
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Reinforcement Learning for Robust Athletic Intelligence:
Lessons from the 2nd “AI Olympics with RealAIGym”

Competition
Wiebe, Felix; Turcato, Niccolò; Dalla Libera, Alberto; Seong Bjorn Choe, Jean; Choi, Bumkyu;
Faust, Tim Lukas; Maraqten, Habib; Aghadavoodi, Erfan; Cali, Marco; Sinigaglia, Alberto;

Giacomuzzo, Giulio; Carli, Ruggero; Romeres, Diego; Kim, Jong-kook; Susto, Gian Antonio; Vyas,
Shubham; Mronga, Dennis; Belousov, Boris; Peters, Jan; Kirchner, Frank; Kumar, Shivesh

TR2026-013 January 14, 2026

Abstract
In robotics many different approaches ranging from classical planning over optimal control to
reinforcement learning (RL) are developed and borrowed from other fields to achieve reliable
control in diverse tasks. In order to get a clear understanding of their individual strengths and
weaknesses and their applicability in real-world robotic scenarios it is important to benchmark
and compare their performances not only in a simulation but also on real hardware. The
‘2nd AI Olympics with RealAIGym’ competition was held at the IROS 2024 conference to
contribute to this cause and evaluate different controllers according to their ability to solve a
dynamic control problem on an underactuated double pendulum system (Fig. 1) with chaotic
dynamics. This paper describes the four different RL methods submitted by the participating
teams, presents their performance in the swing-up task on a real double pendulum, measured
against various criteria, and discusses their transferability from simulation to real hardware
and their robustness to external disturbances.

IEEE Robotics & Automation Magazine 2026

c© 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Reinforcement Learning for Robust Athletic Intelligence: Lessons from
the 2nd “AI Olympics with RealAIGym” Competition

Felix Wiebe1, Niccolò Turcato2, Alberto Dalla Libera2, Jean Seong Bjorn Choe3, Bumkyu Choi3,
Tim Lukas Faust6, Habib Maraqten6, Erfan Aghadavoodi4, Marco Cali2, Alberto Sinigaglia2,

Giulio Giacomuzzo2, Ruggero Carli2, Diego Romeres5, Jong-kook Kim3, Gian Antonio Susto2,
Shubham Vyas1, Dennis Mronga1, Boris Belousov4, Jan Peters4,6,9,10, Frank Kirchner1,7 and Shivesh Kumar1,8

Abstract— In robotics many different approaches ranging
from classical planning over optimal control to reinforcement
learning (RL) are developed and borrowed from other fields to
achieve reliable control in diverse tasks. In order to get a clear
understanding of their individual strengths and weaknesses
and their applicability in real-world robotic scenarios it is
important to benchmark and compare their performances not
only in a simulation but also on real hardware. The ‘2nd
AI Olympics with RealAIGym’ competition was held at the
IROS 2024 conference to contribute to this cause and evaluate
different controllers according to their ability to solve a dynamic
control problem on an underactuated double pendulum system
(Fig. 1) with chaotic dynamics. This paper describes the four
different RL methods submitted by the participating teams,
presents their performance in the swing-up task on a real double
pendulum, measured against various criteria, and discusses
their transferability from simulation to real hardware and their
robustness to external disturbances.

I. INTRODUCTION

There are many frameworks for comparing control meth-
ods in simulation environments (e.g., [1], [2]) but seldom
provide a standardized real robot environment which is open
and easily reproducible such as [3] with a three-end-effector
robot for manipulation tasks. The RealAIGym project [4]
focuses on simple, low degree of freedom systems capable
of dynamic behaviors, such as a simple pendulum [5],
AcroMonk [6] and the dual purpose double pendulum [7]
used in this competition. With the software and hardware be-
ing open source and a user friendly Python API, RealAIGym
intends to be an open benchmarking platform for comparing
control methods on real hardware. This is the second iteration
of this competition following the first held at the IJCAI 2023
conference [8].

The four best performing control algorithms submitted to
this competition are all based on different variants of rein-
forcement learning (RL). This paper presents these methods,

1Robotics Innovation Center, German Research Center for Artificial
Intelligence (DFKI), Germany

2Department of Information Engineering, University of Padova, Italy
3Korea University, Seoul, South Korea
4Systems AI for Robot Learning, German Research Center for Artificial

Intelligence (DFKI), Germany
5Mitsubishi Electric Research Lab (MERL), USA
6Technical University of Darmstadt, Germany
7University of Bremen, Germany
8Chalmers University of Technology, Sweden
9Center for Cognitive Science, Germany
10Hessian.AI, Germany

Fig. 1: Double pendulum hardware (left), the pendulum being
disturbed with a stick at the conference site (top right) and
participating teams (bottom right) at IROS 2024.

which have been chosen or developed by the teams for this
task, and their results in the context of this competition.
The competition is designed to evaluate the control methods’
robustness on real hardware, requiring them to successfully
bridge the simulation reality gap and to be robust to unknown
external disturbances. RL for real-world robotic applications
still faces open challenges such as sample efficiency and
training stability, long-horizon tasks, principled approaches,
leveraging foundation models, real-world learning and real-
world benchmarking [9]. The latter two are addressed in
this competition by the four finalist controllers with different
algorithmic approaches (Table I), which were submitted and
tuned by the participating teams and compared by means of
the competitions’ objective.

TABLE I: Algorithms submitted to the competition.

Sim. usage Model learning Policy opt. Model repr.
MC-PILCO no sim. model-based offline RBF network
AR-EAPO zero-shot model-free on-policy MLP
EvolSAC zero-shot model-free off-policy MLP

HistorySAC few-shot model-free off-policy CNN

II. COMPETITION RULES

1) Test system: The competition was conducted with the
dual purpose double pendulum system introduced in [7]

which can be operated as an acrobot or pendubot without
changing the hardware. The pendulum is built with two
quasi-direct drives (AK80-6 t-motors from Cubemars1) and
ready-made carbon fiber sandwich panels as links. The used
system had an attached mass of 0.5 kg and link lengths
of 0.2m and 0.3m. Model parameters identified with least
squares optimization were provided to the participants, but
the teams were free to do their own system identification.

2) Task: For the competition acrobot and pendubot were
treated as separate challenges and evaluated in separate
tracks. The task on both systems is to swing up the pendulum
from the free hanging position to the upright position and
stabilize it there. Each trial lasts for 10 s and is considered
successful if, in the end, the end-effector is at a height
above the threshold of 0.45 cm above the base. To test the
controllers’ robustness, external perturbations are applied on
both motors during the execution.

3) Procedure: The competition was carried out in three
phases: (i) A simulation phase, (ii) a remote hardware phase
and (iii) an onsite phase. In the simulation phase the partic-
ipants were asked to develop a controller for the swing-up
and balance task on the acrobot and/or pendubot system and
integrate it into the double pendulum toolkit on github2. After
the simulation phase, the four best performing controllers
were advanced to the next phase. In the remote hardware
phase, the teams got the opportunity to login to a PC in our
lab and remotely operate the pendulum hardware to test their
controllers and collect position, velocity and torque data from
the real system along with live video feed. The third phase
took place on site at the IROS 2024 conference, where the
teams were able to fine-tune their controllers before the final
evaluation.

4) Evaluation: The evaluation of the controllers is based
on different criteria from which two scores, the performance
score and the robustness score, are calculated.

The performance score measures how fast, smooth and
efficient the controller solves the swing-up and balance task
and is calculated as

Sp = csucc

1− 1

5

∑
i∈{t,e,τc,τs,v}

tanh (wici)

 (1)

based on the swing-up success csucc ∈ {0, 1}, the swing-up
time ct, the used energy ce, the torque cost cτc , the torque
smoothness cτs and the velocity cost cv . These quantities are
normalized with the weights in Table II and scaled with the
tanh function to the interval [0, 1].

The robustness score is a simulation-only score and mea-
sures the controllers’ robustness to unmodeled effects:

Sr = 1− 1

6

∑
i∈{m,vn,τn,τr,d,p}

ci (2)

with the criteria model inaccuracies cm, measurement noise
cv,n, torque noise cτ,n, torque response cτ,r and time delay
cd (all adopted from [7]) as well as random perturbations

1https://www.cubemars.com/
2https://github.com/dfki-ric-underactuated-lab/double pendulum

cp which are randomly generated sequences of Gaussian
perturbations added to the applied torque. For each criterion
the severity of the external influence is varied in N = 21
steps (for the model inaccuracies for each independent model
parameter) and the ci are the percentage of failed swing-ups
under these circumstances. For the perturbation criterion 50
random perturbations profiles are generated and evaluated.

The simulation phase controllers are evaluated with both,
the performance score Sp and the robustness score Sr.
For the hardware phases, the performance score, Sp, eval-
uates and ranks the controllers. During the experiments,
the controllers had to showcase their robustness by reacting
to unknown external perturbations consisting of Gaussian
torque profiles on both motors at random times. The teams
were allowed to use up to 0.5Nm torque on the passive joint
for friction compensation. Each controller was tested in 10
trials and the final score is the average of the individual
scores.

TABLE II: Weights for the performance score (1).

wt wE wτc wτs wv

Simulation π/20 π/60 π/20 10π π/400
Hardware π/20 π/60 π/100 π/4.0 π/400

III. ALGORITHMS

Four teams advanced to the final round of the competition
and tested their control methods on the real hardware. This
section briefly introduces the four methods and how they
approached the task to improve robustness.

A. MC-PILCO

MC-PILCO (Monte Carlo - Probabilistic Inference for
Learning COntrol) [10] is a model-based policy gradient RL
algorithm. MC-PILCO relies on Gaussian Processes (GPs) to
learn the system dynamics from data, and updates the policy
by means of particle-based policy gradient optimization. Let
xt and ut be, respectively, the state and input of the system
at step t. A cost function c(xt) encodes the task to solve. In
the case of regulation tasks, like the ones of this competition,
c(xt) expresses the distance from the goal state xg . In this
work, we adopted the exponentially saturated distance used
also in [10] and [11] for the double pendulum swing-up task.
A policy πθ : x → u parametrized by θ selects the inputs
applied to the system. The objective is to find the policy
parameters θ∗ which minimize the cumulative expected cost:

J(θ) =

T∑
t=0

E[c(xt)], x0 ∼ p(x0). (3)

MC-PILCO iterates attempts to solve the objective task,
also called trials. Each trial is composed of three main
steps: (i) model learning, (ii) policy update, and (iii) policy
execution. At the first trial, model learning is executed with
data collected with an exploration policy, e.g., an exploration
policy or a baseline controller. Fig. 2 illustrates the main
details of each phase. In the following, we briefly describe

https://www.cubemars.com/
https://github.com/dfki-ric-underactuated-lab/double_pendulum

Fig. 2: Schematic representation of the robust MC-PILCO algorithm. Each episode is composed of (i) model learning, (ii)
policy update and (iii) policy execution.

the model learning and policy optimization implemented for
this competition.

Model learning: In this phase, previous experience is
used to derive a one-step-ahead dynamics model, namely,
a model that maps the tuple (xt,ut) in the next state
xt+1. MC-PILCO relies on Gaussian process regression,
thus obtaining a stochastic model. By the properties of GPs,
p(xt+1|xt,ut), the posterior distribution of xt+1 given data
and (xt,ut) is Gaussian, with mean and variance in closed-
form expressions.

Policy optimization: MC-PILCO implements a gradient-
based optimization of θ to minimize the cost in (3). The
expectation in (3) is computed w.r.t. the distribution induced
by the initial state distribution p(x0), p(xt+1|xt,ut) returned
by the model learning phase, and the current policy param-
eters θ. Notice that this expectation involves long-term-state
distributions that can not be computed in closed form. Then,
MC-PILCO approximates (3) by Monte Carlo sampling.
At each gradient descent step, the algorithm simulates the
evolution of M particles, by sampling from p(x0) and
p(xt+1|xt,ut), with ut = πθ(xt). Finally, the algorithm
approximates (3) with the particles’ cumulative cost sample
mean. The gradient is obtained by backpropagation and used
to update θ.

For the sake of the competition, we modified the particles’
sampling strategy to increase the policy’s robustness to input
disturbances. At each Monte Carlo simulation, for each par-
ticle m = 1, . . . ,M , we compute a disturbance profile δ̂

(m)

t ,
, t = 0, . . . , T , sampled from the known disturbance profile
distribution. Subsequently, the next particle state at time
t+1 is sampled from p(xt+1|xt, πθ(xt)+ ˆdelta

(m)

t) instead

from p(xt+1|xt, πθ(xt)). Fig. 2 visualizes the particles’
simulation designed for this competition. By considering
input disturbances in the particles’ simulation, the algorithm
promotes the derivation of policies robust to such effects.

B. AR-EAPO

Average-Reward Entropy Advantage Policy Optimization
(AR-EAPO) [12] is a model-free RL algorithm that extends
Entropy Advantage Policy Optimization (EAPO) [13], a
maximum entropy (MaxEnt) on-policy actor-critic algorithm,
into the average-reward setting.

AR-EAPO tackles the challenge of applying model-free
RL to this complex problem by formulating the system as a
recurrent Markov Decision Process (MDP), where every state
is reachable from every other state in a finite number of steps.
With the formulation, instead of using discounted cumulative
rewards, AR-EAPO optimizes for long-term average rewards.
This approach enables the use of straightforward reward
functions aiming for long-term optimality rather than sophis-
ticated reward functions for discounted settings. Here, the
proposed solution utilizes a simple quadratic cost function.

Specifically, the objective of AR-EAPO is to find the
optimal policy π∗ that maximizes the entropy regularized
(soft) gain ρ̃π – the sum of expected average reward ρπ and
average entropy ρπH for a stationary policy π:

ρ̃π(s) := lim
T→∞

1

T
Es0=s,

st∼π

[∑T−1
t=0 rt − τ log π(at|st)

]
, (4)

where st is the state of the MDP at time t, at is the action
at time t, rt is the reward received at time t, and τ is the

temperature. We omit the dependency on s in (4) since the
gain is independent of the start state in unichain MDPs.

Building upon EAPO’s separation of reward and en-
tropy objectives, we define the reward vector r̃π(s, a) :=
[r(s, a),−τ log π(a|s)]⊺. The soft gain (4) can then be
expressed as ρ̃π =: 1⊺ρ̃π where ρ̃π = [ρπ, ρπH]⊺ consists
of the long-term averages of each reward component. This
formulation explicitly treats the reward gain ρπ and the
entropy gain ρπH as separate quantities that are combined
to form the overall objective (4).

The concept of bias value functions ṽπ(s) is then intro-
duced as the solutions to the Bellman policy expectation
equations [14]:

ṽπ(s) + ρ̃π = E
a∼π

[r̃π(s, a) + Es′ [ṽ
π(s′)]] , (5)

which simultaneously captures both the reward and entropy
bias functions. We finally define the advantage functions
Ãπ(s, a) := r̃π(s, a)− ρ̃π + Es′ [ṽ

π(s′)]− ṽπ(s).
The gain approximations at iteration k, denoted ρ̃k, are

updated using the advantage estimates from samples at
iteration k: ρ̃k+1 ← ρ̃k + ηEi∼D[Ã

π(si, ai)], where D
represents the collected trajectories at the iteration, and η
is the step size hyperparameter.

In practice, AR-EAPO samples state-action pairs (st, at)
from rollout trajectories D using a parameterized policy
πθ and estimates the advantage functions Ãπ(st, at) using
generalized advantage estimation (GAE) [15] with hyperpa-
rameters λ. The algorithm employs a critic parameterized
by ϕ to approximate the bias functions ṽπ(st), while the
gain estimates ρ̃π are iteratively updated according to the
advantage-based rule described above. This approach ef-
fectively extends the well-established proximal policy op-
timization (PPO) [16] to the average-reward MaxEnt setting,
maintaining PPO’s stability while optimizing for long-term
average performance. Fig. 3 summarizes the complete algo-
rithm.

In the double pendulum system, AR-EAPO demonstrates
an interesting learning pattern. While the cost objective
drives the controller to develop an efficient swing-up policy,
the entropy component prevents the pendulum from remain-
ing stationary at the uppermost position (Fig. 3). Instead, it
encourages movement toward lower positions where average
entropy is higher. Therefore, through these endless swing-
ups and downs, the average-reward MaxEnt RL formulation
naturally promotes diverse trajectories, thereby achieving a
robust control policy.

C. EvolSAC

The evolutionary soft actor critic (EvolSAC) algorithm
integrates model-free deep RL with evolutionary strategies
to optimize control performance in both simulation and real
hardware stages. EvolSAC is presented in more detail in [17].

The core algorithm is Soft Actor-Critic (SAC) [18], a state-
of-the-art model-free RL algorithm designed for continuous
action spaces. SAC optimizes a stochastic policy by max-
imizing both the expected reward and the entropy of the

Fig. 3: Illustration of AR-EAPO in the double pendulum
system: learning efficient and robust control in an infinite
loop of swing-ups while balancing the cost and the entropy.

policy, which promotes exploration and robustness. SAC’s
objective function is defined as:

J(π) = Est,at∼π

[∑
t

γt (r(st, at) + αH(π(·|st)))

]
, (6)

where γ is the discount factor, r(st, at) is the reward func-
tion, α is a temperature parameter that weighs the importance
of the entropy term H, encouraging the policy to explore a
wide range of actions.

The initial stage of the methodology involves training the
SAC agent with a physics-inspired surrogate reward function.
This function is designed to approximate the complex objec-
tives of the competition, which includes factors like swing-
up success, energy consumption, and torque smoothness. The
surrogate reward function aims to guide the agent towards
achieving the swing-up task while managing the energy costs
effectively:

R(s, a) =


V + α[1 + cos(θ2)]

2 − βT

−ρ1a2 − ϕ1∆a , if y > yth

V − ρ2a
2 − ϕ2∆a− η||ṡ||2 , otherwise

where α, β, ϕ, η, ρ are hyperparameters used to control the
trade-offs.

To address the challenge of optimizing a policy for both
performance and robustness, the methodology incorporates
evolutionary strategies in the later stages of training. Evolu-
tionary strategies are gradient-free optimization methods that
are particularly effective in scenarios where the landscape

Fig. 4: Summary of training for EvolSAC. Left: SAC training
for optimal policy, right: Evolutionary selection of high
scoring and robust policies.

of the objective function is rugged or noisy. One specific
strategy used is the Separable Natural Evolution Strategy
(SNES) [19], which updates mutation strengths using a log-
normal distribution, allowing efficient exploration of the
parameter space:[

σnew,i

θnew,i

]
=

[
σold,i exp (τN (0, 1) + τ ′N (0, 1)i)

θold,i + σnew,iN (0, 1)i

]
(7)

where τ, τ ′ are learning rates controlling the mutation rate.
SNES is used to fine-tune the policy obtained from SAC,

directly optimizing against the competition’s score function
defined in (1). This two-step process, initial training with
SAC followed by fine-tuning with SNES, ensures that the
developed controller is not only effective in achieving the
desired task but also robust against various disturbances and
model inaccuracies. The overall training strategy is illustrated
in Fig. 4.

D. HistorySAC

This section proposes HistorySAC, a solution for the
challenge that combines the Soft Actor-Critic algorithm [18]
with a method for learning temporal features from past
velocity observations.

Inferring system parameters of a chaotic system, such as
the masses of both links, is challenging by only including the
information of a transition between two states. In contrast
to the original implementation of SAC, we aim to utilize
measurements that reach further into the past, i.e. we incor-
porate a sequence of multiple past observations of velocities
into the computation of our actor and critic networks. The
velocities of eleven previous and the current time step are
encoded in a learned temporal context (see 5) by leveraging
convolutional and linear layers. The learned context is sub-
sequently concatenated with the current state before feeding
it into the actor and critic networks respectively (Fig. 5).
For each encoding the context, we use two 1-dimensional
convolutional layers with a kernel size of five and an output
size of twelve, followed by two linear layers with a width
of 256, where the first uses a ReLU and the second uses a

Action

Conv Conv FC FC

SAC
Actor

Current
Measurement

Past Velocity
Measurements

Learned Context

+

Fig. 5: The model architecture for encoding the history
into a context representation in HistorySAC. A sequence of
past velocity measurements is passed through convolutional
(Conv) and fully-connected (FC) layers, and the output is
attached to the current measurement before being passed to
the actor and critic in SAC.

tanh activation function. Kernel and layer sizes were found
empirically. The underlying reinforcement learning algorithm
is the Stable-Baselines3 implementation of SAC [1], but with
a layer size of 1024 instead of the original 256 for the fully-
connected layers. It is important to note that the networks of
actor and critic do not share parameters.

The training uses the reward function

R2(s, a) = −0.05 ·
(
(q1 − π)2 + q22

)
−

[
0.02 ·

(
q̇21 + q̇22

)
+ 0.25 ·

(
a2 + 2|a|

)
+ 0.02 ·

∣∣∣∣a− aprev

dt

∣∣∣∣+ 0.05 · (q̇i · a)β
]
,

with the state s being the angles of both joints q1 and q2, and
their derivatives. A regularization term (squared brackets) is
subtracted which includes the angular velocities, the agent’s
action a and the previous action aprev. For pendubot, β was
set to β = 0.1 and q̇i = q̇1 and for acrobot β = 0.025
and q̇i = q̇2. In this application it turned out that providing
the agent with negative values (punishments) instead of
positive values (rewards) leads to better performance and
higher robustness. Having the highest possible value of the
reward function at 0 makes learning the Q-function much
more stable than having an optimal value that is positive,
since a successful swing-up policy does not suddenly change
the Q-values of all previous states and thus prevents policy
degradation after learning successful swing-ups.

Successful swing-up attempts on the real system using
a policy that was purely trained in simulation require an
accurate identification of the physical parameters of the
double pendulum model. Differential Evolution [20], which
is a gradient-free optimization algorithm, was used to op-
timize for the physical parameters of the simulated dou-
ble pendulum θm to minimize the sim-to-real gap. The
cost function for the optimization was chosen to be an
importance-weighted squared error between simulated and

real trajectories:

J(θm) =

Ntraj∑
i=1

Ti∑
t=1

m∑
j=1

(
1− 0.5 (t− 1)

Ti − 1

)
×
(
x
(i)
sim,j [t; θm]− x

(i)
real,j [t]

)2

.

(8)

Here m = 4 the number of state indices, Ti is the time steps
in a trajectory, and Ntraj the number of trajectories.

Data from the real system was collected using swing-
up policies that were trained in simulation for acrobot and
pendubot. The torque time series from these real system
trajectories is then used to create trajectories on the simulated
system, resulting in pairs of trajectories for a single torque
curve, xreal

1:T and xsim
1:T . The first round brackets in (8) denote

a time-dependent weight. The weighting decreases linearly
over the trimmed trajectory from 1 to 0.5, so that later
points in the trajectory with a larger error accumulation have
less impact. Since a solution for the optimization problem
becomes increasingly difficult to find with a longer trajectory,
only the first 1.5 seconds of each trajectory are consid-
ered in the optimization. For the training process, a multi-
environment strategy, incorporating multiple solutions of the
previous system identification process, prevented overfitting
on a single environment.

IV. RESULTS

The specifications for the training process of the four RL
methods are listed in table III and the computed scoring
criteria and final scores for all controllers are visualized in
Fig. 6. Data, figures and videos of the individual attempts
can be found on the online leaderboards3. The accompanying
video of this paper shows the swing-ups in simulation and
on the real hardware as well as the controllers robustness to
disturbances induced by hitting the pendulum with a stick.

A. Acrobot

In the simulation phase HistorySAC and AR-EAPO
showed the best performances (0.66 and 0.63) with a fast
swing-up below 1 s, little and smooth torque usage and low
velocities. They also showed good robustness results (0.75
and 0.73) especially concerning robustness to torque noise,
torque responsiveness and delay. Like all other controllers,
they were most sensitive to velocity noise. EvolSAC showed
convincing results as well (perf. 0.52, robust. 0.69) only
slightly behind HistorySAC and AR-EAPO. MC-PILCO was
the least efficient controller of these four (perf. 0.31), with
a higher energy usage an a less smooth torque signal.
In the robustness score MC-PILCO was highly sensitive
across most criteria except for torque responsiveness and
perturbations (robust. 0.24).

In the hardware phase, the model-based algorithm MC-
PILCO was trained based on recorded data from the real
system which resulted in a policy which captured knowl-
edge about effects which are not considered in the simple
mathematical model. The policy proved to be very robust to

3https://dfki-ric-underactuated-lab.github.io/real ai gym leaderboard/

the unknown external perturbations and MC-PILCO achieved
10/10 successful swing-ups (hardware avg. score 0.36). The
swing-up trajectory of the highest scoring attempt is shown
in Fig. 7b. AR-EAPO achieved even better scores in all
five criteria but only managed 8/10 successful swing-ups
resulting in a better best trial but a very close second
place in the average score (avg. score 0.34). HistorySAC
achieved only 1/10 swing-ups in the final evaluation (avg.
score 0.03) and for EvolSAC the simulation-reality gap was
too significant to swing-up the real acrobot system (avg.
score 0.00).

B. Pendubot

On the pendubot, all four controllers showed similar
performances in swing-up time and energy usage. EvolSAC
is the only one with a significantly higher torque cost and
MC-PILCO the only one with a significantly higher torque
smoothness value and velocity cost. This results in similar
performance scores (HistorySAC: 0.68, AR-EAPO: 0.66,
EvolSAC: 0.60, MC-PILCO: 0.48). In the robustness metrics,
MC-PILCO again was sensitive to modeling errors and delay.
AR-EAPO was quite robust to modeling errors and also very
robust to random perturbations (100% success). This resulted
in good robustness scores for all controllers (AR-EAPO:
0.91, EvolSAC: 0.79, HistorySAC: 0.77, MC-PILCO: 0.61)
and AR-EAPO winning this category.

On the real hardware, MC-PILCO and AR-EAPO showed
very convincing performances with 10/10 successful swing-
ups and good scores in the individual criteria. Here, AR-
EAPO took the win with a very slight margin (AR-EAPO:
0.65, MC-PILCO: 0.64). The best AR-EAPO trial is shown
in Fig. 7c. HistorySAC also showed respectable results with
7/10 swing-ups (avg. score: 0.34). The EvolSAC team was
not able to attend the conference and thus did not fine-tune
the controller for the onsite setup, but EvolSAC was still
successful 2/10 times (avg. score: 0.07).

TABLE III: Training specifications.

Training System Time GPU Control Freq.
MC-PILCO 3− 4 h 30− 40 s RTX 4090 33Hz
AR-EAPO ≈ 100min - RTX 3080 500Hz
EvolSAC ≈ 16 h∗ - Titan XP 500Hz

HistorySAC 3− 4 h 15 s RTX 4070 500Hz
∗8h of training the on the GPU and 8h of evolutionary opt. on CPU

V. DISCUSSION

In the simulation stage, the MC-PILCO controllers were
trained with data only from the nominal plant used for perfor-
mance scoring, without considering environmental variations
of the robustness tests, thus reducing model learning reli-
ability. However, MC-PILCO effectiveness highly depends
on the model learning accuracy, hence, the poor robust-
ness scores. In particular, the failure rate of the “model
inaccuracies” benchmark is very high. On the real system,
instead, the actual plant is fixed, thus model learning returns
much accurate models, with benefits for policy effectiveness.
The computational complexity of the stochastic Gaussian

https://dfki-ric-underactuated-lab.github.io/real_ai_gym_leaderboard/

time
0

1
s

energy
0

10

20

J

model
0

50

100

%

vel. noise
0

50

100

%

τ noise
0

50

100

%

time
0

5s

energy
0

20

40

J

τ cost
0

10

20

N
2
m

2

τ cost
0

2

N
2
m

2

τ smooth.
0.00

0.05

0.10
N

m

τ resp.
0

50

100

%

delay
0

50

100

%

perturbations
0

50

100

%

τ smooth.
0.00

0.25

0.50

N
m

vel. cost
0

200

m
2
/
s
2

vel. cost
0

100

200

m
2
/
s
2

score
0.0

0.5

1.0

score
0.0

0.5

1.0

successful
0

5

10

N
o.

best score
0.0

0.5

1.0

avg. score
0.0

0.5

1.0

time
0.0

0.5

1.0

s

energy
0

5

10

J

model
0

50

100

%

vel. noise
0

50

100

%

τ noise
0

50

100

%

time
0.0

2.5

5.0

s

energy
0

10

20

J

τ cost
0

10

N
2
m

2

τ cost
0

2

4

N
2
m

2

τ smooth.
0.00

0.02

0.04

N
m

τ resp.
0

50

100

%

delay
0

50

100

%

perturbations
0

50

100

%
τ smooth.

0.0

0.2

0.4

N
m

vel. cost
0

100

200

m
2
/
s
2

vel. cost
0

50

100

m
2
/
s
2

score
0.0

0.5

1.0

score
0.0

0.5

1.0

successful
0

5

10

N
o.

best score
0.0

0.5

1.0

A
cr

ob
ot

Pe
nd

ub
ot

Simulation Robustness Hardware

avg. score
0.0

0.5

1.0

MCPILCO AR-EAPO History SAC EvolSAC

A
cr

ob
ot

Pe
nd

ub
ot

Simulation Robustness Hardware

Fig. 6: All scores of the final round controllers. The simulation and robustness columns are computed from simulation data
while the hardware score is evaluated from experiments on the real system. The robustness criteria are the percentages of
failures in that category. For all criteria lower values are better and result in higher scores with 1.0 being the best achievable
rating.

Process models is proportional to the cube of the control
frequency, but 33Hz is sufficient for the task in this com-
petition. Compared to the model-free RL methods, MC-
PILCO does not suffer from the sim-to-real problem since
the policy is optimized w.r.t. a model learned from data
collected on the actual system. The crucial hyperparameters
concern the optimization problem in the policy update phase,
in particular, performance is very sensitive to changes in
the control frequency, the maximum control torque, and
the horizon length. Most tuning was done by hand, while
referring to similar applications, as the training process takes
considerable time and requires system use.

AR-EAPO demonstrates outstanding robustness across
both simulation and real systems, achieving effective zero-
shot sim-to-real transfer without domain randomization or
model learning. Tuning AR-EAPO requires empirically de-
termining the temperature hyperparameter τ , which controls
the trade-off between task performance and policy robust-
ness. We attribute the policies’ robustness to the algorithm’s
maximum entropy objective in the average-reward setting,
which encourages exploration of diverse trajectories during

training. This diversity appears to make the learned policy
less sensitive to unmodeled dynamics and environmental
variations. However, the relatively weaker performance on
the Acrobot task suggests that the simple quadratic reward
function might induce suboptimal trajectories during swing-
ups. As an on-policy method, AR-EAPO exhibits the ex-
pected sample inefficiency typical of this class of algorithms,
requiring approximately 20M simulator interactions for con-
vergence. However, the algorithm maintains computational
efficiency through vectorized simulations and its relatively
simple algorithmic structure, making it practical for appli-
cations where simulation cost is manageable but real-world
robustness is critical.

While model-free HistorySAC shows competitive perfor-
mance in simulation, it falls behind model-based approaches
on the real system. HistorySAC suffers vastly from the sim-
to-real gap, which makes system identification a necessity
for applying the learned policy on the real system. Temporal
contextualization over multiple past velocity measurements
improved the convergence speed and value when compared
to learning from a single transition between two states.

(a) Snapshots of the experiments.

−π

0.0

π

q
[r

ad
]

Joint 1 Joint 2

−10
0

10

q̇
[r

ad
/s

]

-5.0

0.0

5.0

τ
[N

m
]

0 2 4 6 8 10

time [s]

-0.5

0.5

δτ
[N

m
]

(b) MC-PILCO on the real acrobot system.

−π

0.0

π

q
[r

ad
] Joint 1 Joint 2

−10
0

10

q̇
[r

ad
/s

]

-5.0

0.0

5.0

τ
[N

m
]

0 2 4 6 8 10

time [s]

-0.5

0.5

δτ
[N

m
]

(c) AR-EAPO on the real pendubot system.

Fig. 7: Best swing-up trajectories on the real hardware for acrobot and pendubot. On top there are two rows with snapshots
from the swing-up trajectories. The plots below show, from top to bottom, the evolution of the joint angles, velocities, motor
torques and disturbances.

Network structure as well as past horizon length were de-
termined empirically with focus on performance, efficiency
and learning stability. Domain randomization during training
and system identification afterwards improved the results.

The hybrid RL-Evolutionary approach EvolSAC showed
competitive results in the simulation stage, with both perfor-
mance and robustness scores aligned with the other model-
free approaches. The choice of maximum allowed torque
proved to be crucial, as high torque limits made the system
unstable. Instead, lower torque limits provided more robust
policies. The employed values were tuned with a small
grid search. As shown in [17], evolutionary fine-tuning

improved performance in both systems, while only minimally
reducing robustness scores. Despite the simulated training
incorporated a degree of domain randomization, the sim-to-
real gap heavily impacted the results in the hardware phase,
in particular the acrobot policy completely failed on the real
system.

VI. CONCLUSION

The ’2nd AI Olympics with RealAIGym’ competition at
the IROS 2024 conference gives interesting insights into the
usability of state of the art RL algorithms on a real robotic
system. The fact that all four teams which advanced to the

final round submitted RL controllers reflects that RL is a very
active research field in robotics. The model-based RL method
MC-PILCO achieved very good results with high robustness
by learning very sample-efficiently from data recorded from
the real system and won the acrobot competition track. The
other method which stood out was AR-EAPO, with good
scores on both systems and winning the pendubot category.
Both methods exhibited a high robustness to unknown per-
turbations and even recovered most of the time after being
pushed far away from their nominal path with a stick, proving
to be promising candidates for finding a global swing-up
and balance policy for the underactuated double pendulum
systems. We made sure to make all results available online
and hope that this competition inspires further research
and thorough comparisons of control methods for dynamic
behaviors on underactuated robots with high robustness.

ACKNOWLEDGMENT

The competition organizers at DFKI-RIC (FW, SV, DM,
FK, SK) acknowledge the support of M-RoCK project
funded by the German Aerospace Center (DLR) with federal
funds (Grant Number: FKZ 01IW21002) from the Federal
Ministry of Education and Research (BMBF) and is ad-
ditionally supported with project funds from the federal
state of Bremen for setting up the Underactuated Robotics
Lab (Grant Number: 201-342-04-1/2023-4-1). TV, BB, and
JP acknowledge the grant “Einrichtung eines Labors des
Deutschen Forschungszentrum für Künstliche Intelligenz
(DFKI) an der Technischen Universität Darmstadt” of the
Hessisches Ministerium für Wissenschaft und Kunst. This
research was supported by Research Clusters “The Adaptive
Mind” and “Third Wave of AI”, funded by the Excellence
Program of the Hessian Ministry of Higher Education,
Science, Research and the Arts. Parts of the calculations
for this research were conducted on the Lichtenberg high-
performance computer of the TU Darmstadt. Alberto Dalla
Libera and Giulio Giacomuzzo were supported by PNRR
research activities of the consortium iNEST (Interconnected
North-Est Innovation Ecosystem) funded by the European
Union Next GenerationEU (Piano Nazionale di Ripresa e
Resilienza (PNRR) – Missione 4 Componente 2, Investi-
mento 1.5 – D.D. 1058 23/06/2022, ECS 00000043). This
manuscript reflects only the Authors’ views and opinions,
neither the European Union nor the European Commission
can be considered responsible for them. TV and BB also
thank Daniel Palenicek and Tim Schneider for their support
while performing the experiments on the IAS group’s com-
puting cluster at TU Darmstadt.

REFERENCES

[1] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/
v22/20-1364.html

[2] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The
robot learning benchmark & learning environment,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 3019–3026, 2020.

[3] N. Funk, C. Schaff, R. Madan, T. Yoneda, J. U. De Jesus, J. Watson,
E. K. Gordon, F. Widmaier, S. Bauer, S. S. Srinivasa, T. Bhattacharjee,
M. R. Walter, and J. Peters, “Benchmarking structured policies and
policy optimization for real-world dexterous object manipulation,”
IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 478–485,
2022.

[4] F. Wiebe, S. Vyas, L. J. Maywald, S. Kumar, and F. Kirchner,
“Realaigym: Education and research platform for studying athletic
intelligence,” in Proceedings of Robotics Science and Systems Work-
shop Mind the Gap: Opportunities and Challenges in the Transition
Between Research and Industry, New York, 2022.

[5] F. Wiebe, J. Babel, S. Kumar, S. Vyas, D. Harnack, M. Boukheddimi,
M. Popescu, and F. Kirchner, “Torque-limited simple pendulum: A
toolkit for getting familiar with control algorithms in underactuated
robotics,” Journal of Open Source Software, vol. 7, no. 74, p. 3884,
2022. [Online]. Available: https://doi.org/10.21105/joss.03884

[6] M. Javadi, D. Harnack, P. Stocco, S. Kumar, S. Vyas, D. Pizzutilo,
and F. Kirchner, “Acromonk: A minimalist underactuated brachiating
robot,” IEEE Robotics and Automation Letters, vol. 8, no. 6, pp. 3637–
3644, 2023.

[7] F. Wiebe, S. Kumar, L. J. Shala, S. Vyas, M. Javadi, and F. Kirchner,
“Open source dual-purpose acrobot and pendubot platform: Bench-
marking control algorithms for underactuated robotics,” IEEE Robotics
& Automation Magazine, vol. 31, no. 2, pp. 113–124, 2024.

[8] F. Wiebe, N. Turcato, A. Dalla Libera, C. Zhang, T. Vincent,
S. Vyas, G. Giacomuzzo, R. Carli, D. Romeres, A. Sathuluri,
M. Zimmermann, B. Belousov, J. Peters, F. Kirchner, and S. Kumar,
“Reinforcement learning for athletic intelligence: Lessons from the
1st “ai olympics with realaigym” competition,” in Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence,
IJCAI-24, K. Larson, Ed. International Joint Conferences on
Artificial Intelligence Organization, 8 2024, pp. 8833–8837, demo
Track. [Online]. Available: https://doi.org/10.24963/ijcai.2024/1043

[9] C. Tang, B. Abbatematteo, J. Hu, R. Chandra, R. Martı́n-Martı́n, and
P. Stone, “Deep reinforcement learning for robotics: A survey of real-
world successes,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 39, no. 27, Apr. 2025, pp. 28 694–28 698. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/35095

[10] F. Amadio, A. Dalla Libera, R. Antonello, D. Nikovski, R. Carli,
and D. Romeres, “Model-based policy search using monte carlo
gradient estimation with real systems application,” IEEE Transactions
on Robotics, vol. 38, no. 6, pp. 3879–3898, 2022.

[11] N. Turcato, A. Dalla Libera, G. Giacomuzzo, R. Carli, et al., “Teaching
a robot to toss arbitrary objects with model-based reinforcement
learning,” in 2023 9th International Conference on Control, Decision
and Information Technologies (CoDIT). IEEE, 2023, pp. 1126–1131.

[12] J. S. C. Choe, B. Choi, and J.-k. Kim, “Simplifying reward design in
complex robotics: Average-reward maximum entropy reinforcement
learning,” in 2025 IEEE International Conference on Robotics and
Automation (ICRA), 2025.

[13] J. S. B. Choe and J.-K. Kim, “Maximum entropy on-policy actor-
critic via entropy advantage estimation,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.18143

[14] V. Dewanto, G. Dunn, A. Eshragh, M. Gallagher, and F. Roosta,
“Average-reward model-free reinforcement learning: a systematic re-
view and literature mapping,” arXiv preprint arXiv:2010.08920, 2020.

[15] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” arXiv preprint arXiv:1506.02438, 2015.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[17] M. Calı̀, A. Sinigaglia, N. Turcato, R. Carli, and G. A. Susto, “Ai
olympics challenge with evolutionary soft actor critic,” arXiv preprint
arXiv:2409.01104, 2024.

[18] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861–1870.

[19] T. Schaul, T. Glasmachers, and J. Schmidhuber, “High dimensions and
heavy tails for natural evolution strategies,” in Proceedings of the 13th
annual conference on Genetic and evolutionary computation, 2011, pp.
845–852.

[20] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, pp. 341–359, 1997.

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.21105/joss.03884
https://doi.org/10.24963/ijcai.2024/1043
https://ojs.aaai.org/index.php/AAAI/article/view/35095
https://arxiv.org/abs/2407.18143

	Title Page
	page 2

	
	Introduction
	Competition Rules
	Test system
	Task
	Procedure
	Evaluation

	Algorithms
	MC-PILCO
	AR-EAPO
	EvolSAC
	HistorySAC

	Results
	Acrobot
	Pendubot

	Discussion
	Conclusion
	References

