter 𝑝𝑑 located at (𝑝𝑥 , 𝑝𝑦). Formally, we consider the parameter 𝑝 = (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑑) for the target region
RTRS (𝑝):

RTRS (𝑝) =
{
(𝛾𝑥 , 𝛾𝑦)

���𝐻𝑛

[
𝛾𝑥 − 𝑝𝑥

𝛾𝑦 − 𝑝𝑦

]
≤ 𝑝𝑑

2
1𝑛

}
, (31)

where row 𝑗 (𝐻𝑛) = [cos 𝜃 𝑗 , sin 𝜃 𝑗 ] with 𝜃 𝑗 = 2𝜋 𝑗/𝑛 for 𝑗 = 0, . . . , 𝑛 − 1.
Then, the target region selection (TRS) problem is defined as

max
𝑝

𝐽𝑘+1 (RTRS (𝑝), 𝑠𝑘) (32a)

subject to RTRS (𝑝) ⊆ R𝑘+1, 0 ≤ 𝑝𝑑 ≤ 𝛽𝐷𝑘 , (32b)

where 𝐷𝑘 = 2𝑟𝑧,𝑘 tan(𝜃FOV/2) is a projected FOV diameter at time 𝑡𝑘 . Here, 𝛽 and R𝑘+1 ⊂ R2 are given parameters,
which are regulated in relation to the constrained minimum fuel guidance problem (§V.B) to enforce HDA guidance
feasibility. See §𝑉.𝐶 for more details.

For the given parameters, an optimal 𝑝𝑑 is determined to be its upper bound as the objective is non-decreasing in 𝑝𝑑
due to 𝑠𝑘 ≥ 0. The remaining parameters (𝑝𝑥 , 𝑝𝑦) are then efficiently estimated using greedy search with image-based
filtering algorithms.
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B. Constrained Minimum Fuel Guidance
Given the current state 𝑥𝑘 and the selected target region RTRS, we solve for minimum fuel guidance such that any

surface point on selected RTRS is visible and reachable from the next observation state 𝑥𝑘+1. Such a constraint is well
described with controllable sets (§II.C). Here, we define the visibility-safe controllable set similarly to the reachable
surface (27):

C̄+𝑖 :=
(
C+𝑖 (10) with glide slope angle 𝜃′gs

)
. (33)

Next, we define a regional controllable set, which is a set of initial state from which any point within a target region
is visible and reachable. Such a set can be defined with Pontryagin difference by exploiting the translational invariance
of C̄+

𝑖
. With a slight abuse of notation, we define the regional controllable set for the selected target region as

C̄+𝑖 (RTRS) := C̄+𝑖 ⊖ RTRS = ∩𝛾∈RTRS C̄+𝑖 − 𝜄(𝛾)
= ∩𝛾∈𝑉TRS C̄+𝑖 − 𝜄(𝛾),

(34)

where 𝜄(𝛾) := 𝐸2𝛾
′ injects 𝛾 into the full-dimension space with 𝐸2 := [𝐼2×2 | 02×6]⊤, and 𝑉TRS denotes the target

region’s vertices. The second equality follows the definition of Pontryagin difference, and the last equality is known for
a convex and bounded polyhedron (see Theorem 2.1(xiii) of Reference [34]).

Finally, we define the constrained minimum-fuel guidance problem as a following convex optimization probelm
utilizing the set-based lossless convexification (§II.C)

min
𝑢+
𝑖

𝑐(𝑡𝑘) (35a)

subject to 𝑥+𝑖+1 = 𝐴𝑥+𝑖 + 𝐵𝑢+𝑖 + 𝑑, ∀𝑡𝑖 ∈ T 𝑘
guidance (35b)

𝑥+𝑖+1 ∈ X
+ (𝛾𝑝), 𝑢+𝑖 ∈ U+, ∀𝑡𝑖 ∈ T 𝑘

guidance (35c)

𝑥(𝑡𝑘+1) ∈ C̄+𝑘+1 − 𝜄(𝛾 𝑗 ), ∀𝛾 𝑗 ∈ 𝑉TRS, (35d)

where the temporal landing site is set 𝛾𝑝 := (𝑝𝑥 , 𝑝𝑦) from the TRS problem output (32). Problem (35) can be solved
with SOTA real-time-capable convex solvers on the order of milliseconds [35, 36], which is orders of magnitude faster
than the time scale of the terrain sensing updates [37].

C. Outer-Loop for Recursive Feasibility
The constrained minimum-fuel guidance (35) can be infeasible depending on the proposed target region RTRS;

unlike the original form of reachability-steering guidance (30), RTRS is not strictly tied to 𝑥𝑘 , and some landing sites
within RTRS could be not reachable. To this end, we restrict the target region domain within the region selected in the
previous step, and shrink the admissible diameter by updating 𝛽 upon infeasibility,

R𝑘+1 ← RTRS for X𝑘
sensing, 𝑘 = 1, . . . , 𝑁 − 1 (36a)

𝛽← 𝜅𝛽 if Subproblem (35) is infeasible, (36b)

where 𝜅 ∈ (0, 1). Equation (36a) is an iteration over sensing opportunities 𝑘 = 1, . . . , 𝑁 − 1, but Eq. (36b) occurs
for each proposed target region RTRS and subsequent guidance subproblem (35) within each sensing opportunity 𝑘 .
Therefore, 𝛽 is initialized to be 1 for each 𝑘 . The initial admissible region R1 should be an appropriate approximation
of the reachable surface, and can be iteratively shrank upon observing infeasibility. In summary, the resulting algorithm
alternates between target-region selection and convex optimal guidance, adaptively shrinking the region only when
necessary to recover feasibility. The overall flow is shown in the flowchart of Fig. 1.

VI. Numerical Demonstration

A. Test Scenarios
We evaluate the proposed reachability-steering guidance law in a simplified hazard environment that captures the

key trade-offs between exploitation and exploration. The test terrain contains one isolated candidate landing site A and
three closely clustered sites B1–B3, as depicted in Fig. 2. Only these four regions are assigned nonzero probability of
being safe; the remainder of the surface is treated as unsafe for landing.
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Fig. 1 Flowchart of reachability-steering HDA guidance algorithm.

The lander descends from a high altitude with limited field of view, and its belief about the safety of each site evolves
as new information becomes available. To model the evolution of perceived landing safety during descent, each site
is assigned a probability of safety 𝑠ℓ ∈ [0, 1] at each discrete altitude level indexed by ℓ. The probability is updated
according to a bounded random walk with state-dependent drift and diffusion,

𝑠ℓ+1 = 𝑠ℓ + 𝜇(𝑠ℓ) Δℎ + 𝜎(𝑠ℓ)
√
Δℎ 𝜉ℓ , (37a)

𝜇(𝑠) = 𝜖 ln
( 𝑠

1 − 𝑠

)
, (37b)

𝜎(𝑠) = 𝜎0 + 𝜎1𝐻 (𝑠), 𝐻 (𝑠) = −𝑠 log2 𝑠 − (1 − 𝑠) log2 (1 − 𝑠), (37c)

where Δℎ > 0 is the altitude discretization step, and 𝜉ℓ ∼ N(0, 1) are independent Gaussian increments. The drift term
𝜇(𝑠), scaled by a small gain 𝜖 > 0, biases the evolution toward more decisive beliefs (𝑠 ≈ 0 or 𝑠 ≈ 1) as the altitude
decreases. The diffusion term 𝜎(𝑠) combines a baseline noise level 𝜎0 > 0 with an entropy-dependent component
𝜎1𝐻 (𝑠) that increases uncertainty when the belief is ambiguous (𝑠 ≈ 0.5) and decreases it as 𝑠 approaches the extremes.
After each update, the probability is clipped to the interval [0.05, 0.95] to ensure physically meaningful values. In our
implementation, we take 𝜖 = 10−3, 𝜎0 = 0.05, and 𝜎1 = 0.10.

Each landing site belief evolves independently according to (37), but the sites begin with different initial probabilities
of safety. We consider three representative scenarios—A09, A08, and A07—which differ only in the initial value
assigned to the isolated site A. Specifically, 𝑠𝐴0 is set to 0.9, 0.8, and 0.7 in scenarios A09, A08, and A07, respectively.
The clustered sites B1, B2, and B3 all begin with the same nominal initial value 𝑠

𝐵𝑖

0 = 0.6, but their stochastic evolutions

11



Fig. 2 Mock landing environment with one isolated site A and three clustered sites B1–B3. Only these regions
carry nonzero safety probability.

Fig. 3 Sample realizations of the stochastic safety model (37) for different initial probabilities.

12



Table 1 Initial probability of safety for each landing site in the three test scenarios. All sites evolve independently
according to the stochastic model (37).

Scenario 𝑠𝐴0 𝑠𝐵1
0 𝑠𝐵2

0 𝑠𝐵3
0

A09 0.9 0.6 0.6 0.6
A08 0.8 0.6 0.6 0.6
A07 0.7 0.6 0.6 0.6

Parameter Value

𝑟0 (0, 0, 800) m
𝑣0 (-10, 0, -30) ms−1

𝑚dry 1905 kg
𝑡 𝑓 − 𝑡0 80 s
𝜃p 50 deg
𝜃gs 10 deg
𝜃fov 30 deg
𝑔 1.625 ms−2

𝑇max 8400 N
𝑇min 2100 N
𝛼mf 0.00115

Table 2 Simulation Parameters

are independent. The initial conditions for all cases are summarized in Table 1. Figure 3 visualizes sample realizations
of the stochastic model (37) for each scenario, showing how safety beliefs sharpen or fluctuate as the lander descends.

We run 100 Monte Carlo simulations using the parameters given in Table 2. For time discretizations, we use Δ𝑡 = 4
s for guidance times 𝑡𝑖 and Δ𝑡 = 20 s for sensing times 𝑡𝑘 . The first terrain sensing is made at 𝑡0, and the final sensing is
made at 𝑡𝑁 = 60 sec, totaling four sensing opportunities.

B. Analysis
For each scenario, we compare the proposed reachability-steering guidance policy with a greedy baseline that, at

every sensing step, selects as its target the currently safest site within the reachable set. The probability of safe landing is
evaluated for the safest reachable target in the final sensing opportunity (16), and Table 3 reports the mean and standard
deviation of this probability over repeated stochastic realizations of the safety-belief process. The proposed method is
tested for several values of the normalized hyperparameter

𝜌 =
𝜆𝑘

(𝛽𝐷𝑘)2
, (38)

which defines the one-step utility in (28) and effectively controls the trade-off between exploiting the currently best site
𝐽best and preserving divert options 𝐽divert.

When the isolated site A is only moderately more promising than the cluster (scenario A07), the greedy policy
often commits early to a single site based on noisy, high-altitude information and therefore exhibits a noticeably lower
final probability of safety. In contrast, the reachability-steering policy consistently improves the final outcome for
𝜌 ∈ [0.5, 10] by explicitly valuing future divert options and information gain. In higher-safety scenarios (A08–A09),
where site A is already strongly favored a priori, both strategies achieve similar performance, although overly large
values of 𝜌 (e.g., 𝜌 = 100) can make the guidance excessively conservative and slightly reduce the achieved probability
of safety.

Figure 4 provides additional insight by plotting the 𝑥–𝑧 projections of all simulated trajectories for each scenario and
each value of 𝜌. Under the greedy baseline (left column), trajectories tend to steer strongly toward the site currently
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Table 3 Final probability of safety for the selected landing site under the greedy baseline and the proposed
method with varying 𝜆. Values denote mean ± standard deviation.

Scenario Greedy 𝜌 = 0.5 5 10 100
A09 0.873 ± 0.005 0.873 ± 0.006 0.875 ± 0.005 0.874 ± 0.005 0.829 ± 0.009
A08 0.789 ± 0.013 0.774 ± 0.024 0.793 ± 0.011 0.780 ± 0.013 0.720 ± 0.009
A07 0.698 ± 0.016 0.698 ± 0.030 0.723 ± 0.009 0.721 ± 0.009 0.720 ± 0.009

estimated safest, leading to early commitment with limited opportunities for sensing other sites and divert maneuvers.
As 𝜌 increases from 0.5 to 5 and 10, the proposed policy keeps the lander closer to the center of the admissible corridor
for more of the descent, delaying commitment until the safety beliefs become more informative, which explains the
improved statistics in Table 3.

The interaction between target-region selection and sensing is illustrated in Figs. 5 and 6 for scenario A07. Each
figure shows the nadir sensor footprint and the selected target region over four consecutive sensing steps for several
representative Monte-Carlo runs. In Fig. 5, with 𝜌 = 5.0, the reachability-steering guidance initially chooses target
regions that simultaneously contain multiple candidate sites within the field of view. This design enables the lander to
refine the safety estimates of several sites in parallel while remaining in states from which divert maneuvers to different
sites are still feasible. As the beliefs converge and one of the clustered sites B1–B3 emerges as clearly preferable, the
target region shrinks and shifts to enclose that site, and the FOV footprint correspondingly contracts around the selected
landing region.

Figure 6 shows the same visualization for the greedy baseline. Here, the target region is typically placed directly
over the site with the highest instantaneous safety estimate. As a consequence, the FOV footprint often excludes
alternative candidates after only one or two sensing steps, and the admissible divert options narrow rapidly. When the
early estimates are overly optimistic for the isolated site A or one particular clustered site, the greedy policy has little
opportunity to collect additional evidence elsewhere, which can lead to a lower final probability of safety.

Finally, Fig. 7 aggregates the footprints and target regions over all scenarios and values of 𝜌. The reachability-steering
guidance generates a family of nested footprints that gradually contract while repeatedly covering the clustered region,
indicating that several safe divert paths are intentionally kept open until late in the descent. In contrast, the greedy
strategy produces footprint trails that quickly commit to a single site. This qualitative difference in how the two policies
trade off exploitation and exploration is consistent with the quantitative trends in Table 3: moderate values of 𝜌 lead to
trajectories that are more resilient to unfavorable realizations of the safety-belief process, while excessively large 𝜌

values yield diminishing returns and can even be slightly detrimental due to overconservative motion.
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Fig. 4 All trajectories for each scenario with 100 Monte Carlo realizations of safety probability.
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Fig. 5 FOV and selected target regions for selected Monte-Carlo runs for proposed approach in A07 scenario with 𝜌 = 5.0.
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Fig. 6 FOV and selected target regions for selected Monte-Carlo runs for greedy approach.
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Fig. 7 All records of FOV and target regions for all cases.
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VII. Conclusion
This paper introduced the powered descent decision-making (PDDM) problem, in which a lander must select a

terminal landing site and descent trajectory so as to maximize the probability of a safe landing under uncertain terrain
safety. We modeled PDDM as a partially observable Markov decision process, where the lander’s control actions
jointly influence reachability of candidate sites, field-of-view visibility, and the evolution of a stochastic safety-belief
map. Direct dynamic programming over this belief- and set-valued state is computationally intractable, motivating a
structured approximation.

To address this challenge, we proposed a reachability-steering hazard detection and avoidance (HDA) guidance
algorithm. At each sensing step, the algorithm selects a convex target region on the surface using a one-step utility
function that balances the currently safest candidate site against the divert options. The utility is evaluated over a
visibility-safe reachable surface obtained by tightening the glide-slope constraint, which guarantees recursive feasibility
by ensuring that all candidate landing sites remain within the sensor footprint throughout the descent. Given the
selected target region, a convex optimal guidance problem based on lossless convexification is solved using precomputed
controllable sets, enabling fast onboard trajectory optimization with guaranteed satisfaction of soft-landing constraints.

The offline computation of controllable sets is made tractable by representing them as constrained zonotopes, which
are closed under the affine dynamics, Minkowski difference, and intersection operations needed for the backward
recursion. This set-based structure links PDDM to recent advances in robust and resilient control, and provides a
reusable library of controllable sets that can be indexed online by the desired sensing state and target-region parameters.

Numerical simulations in a simplified hazard environment with one isolated site and a cluster of nearby sites illustrate
the behavior of the proposed guidance strategy. When early safety-belief information is ambiguous, the greedy baseline
often commits prematurely to the isolated site based on noisy high-altitude data, leading to a lower final probability of
safety. In contrast, the reachability-steering algorithm with moderate divert weighting maintains multiple safe divert
options, repeatedly revisits the clustered region, and achieves a higher probability that the final landing site is safe. For
cases in which one site is clearly superior from the outset, both methods perform similarly, while excessively large
divert weights can introduce mild overconservatism. These results support the interpretation of the proposed algorithm
as a principled interpolation between pure exploitation and explicit preservation of divert options.

Appendix

A. Greedy HDA
A simple approach is to keep updating the landing target as the safest landing site within the reachable surface. We

call this approach greedy HDA, and show that it is optimal under the assumption that

𝑠𝑘 = 𝑠𝑘+1 = · · · = 𝑠𝑁 . (39)

Proposition 1 (Open-Loop Optimality under Static Belief) If the safety-belief map remains unchanged after step 𝑘 ,
then for all 𝑗 ∈ {𝑘, . . . , 𝑁}

𝑉 𝜋∗ (𝑥 𝑗 , 𝑠 𝑗 ) = max
𝛾∈R 𝑗

𝑠 𝑗 (𝛾) (40)

and the optimal policy is the greedy HDA: at each step 𝑗 , select 𝑈 𝑗 so that the next state preserves reachability of a
maximizer of 𝑠 𝑗 over R 𝑗 . Equivalently, the optimal control profile can be chosen in open loop by first selecting

𝛾∗ ∈ arg max
𝛾∈R𝑘

𝑐𝑘 (𝛾), (41)

and then executing any admissible control sequence that lands at 𝛾∗ while satisfying all constraints.

Proof. With static belief, 𝑠 𝑗+1 = 𝑠 𝑗 , the Bellman recursion reduces to 𝑉 𝜋∗ (𝑥 𝑗 , 𝑠 𝑗 ) = max𝑈 𝑗
𝑉 𝜋∗ (𝑥 𝑗+1, 𝑠 𝑗 ). At 𝑗 = 𝑁 ,

𝑉 𝜋∗ (𝑥𝑁 , 𝑠𝑁 ) = max𝛾∈R𝑁
𝑐𝑁 (𝛾). By induction, suppose the claim holds at 𝑗 + 1. Then

𝑉 𝜋∗ (𝑥 𝑗 , 𝑠 𝑗 )
𝑠 𝑗+1=𝑠 𝑗
= max

𝑈 𝑗

(
max
𝛾∈R 𝑗+1

𝑠 𝑗 (𝛾)
)

= max
𝛾∈∪𝑈𝑗

R 𝑗+1
𝑠 𝑗 (𝛾) = max

𝛾∈R 𝑗

𝑠 𝑗 (𝛾).
(42)
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At each step 𝑗 , an optimal 𝑈 𝑗 is one that maintains reachability of a safest site. Because the maximizer set does not
change across 𝑗 (𝑠 𝑗 = 𝑠𝑘 and R 𝑗 ⊆ R𝑘 for 𝑗 ∈ {𝑘, . . . , 𝑁}), the initial choice 𝛾∗ at step 𝑘 determines the entire optimal
trajectory. Any admissible open-loop sequence that lands at 𝛾∗ is therefore optimal, which proves both claims.

Remark VII.1 When the safety map will not improve with future sensing, exploration has no value. The HDA problem
collapses to a one-shot target selection followed by open-loop steering, and feedback only matters when future sensing
updates the belief map.
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