
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Embracing Cacophony: Explaining and Improving Random
Mixing in Music Source Separation

Jeon, Chang-Bin; Wichern, Gordon; Germain, François G; Le Roux, Jonathan

TR2026-012 January 14, 2026

Abstract
In music source separation, a standard data augmentation technique involves creating new
training examples by randomly combining instrument stems from different songs. However,
these randomly mixed samples lack the natural coherence of real music, as their stems do
not share a consistent beat or tonality, often resulting in a cacophony. Despite this apparent
distribution shift, random mixing has been widely adopted due to its effectiveness. In this
work, we investigate why random mixing improves performance when training a state-of-
the-art music source separation model and analyze the factors that cause performance gains
to plateau despite the theoretically limitless number of possible combinations. We further
explore the impact of beat and tonality mismatches on separation performance. Beyond
analyzing random mixing, we introduce ways to further enhance its effectiveness. First, we
explore a multi-segment sampling strategy that increases the diversity of training examples by
selecting multiple segments for the target source. Second, we incorporate a digital parametric
equalizer, a fundamental tool in music production, to maximize the timbral diversity of
random mixes. Our experiments demonstrate that a model trained with only 100 songs
from the MUSDB18-HQ dataset, combined with our proposed methods, achieves competitive
performance to a BS-RNN model trained with 1,750 additional songs

IEEE Open Journal of Signal Processing 2026

c© 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

<Society logo(s) and publica-
tion title will appear here.>

Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version XX Month, XXXX.

Digital Object Identifier 10.1109/XXXX.2022.1234567

Embracing Cacophony: Explaining
and Improving Random Mixing in

Music Source Separation
Chang-Bin Jeon1, Member, IEEE, Gordon Wichern1, Member, IEEE,

François G. Germain1, Member, IEEE, and Jonathan Le Roux1, Fellow, IEEE
1Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139 USA

Corresponding author: Gordon Wichern (email: wichern@merl.com).

This work was performed while C.-B. Jeon was an intern at MERL. He is currently affiliated with Samsung Electronics.

ABSTRACT In music source separation, a standard data augmentation technique involves creating new
training examples by randomly combining instrument stems from different songs. However, these randomly
mixed samples lack the natural coherence of real music, as their stems do not share a consistent beat
or tonality, often resulting in a cacophony. Despite this apparent distribution shift, random mixing has
been widely adopted due to its effectiveness. In this work, we investigate why random mixing improves
performance when training a state-of-the-art music source separation model and analyze the factors that
cause performance gains to plateau despite the theoretically limitless number of possible combinations. We
further explore the impact of beat and tonality mismatches on separation performance. Beyond analyzing
random mixing, we introduce ways to further enhance its effectiveness. First, we explore a multi-segment
sampling strategy that increases the diversity of training examples by selecting multiple segments for the
target source. Second, we incorporate a digital parametric equalizer, a fundamental tool in music production,
to maximize the timbral diversity of random mixes. Our experiments demonstrate that a model trained
with only 100 songs from the MUSDB18-HQ dataset, combined with our proposed methods, achieves
competitive performance to a BS-RNN model trained with 1,750 additional songs.

INDEX TERMS Music source separation, random mixing, data augmentation

I. INTRODUCTION

MUSIC source separation (MSS) has seen tremendous
progress in performance during the deep learning

era, with an ever-growing list of high-performing models
in both the open-source community and commercial ap-
plications [1], [2]. While this success is often credited to
advances in network architectures [3]–[5] and the increasing
availability of public datasets [6]–[8], the contribution of
training pipeline improvements (e.g., data augmentation) has
been largely overlooked and remains poorly understood.
Meanwhile, MSS research continues to suffer from a chronic
lack of large-scale training data. Despite recent efforts to
leverage self-supervised training [9], state-of-the-art MSS
models still require access to substantial supervised data,
where stems (i.e., recordings of the isolated sources) are
available as training targets. This remains challenging due to
practical barriers in recording such data (especially outside

professional studios) and intellectual property concerns. As
a result, MSS datasets are typically small, with MUSDB18-
HQ [6], the most widely used dataset in the field, containing
only 150 songs—approximately 10 hours per stem.

Data augmentation techniques have long been employed to
improve performance, particularly under conditions of lim-
ited training data. Among these, methods relying on the ran-
dom combination of samples have become popular in various
domains due to their simplicity and effectiveness. For exam-
ple, approaches like mixup [10] or cutmix [11] have been
successfully applied to train classifier systems, including
audio models [12]. Similarly, random mixing—combining
randomly selected audio sources—is a staple in learning-
based audio source separation, spanning applications such as
speech enhancement and separation [13]–[15], natural sound
separation [16], and soundtrack separation [17]. Importantly,
in most of these applications, random mixes result in plausi-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

Jeon et al.:

ble sound scenes. The fact that these mixes are conceptually
”in-distribution” with respect to the target task intuitively
justifies their effectiveness during training.

In the MSS literature, however, random mixing often
creates “song snippets” by combining stems from different
songs to form additional training examples [18]. While
widely effective, this technique introduces an apparent para-
dox: during inference, an MSS system will typically be asked
to separate songs with stems that are consistent in terms
of musical attributes such as beat or key. Randomly mixed
stems lack such consistency, often resulting in cacophonous,
“out-of-domain” mixes relative to the target task. Neverthe-
less, random mixing remains standard practice, particularly
in the widely adopted 4-stem separation tasks (vocals, bass,
drums, and other) used in recent challenges [19]–[21]. This
raises questions about the underlying mechanisms driving
its success and its limitations. Furthermore, recent work on
multi-singer separation [22] highlights the unclear justifi-
cation for using random mixing in scenarios where source
consistency (e.g., timbre, pitch, and time) is crucial.

To mitigate this domain mismatch, researchers have pro-
posed alternative or complementary data augmentation tech-
niques. Synthesized stems generated from publicly available
MIDI songs [7] produce diverse, consistent mixtures, while
pitch-shifting and time-stretching combined with random
mixing [4] aim to align mixtures more closely in key and
beat. Despite these efforts, these methods have yet to con-
sistently outperform random mixing alone. In our previous
paper [23], we first aimed to clarify why random mixing
remains effective despite the distribution shift it introduces
by considering the following research questions:

• Why do networks trained with randomly mixed examples
outperform those trained without random mixing, despite
the apparent distribution shift?

• While random mixing can generate limitless training data,
performance improvements eventually plateau. To what
extent does random mixing yield diminishing returns?

• Consistent beat and tonality are key differences between
random and original mixes. How do these characteristics
affect MSS performance?

In this paper, we investigate each of these questions in greater
depths, and extend our analysis of random mixing to further
include a more practical question: how can the effectiveness
of random mixing be further improved?

To address these questions, we analyze the training dy-
namics of MSS networks with and without random mixing.
We explore the effective number of unique random mixes
during training and evaluate how variations in beat and
tonality across instrument stems affect performance using
pitch- and time-shifted test data. Furthermore, we propose
leveraging a parametric equalizer (EQ) to further increase
the timbre variation of randomly mixed data. Finally, we
examine a multiple-sampling strategy for random mixing that
significantly diversifies source combinations.

This paper focuses on the 4-stem separation task using
MUSDB18-HQ, where stems are correlated in pitch and
time but differ in timbral characteristics. While we leave the
analysis of other MSS tasks for future work, we believe our
findings and conclusions provide valuable insights into the
role of random mixing across diverse separation contexts.

Code for our data augmentation pipeline will be available
online1.

II. Music Source Separation
A. Task Definition
The task of music source separation consists in extracting the
signal of individual sources (typically referred to as stems)
from a musical input mixture. Mathematically, we consider
a mixture signal x as the sum of N stems x(n), i.e.,

x =

N∑
n=1

x(n). (1)

The task consists then in putting together a system (e.g., an
MSS model) which, from input x, generates its best estimate
x̂(n) of x(n) for each n. We note that the definition of
“source” is ambiguous, and musical songs include different
numbers and types of instruments. Subsequently, we adopt
the simplifying convention from the typical 4-stem MSS
task [19]–[21] where we define sources as belonging to a
fixed closed set of N =4 distinct source types, i.e., vocals,
drums, bass, and other. The signal from a given musical
instrument is then found in the stem of its corresponding
source type. We also adopt the typical convention that all
signals are stereo (i.e., 2-channel) signals.

B. Experimental Setup: Models
TFC-TDF-UNet v3: To make our analysis as current as
possible, we use the state-of-the-art TFC-TDF-UNet v3
architecture [24], winner of the recent 2023 MDX Challenge
Leaderboard A [21]. The model takes as input the short-
time Fourier transform (STFT) of the mixture signal x,
outputs an estimated STFT for all sources, and is trained
using mean-squared error loss between the waveforms of
the estimated stems (obtained as the inverse STFT of the
network output) and the ground-truth stem waveforms. In our
experiments, we use the same TFC-TDF-UNet v3 settings
and hyperparameters that were used to train the model on
the MUSDB18-HQ dataset in the original paper, including
the use of 6-second training chunks with completely silent
target chunks removed, overlap-add at inference time, model
exponential moving average (EMA) [25], and automatic
mixed precision training [26]. We only change the batch
size to 4 to fit the model on a single 24 GB memory
GPU. Every model instance was trained for 470k steps.
Additionally, we employ loudness normalization [27] to
minimize the domain mismatch in terms of loudness, by
normalizing all mixes to −14 LUFS without applying a

1https://github.com/merlresearch/embracing-cacophony

2 VOLUME ,

https://github.com/merlresearch/embracing-cacophony

<Society logo(s) and publication title will appear here.>

limiter. We also use pitch-shift data augmentation [28] on all
training mixes to best match the state-of-the-art configuration
in [24]. Specifically, we randomly select a pitch shift in
{−3,−2,−1, 0, 1, 2, 3} semitones to be applied to each stem,
in an inconsistent manner. When this augmentation is applied
to the original mixes, we adopt a consistent strategy where
the same pitch shift amount is uniformly applied to all the
stems. A comparative analysis between the consistent and
inconsistent strategies is presented in Section IV.
Open-Unmix: We also train Open-Unmix [1] for a few
experiments to check whether our findings on TFC-TDF-
UNet v3 also apply to other architectures. Unlike TFC-TDF-
UNet v3, which is a CNN-based architecture that directly
uses the complex spectrogram as input and output, Open-
Unmix operates on the magnitude spectrogram, produces a
magnitude mask that is combined with the mixture phase to
produce a source estimate, and consists of three Bi-LSTM
layers with skip connections. We follow the training setting
of the original implementation2 and use the early stopping
based on the validation loss; specifically, we stop the training
when the validation loss does not decrease for 80 epochs,
where 1 epoch consists of 64 iterations. The batch size for
each iteration is 16 and we use a single 24 GB memory GPU
to match the experiments for TFC-TDF-UNet v3. We also
add pitch-shift data augmentation [28] to the Open-Unmix
training setup to maintain parity with the TFC-TDF-UNet
v3 recipe.

C. Experimental Setup: Data and Metrics
MUSDB18-HQ [6] consists of 150 songs split into a 100
song training set and a 50 song test set (3.5 hours). Following
common practice, we divide the training set using 86 songs
for training (5.3 hours) and 14 for validation (1.0 hours).

We use the source-to-distortion ratio (SDR) [29] imple-
mented in museval [19] and median of frames, median of
tracks, which is a standard criteria in 4-stem music source
separation [19]. However, for the few experiments (Fig. 2)
that require hundreds of evaluations for every 10k training
steps, we use instead the more computationally efficient SDR
metric proposed at the recent SDX challenge [21], which is
defined as,

SDR
(n)

= 10 log10
||x(n)

L ||2 + ||x
(n)
R ||2

||x(n)
L − x̂

(n)
L ||2 + ||x

(n)
R − x̂

(n)
R ||2

, (2)

where x
(n)
L and x

(n)
R stand for the target source of the left

and right channel of stem n, respectively. In this paper, we
denote this score as SDR. Except in Fig. 1 and Fig. 4, all
scores are averaged across the 4 stems.

D. Random Mixing Augmentation
Since music with isolated stem data is difficult to acquire,
researchers have used various data augmentation methods
to maximize the potential of small public datasets. As

2https://github.com/sigsep/open-unmix-pytorch

described in the introduction, the focus of this paper is
random mixing augmentation [18]. Formally, we have a
dataset S = {sm,m = 1, . . . ,M} of M songs, where
each song sm is composed of N stems s

(n)
m , following the

relationship in (1), i.e., sm(t) =
∑N

n=1 s
(n)
m (t),∀t. During

training, we create original mixes by sampling, for the i-th
training sample, a song mi and a start time τi, defining a
mixture xi and corresponding stems x

(n)
i as

xi(t) =

N∑
n=1

x
(n)
i (t) =

N∑
n=1

s(n)mi
(t+ τi), (3)

where t ∈ [0, T] and T corresponds here to a 6 second
excerpt. Note that, in (3), the start time τi is constant across
stems and all stems come from the same song indexed by
mi.

Alternatively, we can create random mixes during training
by sampling a different song mi,n and a different start time
τi,n for each stem n, defining the i-th training sample as

xi(t) =

N∑
n=1

x
(n)
i (t) =

N∑
n=1

s(n)mi,n
(t+ τi,n). (4)

This enables the creation of unique and varied input random
mixtures at each training iteration, even with a small amount
of stem data.

III. Should we include original mixes at all?
A. Influence of the Ratio of Original Mixes
We experiment with various combinations of original and
random mixes during model training to investigate how
original mixes contribute to a network’s final performance.
Specifically, we set a probability p for each experiment such
that each mix in a batch of training data is sampled as an
original mix with probability p and as a random mix with
probability 1−p.

When random mixing was first used in the context of
music source separation [18], the performance gain was
found to be only 0.2 dB SDR (BLSTM-1 in Table 2 of
[18]). However, we observe a 2.1 dB gain when training
with only random mixes (p=0.0) compared to training with
only original mixes (p=1.0) (see Fig. 1). We contend that
this is due to a much more expressive model architecture:
TFC-TDF-UNet v3 is a deep U-Net with 70M parameters,
whereas BLSTM-1 is a shallow recurrent network with a
single BLSTM layer. This allows our model to learn more
diverse features from the infinitely many augmented mixes.
Somewhat surprisingly, performance degrades consistently
as more original mixes are added to the training data, starting
from the the p = 0.0 model. While one may have thought
that adding some amount of musically realistic “in-domain”
data would have been beneficial, this does not appear to be
the case for this model.

Interestingly, in Fig. 1, using random mixes even with
only a probability of 0.1 (p = 0.9) results in a substantial
performance gain of 1.0 dB. Since we train models with
batch size B=4 for I=470k iterations, a total of 1 880 000

VOLUME , 3

Jeon et al.:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average ratio p of original mixes in batches

4

5

6

7

8

9

10

SD
R

[d
B]

vocals
bass
drums
other
avg

FIGURE 1. Test SDR for TFC-TDF-UNet v3 networks trained with different
ratios of original and random mixes. ‘p=1.0’ corresponds to the model
trained solely with original mixes and ‘p=0.0’ to the model trained solely
with random mixes.

different mixes are generated over the duration of the train-
ing. That is, the p = 0.9 model has learned significantly
meaningful information from only 188 000 randomly mixed
training examples. This leads to the necessity for further
investigations on the effective number of random mixes,
which we will discuss in Section III.C.

B. Training Dynamics Comparison
In Fig. 2, we compare the performance of three models
(p ∈ {1.0, 0.5, 0.0}) over the course of training, measured
every 10k iterations. Performance is evaluated on four sets
consisting of either original mixes or random mixes, gener-
ated from either training or validation data. These sets are
generated once and fixed across training iterations. To match
the training setting, evaluations are performed on 6-second
chunks (for original mixes, songs are split without overlap).
For each stem’s evaluation, random mixes are generated
independently across 3 different seeds to marginalize the
influence of randomness, resulting in twelve times as many
chunks as the original mixes.

Noticeably, for the model only trained with original mixes
(p = 1.0), shown in the blue curves in Fig. 2, the scores
on original mixes in the training set are increasing while
the scores on random mixes in the training set and both
conditions in the validation set are decreasing. That is, the
model trained without using random mixes easily overfits to
the training data. On the other hand, models trained with at
least some random mixes (p=0.5 and p=0.0, shown in the
orange curves with the medium gap and the green curves
with the largest gap, respectively) do not appear to overfit.

In Fig. 2(a), we also observe that the p=0.5 model (the
medium gap dashed orange curve) performs better than the
p= 0.0 model (the largest gap dashed green curve) on the
original mixes from the training set, while performing worse
on the validation original mixes in Fig. 2(b). We conjecture
this is because the p=0.5 model has seen the same mixes
too many times during training, which we explore in more
detail in Section III.C.

0 1 2 3 4
Iterations ×105

10

11

12

13

14

15

16

17

18

SD
Ri

 [d
B]

p=0.0 rand
p=0.0 orig
p=0.5 rand
p=0.5 orig
p=1.0 rand
p=1.0 orig

(a) Training set mixes

0 1 2 3 4
Iterations ×105

10

11

12

13

14

15

16

17

18

SD
Ri

 [d
B]

(b) Validation set mixes

FIGURE 2. Average SDR improvement during training as measured on
sets of random (dashed lines) and original mixes (dash-dotted lines) for
three different models. In the legend, ‘rand’ and ‘orig’ mean sets of mixes
that the SDRi scores were measured on for each model. For example,
‘p = 0.5 orig’ is a model trained using p = 0.5, evaluated every 10k
iterations on original mixes. The model trained with only original mixes
(p=1.0) overfits to the training data. Other models trained with random
mixes (p=0.5 and p=0.0) do not.

C. Influence of the Number and Variety of Random Mixes
In this section, we investigate the amount of random mixes
needed for effective training. first define a number NR of
unique random mixes as a fraction R (in %) of the total
number I × B of training examples (which as discussed
previously is 1 880 000). We then train models by sampling
training examples only from those fixed NR random mixes,
repeating them throughout training until we reach I × B
samples, without using any original mixes. In Fig. 3(a), we
see that even when the model is trained with only R = 10%
of the total random mixes (i.e., NR = 188 000), there is
almost no decrease in performance. This result somewhat
explains the performance gain of the p = 0.9 model in
Fig. 1, where 188 000 random mixes used in conjunction
with original mixes were actually enough to train a model
with competitive performance. On the other hand, it is
also noticeable that the final performance of the p = 0.9
model from Fig. 1 (7.2 dB SDR) is far below that of the
model trained solely by repeating the 10% of fixed random
mixes from Fig. 3(a) (8.2 dB). This likely indicates that the
model trained with p = 0.9 original mixes overfits to the
original mixes. It is also possible that original mixes are less
informative for model training, which we will investigate
further in Section IV.

In Fig. 3(b), we create the same fixed number of random
mixes NR, but sample training stems from a reduced dataset
obtained by randomly selecting about half of the songs from
the 86 training songs in MUSDB18-HQ. We repeat the song
selection and random mix creation with 3 different random
seeds, where the reduced dataset’s length was 2.3, 2.6, and
3.0 hours. The shaded regions in the figure show the standard
deviation across seeds. Similarly to Fig. 3(a), Fig. 3(b) also
confirms that training with 10% of fixed random mixes
is comparable to using a unique random mix for each
training sample (100%). Furthermore, it is noteworthy that

4 VOLUME ,

<Society logo(s) and publication title will appear here.>

10
0301031

Ratio of used random mixes [%]

6.0

6.5

7.0

7.5

8.0

SD
R

[d
B]

(a) With full data

10
0301031

Ratio of used random mixes [%]

6.0

6.5

7.0

7.5

8.0

SD
R

[d
B]

(b) With reduced data

FIGURE 3. Test SDR when varying the amount of random mixes created
from (a) the full training data and (b) a reduced set of songs. Models are
trained by repeatedly sampling batches from this fixed set of random
mixes for I = 470k iterations, with the size of this set indicated on the
x-axis as a ratio R % to the total number of training examples.

just repeatedly using 90 hours of random mixes obtained
from 86 songs (the 3% setting in Fig. 3(a)) performs on
par or better than using about 3000 hours of never-repeating
random mixes from the reduced song data (100% setting
in Fig. 3(b)). It thus appears that a small amount of random
mixes composed of stems from a larger set of songs performs
better than a large amount of random mixes composed of
stems from a smaller set of songs. Thus, the diversity or
novelty of random mixes may be more important than their
amount; data augmentation alone is not enough, fresh data
is necessary for future improvements.

D. Applicability to Other Models
To validate that the presented results extend beyond the TFC-
TDF-UNet v3 architecture, we perform an additional training
experiment where we vary p similar to Fig. 1, this time using
the popular Open-Unmix network [1]. The behavior shown
in Fig. 4 is largely similar to the result from TFC-TDF-UNet
v3 (Fig 1), with the model benefiting from the inclusion of
random mixes in the training data, as performance improves
when starting from p = 1.0 and decreasing p. However, in
contrast with TFC-TDF-UNet v3 where performance steadily
increase and best performance was achieved at p = 0.0,
performance for Open-Unmix saturates at p = 0.6 (5.4 dB
SDR on avg) then remains roughly steady, obtaining 5.3 dB
at p = 0.0. We speculate this difference may be due
to the smaller size of Open-Unmix, which has only 14M
trainable parameters, compared to 70M for TFC-TDF-UNet
v3. That is, a larger model capacity may be able to better
take advantage of the increased data diversity from random
mixing. It is also noteworthy that the result at p = 0.0 from
Open-Unmix (5.3 dB) does not outperform the original result
(5.4 dB) reported in the paper [1], even though we train the
model with additional pitch-shift augmentation [28] while
keeping all other settings the same. Again, we speculate
that Open-Unmix may not have the capacity to benefit
from pitch-shift augmentation during training, while larger

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average ratio p of original mixes in batches

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

SD
R

[d
B]

vocals
bass
drums
other
avg

FIGURE 4. Test SDR for Open-Unmix networks trained with different
ratios of original and random mixes. Compared to Fig. 1, the highest
performance on avg is observed at p = 0.6 rather than p = 0.0 but there
was no significant difference in performance in the range from p = 0.0 to
p = 0.6. Additionally, the performance gap between p = 0.0 and p = 1.0

was not as large as in Fig. 1.

models such as TFC-TDF-UNet v3 do benefit from such
augmentations.

IV. Influence of Consistent Beat and Tonality
In this section, we analyze how consistent beat and tonality
across different mixture stems affect performance in music
source separation.

A. Influence of Consistent Beat and Tonality in
Evaluation
In Fig. 5, on the test set of MUSDB18-HQ, we apply
(a) timing shift and (b) pitch shift to each stem to form
mixtures that have (a) inconsistent beat and (b) inconsistent
tonality, respectively, even as all stems are from the original
song. Specifically, timing shift parameters for each stem are
sampled from uniform distribution U(−ts, ts), where ts is
the range of timing shift (x-axis in Fig. 5(a)). Pitch shift
values in semitones are discretely sampled up to a maximum
shift of 3 semitones up or down, as shown in the x-axis in
Fig. 5(b). For each parameter, 3 different random seeds are
used. Then, we separate the mixtures using the p=0.0 and
p= 1.0 models from Fig. 1, i.e., models trained with only
random and only original mixes, respectively.

In Fig. 5(a), we observe that test sets with inconsistent beat
are easier to separate (i.e., higher SDR). Even when timing
shift parameters are smaller than STFT parameters (e.g., a
shift of ts = 30ms is smaller than both the 186ms FFT
size and 46ms hop size of the model), performance starts
to increase. When ts = 1 s, the performance gain is almost
0.9 dB. We also confirm that inconsistent tonality from pitch
shifting makes source separation much easier in Fig. 5(b),
as we observe improvements up to 1.0 dB. In addition, it
is noteworthy that the p = 0.0 model benefits more than
the p = 1.0 model in these experiments. This should be
expected, because the p = 0.0 model was trained on random

VOLUME , 5

Jeon et al.:

10
0030

0
10

030103

no
 sh

ift

Timing shift range [ms]

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5
SD

R
[d

B]
p=0.0
p=1.0

(a) Inconsistent beat

no
 sh

ift

-1
~ +1

-2
~ +2

-3
~ +3

Pitch shift range [semitones]

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

SD
R

[d
B]

p=0.0
p=1.0

(b) Inconsistent tonality

FIGURE 5. Test SDR for various (a) timing and (b) pitch modified test sets
using the models trained with only original mixes (p=1.0) or only random
mixes (p=0.0) from Fig. 1. Solid lines show the average across test sets
generated from 3 different random seeds, and the shaded regions show
the standard deviation.

no
 sh

ift 3 10 30 10
0

30
0

10
00

Timing shift range [ms]

6.0

6.2

6.4

6.6

6.8

7.0

SD
R

[d
B]

(a) Inconsistent beat

-3
~ +3

-2
~ +2

-1
~ +1

Pitch shift range [semitones]

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

SD
R

[d
B]

inconsistent
consistent

(b) Inconsistent tonality

FIGURE 6. Test SDR of models trained on original mixes with (a) slightly
shifted timing or (b) inconsistent tonality across stems.

mixes with inconsistent beat and tonality while the p = 1.0
model was not, so the distribution shift between training and
test data would be much smaller for the p = 0.0 model.

B. Influence of Consistent Beat and Tonality in Training
Furthermore, we investigate the effects of timing and pitch
shift during training, but evaluated on the unmodified
MUSDB18-HQ test set. In Fig. 6(a), we train models without
random mixing but with slight timing shifts applied to each
stem during training, and add the ts = ∞ case, where 6-
second training samples can come from anywhere in the
same song, i.e., within-song random mixing. We observe
that, for shifts greater than 100ms, which is longer than the
STFT hop size, the scores of the models start to increase,
reaching 6.8 dB SDR at ts = 1 s shift. Furthermore, while
within-song random mixing (ts = ∞) shows the highest
6.9 dB SDR, as expected given that it allows for the most
diversity, it is only 0.1 dB higher than the ts = 1 s shift.
Compared to the full random mixing across songs (p = 0.0
model), which obtains 8.2 dB SDR, it is notable that within-

TABLE 1. Test SDR (mean ± standard deviation in [dB]) for models

trained with 2.7 hours of data consisting in chunks from original songs

(i.e., “original mixes” with consistent beat and tonality), chunks from

randomly made songs (song-level mixing of stems with inconsistent beat

and tonality), and R = 0.09% of fixed random mixes (which corresponds

to the same amount of data as the previous two cases but obtained from a

wider variety of stems)

.
Training data vocals bass drums other avg

Original 7.4± 0.1 5.4± 0.1 6.6± 0.1 4.7± 0.1 6.1± 0.1

Random (song-level) −0.9± 0.9 −1.4± 1.0 2.2± 2.2 3.0± 0.6 0.7± 1.1

Random (R = 0.09%) 5.4± 0.1 5.1± 0.1 5.9± 0.1 4.0± 0.1 5.1± 0.0

song random mixing leads to a significant performance
decrease of 1.3 dB, underlining the impact of increasing the
diversity of the pool of songs from which random mixes are
created.

Fig. 6(b) displays results after training with only original
mixes, but applying pitch shifts to each stem in both a
‘consistent’ manner (same pitch shift applied to each stem,
see Section II.B and an ‘inconsistent’ manner (different
pitch shift applied to each stem). Scores increase with larger
amounts of pitch shift for both cases, with inconsistent pitch
shift providing a notable improvement. The best consistent
pitch shifting (6.2 dB, obtained for the largest pitch shift
range, which corresponds to the p=1.0 model from Fig. 1)
is much worse than the best inconsistent one, suggesting
that inconsistent tonality between stems during training is an
important component of random mixing. Still, we note that
even the best-scoring configurations of within-song random
mixing and original mixes with inconsistent tonality in
Fig. 6(a) and Fig. 6(b) score clearly worse than full random
mixing even when random mixing was used the least in our
experiments (p = 0.9 in Fig. 1).

C. When Does Domain Consistency Matter?: Training
with Song-Level Random Mixes
In Table 1, to further investigate how domain mismatch
affects the performance of MSS networks, we randomly
choose stems from different songs in the train set of
MUSDB18-HQ and mix them to make a dataset of 86 beat-
and tonality-inconsistent songs from which training chunks
will be sampled (until now, random mixing was at the 6-
second chunk level, resulting in many more possibilities).
For each song, the four chosen stems are trimmed to match
the shortest one. This results in new datasets of random
songs or song-level random mixes across 3 random seeds
that each have length of 2.7 hours. Then, we train models
on the random songs without random mixing (similarly to
the p= 1.0 model in Fig. 1) and compare them to models
trained on the original songs. For fair comparison, we use
3 random 2.7 hour subsets obtained by randomly trimming
each original song. Lastly, we train models with 2.7 hours of
fixed random mixes, which corresponds to the R = 0.09 %
condition from the experiment in Fig. 3, to compare the

6 VOLUME ,

<Society logo(s) and publication title will appear here.>

100 75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

100
rand mix
orig mix (segments)
orig mix (full song)

(a) R = 1%

100 75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

100
rand mix
orig mix (segments)
orig mix (full song)

(b) R = 3%

100 75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

100
rand mix
orig mix (segments)
orig mix (full song)

(c) R = 10%

FIGURE 7. T-SNE plots of original and fixed random mixes with varying ratios of fixed random mixes. Blue dots represent random mixes, while orange
‘x’ markers and green crosses indicate original mixes at the segment level and song level, respectively. Notably, as the ratio increases, the distributions
of original and fixed random mixes exhibit greater overlap. This supports the assumption that a sufficiently large number of random mixes can
approximate the characteristics of original music throughout training. Furthermore, by exposing models to interpolated training examples, a sufficiently
diverse set of random mixes can potentially enhance final performance.

performance of the models trained with random songs and
the same amount of random mixes.

Surprisingly, data with inconsistent beat and tonality (Ran-
dom (song-level)) leads to significant performance degra-
dation compared to consistent beat and tonality (Original),
dropping from 6.1 dB to 0.7 dB SDR. In contrast, a model
trained using 2.7 hours of fixed random mixes obtained
at the 6-second chunk level (R = 0.09%, the last row in
Table 1), where the training examples are likely much more
diverse, obtained 5.1 dB SDR. This implies that the domain
consistency matters in music source separation, all the more
so as data diversity becomes limited. This could explain why,
in the task of vocal harmony separation where consistency
is arguably even stronger, random mixing was found to be
detrimental on a small dataset (104 minutes) in [30], but
significantly beneficial on a much larger one (400 hours)
in [22].

D. Why Does Music Source Separation Benefit from
Cacophony?
Until now, we have confirmed how consistent beat and
tonality of a mixture affect music source separation in
both the test phase (Fig. 5) and training phase (Fig. 6 and
Table 1). Furthermore, we have observed that musical (i.e.,
non-random) mixes can be beneficial when data is limited
(Table 1). However, it is still unclear why random mixing
augmentation is so powerful in music source separation. To
gain further insight, we conduct a visual analysis using a
recent audio representation learning model.

In Fig. 7, we extract the CLAP [31] vector representations
of random mixes (6-second chunks) corresponding to 1%,
3%, and 10% of the total number of training samples as
well as those of the fixed original mixes (6-second chunks),
and then visualize them through t-SNE [32]. We also include
the full song original mix embeddings, which, following

the default approach from [31], consist of the three 10-
second random chunks from a full song (from the front
1/3, middle 1/3, back 1/3 position) and one chunk with the
entire audio file downsampled to length equivalent to 10
seconds. The low-dimensional visualizations in each subplot
are fit separately using both original and random mixes.
We use CLAP embeddings because CLAP provides task-
independent audio representations that capture the general
acoustic and semantic characteristics of music, and provides
better subjective score than competing embedding models
in [33]. Thus, we believe it is suitable for analyzing dis-
tributional similarity between random and original mixes in
a model-agnostic manner. We chose t-SNE because of its
ability to cleanly visualize clusters compared to competing
techniques such as UMAP [34], as we first expected that
random and original mixes would form clearly separated
clusters due to their distinctive nature in terms of beat and
tonal consistency. However, as can be seen in Fig. 7(c),
it is clearly noticeable that original mixes are spread over
the distribution of random mixes. At the same time, we
can consider that random mixes are covering the overall
distribution of original mixes while also interpolating diverse
small clusters of original mixes.

Through the lens of these t-SNE plots, it is also possi-
ble to explain the results that we previously discussed in
Section III.C, where we saw that, when the data is limited,
for example when the data pool where random mixes come
from is small or the number of random mixes is small,
the diversity of random mixes is reduced. Indeed, when
comparing Fig. 7(a) and Fig. 7(b) to Fig. 7(c), we can clearly
confirm that, as the diversity decreases by using a smaller
percentage R of random mixes, the number of random
mixes that interpolate the small clusters of original mixes is
decreased and the random mixes form independent clusters
rather than interpolating original mixes. Those independent

VOLUME , 7

Jeon et al.:

100 101 102 103 104

Frequency [Hz]

120

100

80

60

40

20

0
M

ag
ni

tu
de

 [d
B]

(a)

100 101 102 103 104

Frequency [Hz]

100

80

60

40

20

0

20

M
ag

ni
tu

de
 [d

B]
(b)

FIGURE 8. Average frequency curves of (a) the 86 songs in the training
dataset and (b) their spectra after applying a Savitsky-Golay filter. Shaded
regions depict the standard deviations.

clusters are likely less helpful than original mixes for final
performance due to domain mismatch.

V. Influence of Timbre
Timbre, the color of tone, is also one of the main aspects that
constitutes music along with beat and tonality. Nevertheless,
it is difficult to analyze the effect of timbre in music
source separation because timbre is an abstract characteristic
rather than a computationally defined one, and using random
mixes is already introducing diverse combinations of timbre
to models. In this section, we raise two specific research
questions regarding timbre. (i) Do models learn and get
familiar with the overall timbre of training data? If so, would
it be helpful to explicitly manipulate the timbre of test inputs
so that it matches the average timbre of training data? (ii)
Does explicitly manipulating timbre during training benefit
music source separation performance? To this end, we ex-
periment with directly manipulating the frequency response
of network inputs using a parametric equalizer (EQ) during
inference (Section V.A) and training (Section V.B). Note that
what we mainly manipulate here is the average frequency
response of a song, a feature that is highly correlated with
timbre but may be slightly different because it does not
contain time-varying characteristics.

A. Manipulating Timbre during Inference
To minimize the timbre-wise domain mismatch between
training and test data, we apply EQ normalization [35],
[36] so that inputs at the inference stage can mimic the
average frequency response of training data. This experiment
is based on two hypotheses: i) separation networks are able to
learn the overall frequency response of collections of training
examples, ii) such networks can achieve better performance
when given an input which has closer overall frequency to
training data.

We use the following experimental process: 1) Capture a
reference spectrum from a collection of training data sam-
ples, either full songs of original mixes, chunks of original
mixes, or chunks of random mixes; 2) At inference stage,
calculate an FIR filter that alters the overall input spectrum

TABLE 2. Test SDR [dB] when using EQ normalization during inference.

p EQ Norm Ref. Spec. vocals bass drums other avg

1.0

- - 7.6 5.6 6.7 4.8 6.2

✓

orig. mixes
(full song)

7.5 4.6 6.6 4.6 5.8

orig. mixes
(chunks)

7.5 4.7 6.5 4.5 5.8

rand. mixes 7.5 4.6 6.5 4.6 5.8

0.0

- - 9.6 8.1 8.7 6.6 8.2

✓

orig. mixes
(full song)

9.5 7.5 8.4 6.8 8.0

orig. mixes
(chunks)

9.5 7.3 8.4 6.6 7.9

rand. mixes 9.5 7.5 8.4 6.7 8.0

to the reference spectrum, and apply that filter to the input;
3) Process the normalized input with separation networks
trained with p = 0.0 (random mixes) or p = 1.0 (original
mixes); 4) Apply the inverse filter to the outputs of the
separation networks. For the detailed procedures on how to
obtain and apply the filters, we follow the EQ normalization
methods in [36]. Figure 8(a) depicts the average frequency
curves from 86 original songs in the training dataset, and
Fig. 8(b) shows their spectra after applying a Savitsky-Golay
filter for smoothing [37]. In our preliminary experiments,
we observed that the SDR scores of the final outputs of this
procedure significantly degraded while the perceptual quality
of the network outputs remained fine, because of the phase
mismatch caused by the filtering. We thus apply the filter
and the inverse filter to the ground-truth sources based on
the reference spectrum to avoid any phase-related issues.

The results obtained when applying EQ normalization
during inference are reported in Table 2. Both for models
trained with p = 0.0 (random mixes) and p = 1.0 (original
mixes), EQ normalization does not show any performance
improvements except for the other stem of the p = 0.0
model. These experimental results seem to show that our
hypothesis that separation networks are able to learn the
timbre of training data does not hold. We consider that this
may be because timbre is over-simplified in our experiments.
Since timbre should reflect the momentary frequency distri-
bution, it is difficult to say that accurately reflecting it can
be achieved by matching the overall frequency to a single
target spectrum. Additionally, because the TFC-TDF-UNet
v3 we use handles input starting from a localized part of
spectrograms rather than the entire sequence, the diversity
of momentary timbre presented to the network may have
been too varied. This could have made it challenging for the
network to learn to perform well with any single reference
spectrum. Nevertheless, it is noteworthy that EQ normaliza-
tion provided a performance improvement for the other stem.
This may be because the other category inherently contains

8 VOLUME ,

<Society logo(s) and publication title will appear here.>

Algorithm 1 EQ Augmentation
1: procedure EQAUG(x)
2: log10 Fls ∼ U(log10 Flsmin , log10 Flsmax)
3: log10 Fhs ∼ U(log10 Fhsmin , log10 Fhsmax)
4: Qls, Qhs ← Qmin(Qmax/Qmin)

z, z ∼ U(0, 1)
5: Gls, Ghs ∼ U(Gmin, Gmax)
6: Sample kp ∈ [0, kpmax]
7: if kp is not 0 then
8: Divide [Fls, Fhs] into kp regions spaced evenly

on a logarithmic scale, and set each region’s center
frequency as Fck .

9: for k ← 1 to kp do
10: Fk ∼ N (Fck , F

j
ck
)

11: Fk ← min{Fpmax ,max{Fpmin , Fk}
12: Qk ← Qmin(Qmax/Qmin)

z, z ∼ U(0, 1)
13: Gk ∼ U(Gmin, Gmax)
14: end for
15: end if
16: Apply filters for x
17: end procedure

a much broader range of instruments and timbral variations
compared to vocals, bass, or drums. EQ normalization might
have helped mitigate such variability by partially aligning
their overall spectral characteristics, which could explain
why the effect was observed only for the other stem. Future
work could explore more detailed computational proxies
(e.g., MFCCs) to better capture timbral characteristics and
validate our findings.

B. EQ Augmentation: Diversifying Timbre during Training
To maximize the diversity of timbre, we propose to use an
EQ augmentation technique when generating random mixes
for training. Specifically, the EQ augmentation (EQAug-
ment) can be performed on two different levels, on the stems
and on the mixture. Both of them are straight-forward in
terms of music production; engineers often apply EQ on
stems or each instrument to control the timbre of each source,
while they use EQ on mixtures to manipulate the overall
tone characteristic of a whole music. In our training data
generation process, we newly introduce a probability qind of
applying EQ at the individual-stem level, and a probability
qmix of applying EQ at the mixture level, for a given batch
element.

Although EQ is a fundamental signal processor to manip-
ulate timbre and has been used as a data augmentation in a
few modern signal processing literature, such as in speech
enhancement [38], [39] or speech self-supervised models
[40], it has been rarely used in music source separation,
except for a few attempts such as [41]. We describe our
method for using EQ for data augmentation when training
music source separation networks in Algorithm 1. We first
set the cutoff frequencies of low and high shelf filters,
Fls and Fhs, by uniformly sampling them in the intervals

TABLE 3. Hyperparameters for EQ Augmentation. The unit of frequencies

(F) is [Hz].

Flsmin
Fhsmax Fhsmin

Fhsmax Fpmin Fpmax kpmax j

50 150 6000 12000 50 10000 4 0.75

TABLE 4. Hyperparameters of EQ Augmentation for individual stems and

mixture. The unit of gains (G) is [dB].

Stem Mixture

Qmin Qmax Gmin Gmax Qmin Qmax Gmin Gmax

5.0 0.7 -9.0 9.0 3.0 0.7 -6.0 6.0

[Flsmin , Flsmax] and [Fhsmin , Fhsmax], respectively. Then, we
randomly choose their gains (Gls and Ghs) by uniformly
sampling them in [Gmin, Gmax]. For peaking EQ, we sample
the number of peaking filters kp between 1 and kpmax , and
divide the frequency regions [Fls, Fhs] into kp regions spaced
evenly on a logarithmic scale. It should be noted that the
symbol p in this section indicates peaking filter parameters,
and should not be confused with the symbol p used in Fig. 1,
Fig. 4, and previous sections to represent the probability of
sampling original mixes during training. We denote the k-th
region’s center frequency as Fck . For each k-th peaking filter,
the cutoff frequency Fk is randomly chosen from a Gaussian
distribution with mean Fck and standard deviation F j

ck
(i.e.,

Fck raised to the power j, where j is a hyperparameter).
Subsequently, to avoid excessively large or small cutoff
frequencies, each sampled Fk is constrained within the range
defined by Fpmin and Fpmax . The quality factors Qk, Qls, and
Qhs are determined randomly following [40], and the gain
Gk is uniformly sampled from [Gmin, Gmax]. Denoting the
k-th peaking EQ filter as f [k], k = 1, . . . , kp, the low shelf
EQ filter as f [0], and the high shelf EQ filter as f [kp+1], we
define the resulting EQ filter as

f̄ =

kp+1∏
k=0

f [k]. (5)

We can randomly sample and define such filters for each
mixture and/or each individual stem in a mixture. Denoting
by y(n) the n-th stem of a mixture as in Eq. 4, a random
EQ filter f̄ (n) can be applied for each individual stem as

y(n)eq = f̄ (n)(y(n)), (6)

with the probability of applying individual-stem filtering to
a batch element denoted as qind (individual-stem EQ is either
applied independently to all stems or to none). Similarly, a
filter f̄ can be applied, with probability qmix, on a mixture
y of individual stems, where these individual stems may
themselves have been already applied individual EQ filters
as described above:

yeq = f̄(y). (7)

VOLUME , 9

Jeon et al.:

TABLE 5. Test SDR [dB] for p = 1.0 models (original mixes only) trained

with EQ augmentation.

p qind qmix Steps vocals bass drums other avg

1.0

0.0 0.0

470k

7.6 5.6 6.7 4.8 6.2

0.5 0.5 8.2 6.5 7.7 5.4 7.0

0.5 0.0 7.8 6.2 7.5 5.3 6.7

0.0 0.5 7.7 5.5 6.8 5.0 6.3

1.0 1.0 8.2 6.5 7.7 5.5 7.0

1.0 0.0 7.9 6.5 8.0 5.4 7.0

0 1 7.9 5.8 6.9 4.9 6.4

TABLE 6. Test SDR [dB] for p = 0.0 models (random mixes only) trained

with EQ augmentation.

p qind qmix Steps vocals bass drums other avg

0.0

0.0 0.0
470k 9.6 8.1 8.7 6.6 8.2
1M 9.7 8.5 8.6 6.9 8.4

0.5 0.5
470k 9.2 8.3 9.0 6.4 8.2
1M 9.9 8.5 9.1 6.9 8.6

0.5 0.0
470k 9.4 8.0 8.8 6.6 8.2
1M 9.7 8.5 8.9 6.8 8.5

0.0 0.5
470k 9.5 8.1 8.8 6.8 8.3
1M 9.8 8.4 8.8 7.0 8.5

1.0 1.0
470k 9.3 8.0 8.7 6.4 8.1
1M 9.6 8.3 9.2 6.9 8.5

1.0 0.0
470k 9.4 8.1 8.6 6.5 8.1
1M 9.8 8.4 9.1 6.8 8.5

0.0 1.0
470k 9.4 8.0 9.0 6.7 8.3
1M 9.7 8.6 8.6 7.0 8.5

Applying EQ at the mixture level is inspired by the mix
bus EQ processing, which is a widely used technique in
music production to achieve better overall sound quality. In
our experiments, we use the standard design of parametric
EQs [42], which are made of second-order IIR filters. It
should also be noted that once f̄ is applied to a mixture,
the same filter must be applied to its corresponding stems to
obtain the ground-truth stems.

EQAugment can be considered as an extension of Fil-
terAugment [43], which was originally proposed for the
sound event detection task. The main difference between
FilterAugment and EQAugment is that EQAugment mainly
uses parametric EQ (i.e., second-order IIR filters), the fun-
damental tool for music production, which brings maximal
timbral diversity without drastically modifying the frequency
response of a given source, e.g., applying a high-pass filter
with a 1 kHz cutoff frequency to a bass stem. Furthermore,
EQAugment is performed on both the mixture and single

(a) Plain mixes (b) Mixes w/ polyphonic bass

FIGURE 9. Average SDR during training on the validation song “ANiMAL -
Rockshow”, which has a polyphonic bass. Models were trained on (a)
plain random mixes, (b) random mixes with multiple sampling of bass
only.

target source levels, while [43] applied filters on a single
source as the task itself did not require any combination
of multiple sources. EQAugment also closely resembles
the random frequency shaping method in [40], which used
parametric EQ for self-supervised learning of speech. The
main difference between that method and EQAugment is that
the number of peaking filters and their cutoff frequencies are
variable in EQAugment to maximally diversify the timbre of
random mixes, while those in [40] are fixed.

We experiment with diverse combinations of qind and qmix,
with hyperparameters shown in Table 3 and Table 4, to
validate the effectiveness of EQ augmentation in training
music source separation networks, as seen in Table 5 and
Table 6. We specifically use pedalboard [44] as our EQ,
which follows the filter design of [42]. As can be seen in
Table 5 and Table 6, EQ augmentation is helpful in both
p = 1.0 and p = 0.0 models. Specifically, the performance
gains are more significant in p = 1.0 models (up to 0.8 dB
for avg) where random mixing is absent during training. For
p = 0.0 models, the gains are negligible in case of models
trained 470k steps (0.1 dB at most). We conjectured that EQ
augmentation introduced more diversity of training data and
would likely require more training steps to be effective. We
thus kept training the models until 1M steps. As expected,
the performance improvements between 470k and 1M steps
are slightly larger when using EQ augmentation (0.4 dB for
avg when qind = 0.5, qmix = 0.5) compared to the baseline
(0.2 dB for avg when qind = 0.0, qmix = 0.0).

VI. Making Random Mixes More Random
A. Motivation: A Polyphonic Bass Example
Checking the training dynamics of each individual training
and validation songs as in Section III.B, we found that all of
the examples had consistent trends of gradually increasing
performance across the training, except for one outlier,
“ANiMAL - Rockshow”, which had a gradually decreasing
performance as shown in Fig. 9(a). We further investigated

10 VOLUME ,

<Society logo(s) and publication title will appear here.>

TABLE 7. Test SDR [dB] of models trained using random mixes where some of the target sources are obtained by multiple sampling.

Number of Samples per Stem

System Name vocals bass drums other pms vocals bass drums other avg

Baseline 1 1 1 1 - 9.6 8.1 8.7 6.6 8.2

A-2 2 2 2 2
1.0 9.4 7.1 7.8 6.0 7.6

0.5 9.6 7.4 8.6 6.3 8.0

0.1 9.6 7.8 8.8 6.7 8.2

V-2 2 1 1 1
1.0 9.4 8.0 8.3 6.6 8.1

0.5 9.6 8.3 8.6 6.7 8.3

0.1 9.5 8.4 8.4 6.7 8.3

B-2 1 2 1 1
1.0 9.3 6.4 7.4 6.1 7.3

0.5 9.5 7.1 8.1 6.4 7.7

0.1 9.5 7.8 8.2 6.7 8.1

D-2 1 1 2 1
1.0 9.5 8.3 8.8 6.7 8.3

0.5 9.5 8.3 9.2 6.7 8.4

0.1 9.6 8.3 9.0 6.8 8.4

O-2 1 1 1 2
1.0 9.3 8.3 7.7 6.1 7.8

0.5 9.5 8.2 8.5 6.3 8.1

0.1 9.5 8.2 8.4 6.4 8.1

this example by listening to its stems and found that it
includes a polyphonic bass, which is a quite rare case in
MUSDB18-HQ as well as popular music. Notice that this
outlier can significantly decrease the average performance
across 4 sources because it not only decreases the score on
the corresponding target source (i.e., bass), but also decreases
the score on the remaining sources since the leakage of bass
will be contaminate the other sources. To alleviate this issue,
we experiment with a method where we sample multiple
examples to make a single target source.

B. Multiple Sampling of Target Sources
The method consisting in sampling each target source multi-
ple times was previously proposed under the name mix-audio
augmentation [45]. The intuition behind this technique is
simple; say, if we sample drums two times and mix them,
this mixed source can still be considered as a drums target.
Furthermore, these mixed stems result in more data diver-
sity even though they may sound unnatural. This sampling
technique was also shown to be effective for vocals, but on
average, it performed worse than plain random mixing, i.e.,
sampling each target source only once (see Table 2 in [45]).

Here, we further analyze this technique by varying the
number of times we sample each stem. For example, it
is possible to consider sampling only drums twice, instead
of sampling all source stems twice, as originally proposed
in [45]. Since multiple sampling can increase the diversity
of random mixes while simultaneously amplifying their
unnaturalness (i.e., causing a “stem-level domain shift” that
may impede learning), we hypothesize that there exists a
trade-off between such factors. Furthermore, we introduce

a probability of multiple sampling pms in making training
batches so that models can benefit from both plain and multi-
sampled random mixes.

In Table 7, we note that sampling all target sources twice
(A-2, pms = 1) results in 0.6 dB SDR decrease on average,
and unlike [45], the performance on vocals also decreases by
0.2 dB. On the other hand, sampling only one source twice
leads to less performance decrease, and sampling drums
twice (D-2, pms = 1) even results in slight performance
gain (0.1 dB). Furthermore, when we use both plain random
mixing and multiple sampling with pms = 0.5 or 0.1, we
observe performance gain compared to pms = 1 in every
case.

We hypothesize that using target sources containing mul-
tiple samples of instruments besides drums does not benefit
performance because the additional frequency overlap caused
by multiple sampling may change the timbre of the target
source, which complicates the learning process. On the
other hand, the percussive characteristic of drums means
that mixing multiple drums tracks may change the temporal
density of drum strikes, which increases data diversity while
not being too different from the original mixes in terms of
timbre.

Back to the “ANiMAL - Rockshow”, which had a poly-
phonic bass, we check whether sampling bass twice actually
solves the issue discussed in Section VI.A. Interestingly, as
shown in solid blue curves in Fig. 9, it is effective indeed,
resulting in 1.2 dB performance gain on average SDR for that
song at the final 470k training iterations. However, this also
causes a performance degradation on the whole validation set
(dashed orange curves in Fig. 9) and test set (Table 7). Thus,

VOLUME , 11

Jeon et al.:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Iterations 1e6

4

5

6

7

8

9

10

SD
R

[d
B]

EQAug + Multiple Sampling
EQAug
Baseline

(a) Vocals

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Iterations 1e6

4

5

6

7

8

9

10

SD
R

[d
B]

EQAug + Multiple Sampling
EQAug
Baseline

(b) Bass

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Iterations 1e6

4

5

6

7

8

9

10

SD
R

[d
B]

EQAug + Multiple Sampling
EQAug
Baseline

(c) Drums

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Iterations 1e6

4

5

6

7

8

9

10

SD
R

[d
B]

EQAug + Multiple Sampling
EQAug
Baseline

(d) Other

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Iterations 1e6

4

5

6

7

8

9

10

SD
R

[d
B]

EQAug + Multiple Sampling
EQAug
Baseline

(e) Avg

FIGURE 10. Test SDR of models across iterations until 1.5M training steps. Models are trained with and without EQ augmentation and multiple sampling
of drums target source. Green dash-dotted lines depict the baseline performances (without multiple sampling and EQ augmentation). Orange dashed
lines depict the models trained with EQ augmentation and without multiple sampling. Blue solid lines depict the models trained with both multiple
sampling and EQ augmentation.

it seems important to consider real-world use cases before
training networks; if one would like to use a MSS model for
electronic music that has complex polyphonic bass, sampling
bass twice may be a good strategy, however, for most of other
use cases, it may not.

VII. Improving Random Mixing
In previous sections, we observed that the methods of sam-
pling and mixing target examples multiple times (multiple
sampling), and applying EQ for diversifying timbre while
generating random mixes are helpful to improve music
source separation networks. In this section, we train models
using both multiple sampling and EQ Augmentation methods
for further improvements of music source separation net-
works.

A. Training Longer with Multiple Sampling and
EQAugment
Here we compare the models trained with or without
multiple sampling and EQ augmentation. Specifically, we
train 3 models for 1.5M training steps: a baseline model
trained without multiple sampling and EQAugment, a model
trained with EQAugment and without multiple sampling,
and a model trained with multiple sampling of drums and
EQAugmentation.

Until 3-400k training steps, all of the models show similar
performance and test curves on 4 stems as seen in Fig. 10.
After 400k steps, the baseline scores stop increasing except
for vocals, while scores of the other models keep increasing.
The model with EQ augmentation (orange curves in Fig. 10)
shows especially better performance than the baseline on
bass and drums. However, after 1M steps, the score on drums
starts decreasing. Using multiple sampling of drums seems
to be beneficial for this case. As shown by the blue curves
in Fig. 10, the model with both multiple sampling and EQ
augmentation especially shows higher performances than the
model only trained with EQ augmentation not only on drums
but also on bass and other. Although we did not train this

TABLE 8. Test SDR [dB] for models trained with random mixes (p = 0.0)

obtained using EQ augmentation (qind = 0.5 and qmix = 0.5) and multiple

sampling of drums target source (pms = 0.5). ES indicates early stopping.

Multiple EQ Training
Model Sampling Aug. Steps vocals bass drums other avg

Open
-Unmix

- - ES 6.1 5.4 5.8 3.9 5.3

- ✓ ES 6.2 5.2 5.7 4.1 5.3

✓ ✓ ES 5.8 5.2 6.2 3.8 5.3

TFC
-TDF
-UNet
v3

- -
470k 9.6 8.1 8.7 6.6 8.2

1M 9.7 8.5 8.6 6.9 8.4

1.5M 9.9 8.4 8.6 6.9 8.5

- ✓

470k 9.2 8.3 9.0 6.4 8.2

1M 9.9 8.5 9.1 6.9 8.6

1.5M 9.9 8.6 8.9 7.1 8.6

✓ ✓

470k 9.5 8.4 9.2 6.6 8.4

1M 9.7 8.8 9.7 6.9 8.8

1.5M 10.1 9.1 9.8 7.1 9.0

model any longer than 1.5M steps, there seems to be room
for further performance gain with more training steps.

B. Effectiveness on Different Architectures
We also check the effectiveness of multiple sampling and
EQ augmentation on an architecture other than TFC-TDF-
UNet v3. We focus on the Open-Unmix [1] architecture for
our experiments, and follow the training configurations of
its official implementation including early stopping (ES in
Table 8) as described in Section II.B. Other high-quality
open-source separation networks such as Demucs [46] were
not considered because of their high computational require-
ments.

As seen in Table 8, using EQ augmentation and multiple
sampling does not lead to any performance gain compared
to the Open-Unmix baseline, while it leads to a 0.5 dB
gain on avg at 1.5M training steps for TFC-TDF-UNet

12 VOLUME ,

<Society logo(s) and publication title will appear here.>

TABLE 9. Test SDR [dB] comparisons between recent music source

separation models and our proposed method.

Extra
Model Data [h] vocals bass drums other avg

HT-Demucs - 7.9 8.5 7.9 5.7 7.5

BS-RNN - 10.0 7.2 9.0 6.7 8.2

BS-RoFormer - 10.7 11.3 9.5 7.7 9.8

TFC-TDF-UNet v3 - 9.9 8.4 8.6 6.9 8.5

Ours (TFC-TDF-UNet v3
w/ multiple sampling, EQAug)

- 10.1 9.1 9.8 7.1 9.0

HT-Demucs 800 8.9 9.8 10.1 6.4 8.8

BS-RNN 1750 10.5 8.2 10.2 7.1 9.0

BS-RoFormer 500 12.7 13.3 12.9 9.0 12.0

v3. This implies that these techniques may not necessarily
be effective for all types of separation networks. As we
already observed in Section III.D, we suspect this behavior
heavily depends on the size of the network; since Open-
Unmix consists of 5 times less trainable network parameters
(14M) than TFC-TDF-UNet v3 (70M), it is possible that
its ability to take advantage of diverse data is more limited
than that of larger models. Moreover, this discrepancy may
also be related to differences in network architecture design.
While TFC-TDF-UNet v3 is based on a convolutional U-
Net structure that processes spectrograms locally and hi-
erarchically, Open-Unmix relies on a Bi-LSTM backbone
that models temporal dependencies in a more sequential
manner. Such architectural differences could lead to varying
sensitivities to data augmentation strategies like multiple
sampling or EQ augmentation, potentially explaining the
observed performance gap.

C. Comparison with State-of-the-Art Models
Finally, we compare our proposed method with recent high
quality music source separation networks. As shown in
Table 9, our model, which was only trained with 100 songs
from MUSDB18-HQ data, shows better performance (9.0 dB
on avg) than an HT-Demucs [46] model trained with 800
extra songs (8.8 dB). Also, our model achieves comparable
performance to a BS-RNN [5] model trained with 1750
additional songs (9.0 dB). When no extra training data is
available, our model achieves the second best performance
after BS-RoFormer [47], which shows 9.8 dB on avg. Since
our methods, multiple sampling drums and EQ augmenta-
tion, are universally applicable for training other networks
that use random mixing, and the effect of data diversity
seems to be more beneficial for more powerful models, we
believe they hold broad potential. We conjecture that there
may be even more room for improving the current state-of-
the-art networks, such as BS-RoFormer [47], compared to
TFC-TDF-UNet v3, as Transformer-based models [48] are
generally known to be more data-hungry. However, due to
limitations in computing resources, we leave this exploration
for future work.

VIII. Conclusions and Future Work
In this paper, we took steps towards explaining the effec-
tiveness of random mixing, an obviously non-musical data
augmentation technique that has become indispensable in
music source separation research. Our results illustrated that
both data diversity and domain consistency in terms of beat
and tonality are important for music source separation, but
the data diversity provided by random mixing seems more
beneficial unless the amount of random mixes is strictly
restricted. We also empirically demonstrated that actual per-
formance gain of random mixing comes from the diversity
of songs, not solely from the infinitely many combinations
of random mixes. Then, we revisited the idea of multiple
sampling of target sources in random mixing and proposed
an EQ augmentation to maximize the diversity of random
mixes. In our experiments, with only 100 songs and the
proposed methods, we achieved competitive performance to
a BS-RNN model trained with 1750 additional songs. In
the future, we plan to perform additional stem-level analysis
and validate our methods—especially EQ augmentation—on
diverse separation tasks, such as speech separation, where it
may help models generalize better to real-world recording
conditions with varying microphone frequency responses.
In addition, applying our analysis to larger datasets, such
as MoisesDB [8], would further validate the scalability and
generality of the proposed findings.

ACKNOWLEDGMENT
We are grateful to Minseok Kim, the author of TFC-TDF-
UNet v3 [24], for kindly helping us to reproduce the results
of the scores reported in the original paper.

REFERENCES
[1] F.-R. Stöter, S. Uhlich, A. Liutkus, and Y. Mitsufuji, “Open-Unmix

- A reference implementation for music source separation,” J. Open
Source Softw., vol. 4, no. 41, p. 1667, 2019.

[2] R. Hennequin, A. Khlif, F. Voituret, and M. Moussallam, “Spleeter:
a fast and efficient music source separation tool with pre-trained
models,” J. Open Source Softw., vol. 5, no. 50, p. 2154, 2020.

[3] N. Takahashi, N. Goswami, and Y. Mitsufuji, “MMDenseLSTM: An
efficient combination of convolutional and recurrent neural networks
for audio source separation,” in Proc. IWAENC, 2018, pp. 106–110.

[4] A. Défossez, “Hybrid spectrogram and waveform source separation,”
in Proc. MDX Workshop, 2021.

[5] Y. Luo and J. Yu, “Music source separation with band-split RNN,”
IEEE Trans. Audio, Speech, Lang. Process., 2023.

[6] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner,
“MUSDB18-HQ - an uncompressed version of MUSDB18,” Dec.
2019. [Online]. Available: https://doi.org/10.5281/zenodo.3338373

[7] E. Manilow, G. Wichern, P. Seetharaman, and J. Le Roux, “Cutting
music source separation some Slakh: A dataset to study the impact of
training data quality and quantity,” in Proc. WASPAA, Oct. 2019.

[8] I. Pereira, F. Araújo, F. Korzeniowski, and R. Vogl, “MoisesDB: A
dataset for source separation beyond 4-stems,” in Proc. ISMIR, 2023.

[9] K. Chen, G. Wichern, F. G. Germain, and J. Le Roux, “Pac-HuBERT:
Self-supervised music source separation via primitive auditory clus-
tering and hidden-unit BERT,” in Proc. ICASSP SASB, 2023.

[10] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in Proc. ICLR, 2018.

[11] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix:
Regularization strategy to train strong classifiers with localizable
features,” in Proc. CVPR, 2019, pp. 6023–6032.

VOLUME , 13

https://doi.org/10.5281/zenodo.3338373

Jeon et al.:

[12] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumbley,
“PANNs: Large-scale pretrained audio neural networks for audio
pattern recognition,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 28, pp. 2880–2894, 2020.

[13] D. Wang and J. Chen, “Supervised speech separation based on deep
learning: An overview,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 26, no. 10, pp. 1702–1726, 2018.

[14] J. R. Hershey, Z. Chen, and J. Le Roux, “Deep clustering: Discrimina-
tive embeddings for segmentation and separation,” in Proc. ICASSP,
Mar. 2016, pp. 31–35.

[15] N. Zeghidour and D. Grangier, “Wavesplit: End-to-end speech sepa-
ration by speaker clustering,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 29, pp. 2840–2849, 2021.

[16] I. Kavalerov, S. Wisdom, H. Erdogan, B. Patton, K. Wilson,
J. Le Roux, and J. R. Hershey, “Universal sound separation,” in Proc.
WASPAA, Oct. 2019.

[17] D. Petermann, G. Wichern, Z.-Q. Wang, and J. Le Roux, “The
cocktail fork problem: Three-stem audio separation for real-world
soundtracks,” in Proc. ICASSP, May 2021.

[18] S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp, N. Takahashi,
and Y. Mitsufuji, “Improving music source separation based on deep
neural networks through data augmentation and network blending,” in
Proc. ICASSP, 2017, pp. 261–265.

[19] F.-R. Stöter, A. Liutkus, and N. Ito, “The 2018 signal separation
evaluation campaign,” in Proc. LVA, 2018, pp. 293–305.

[20] Y. Mitsufuji, G. Fabbro, S. Uhlich, F.-R. Stöter, A. Défossez, M. Kim,
W. Choi, C.-Y. Yu, and K.-W. Cheuk, “Music Demixing Challenge
2021,” Front. Signal Process., vol. 1, 2022.

[21] G. Fabbro, S. Uhlich, C.-H. Lai, W. Choi, M. Martı́nez-Ramı́rez,
W. Liao, I. Gadelha, G. Ramos, E. Hsu, H. Rodrigues et al., “The
Sound Demixing Challenge 2023–music demixing track,” Trans. IS-
MIR, vol. 7, no. 1, 2024.

[22] C.-B. Jeon, H. Moon, K. Choi, B. S. Chon, and K. Lee, “MedleyVox:
An evaluation dataset for multiple singing voices separation,” in Proc.
ICASSP, 2023, pp. 1–5.

[23] C.-B. Jeon, G. Wichern, F. G. Germain, and J. Le Roux, “Why does
music source separation benefit from cacophony?” in Proc. ICASSP
Workshops, 2024, pp. 873–877.

[24] M. Kim and J. H. Lee, “Sound Demixing Challenge 2023 –music
demixing track technical report,” arXiv preprint arXiv:2306.09382,
2023.

[25] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approx-
imation by averaging,” SIAM J. Control Optim., vol. 30, no. 4, pp.
838–855, 1992.

[26] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed
precision training,” in Proc. ICLR, 2018.

[27] C.-B. Jeon and K. Lee, “Towards robust music source separation on
loud commercial music,” in Proc. ISMIR, 2022.

[28] A. Cohen-Hadria, A. Roebel, and G. Peeters, “Improving singing voice
separation using deep U-Net and Wave-U-Net with data augmenta-
tion,” in Proc. EUSIPCO, 2019, pp. 1–5.

[29] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement
in blind audio source separation,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 14, no. 4, pp. 1462–1469, 2006.

[30] S. Sarkar, E. Benetos, and M. Sandler, “Vocal harmony separation
using time-domain neural networks,” in Proc. Interspeech, 2021.

[31] Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick, and S. Dubnov,
“Large-scale contrastive language-audio pretraining with feature fusion
and keyword-to-caption augmentation,” in Proc. ICASSP, 2023, pp. 1–
5.

[32] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.”
JMLR, vol. 9, no. 11, 2008.

[33] A. Gui, H. Gamper, S. Braun, and D. Emmanouilidou, “Adapting
frechet audio distance for generative music evaluation,” in Proc.
ICASSP, 2024, pp. 1331–1335.

[34] L. McInnes, J. Healy, N. Saul, and L. Großberger, “Umap: Uniform
manifold approximation and projection,” Journal of Open Source
Software, vol. 3, no. 29, 2018.

[35] F. G. Germain, G. J. Mysore, and T. Fujioka, “Equalization matching
of speech recordings in real-world environments,” in Proc. ICASSP,
2016, pp. 609–613.

[36] M. A. Martinez Ramirez, W. Liao, C. Nagashima, G. Fabbro, S. Uh-
lich, and Y. Mitsufuji, “Automatic music mixing with deep learning
and out-of-domain data,” in Proc. ISMIR, 2022.

[37] R. W. Schafer, “What is a Savitzky-Golay filter? [lecture notes],” IEEE
Signal Process. Mag., vol. 28, no. 4, pp. 111–117, 2011.

[38] J.-M. Valin, “A hybrid DSP/deep learning approach to real-time full-
band speech enhancement,” in Proc. MMSP, 2018, pp. 1–5.

[39] H. Schroter, A. N. Escalante-B, T. Rosenkranz, and A. Maier, “Deep-
FilterNet: A low complexity speech enhancement framework for full-
band audio based on deep filtering,” in Proc. ICASSP, 2022, pp. 7407–
7411.

[40] H.-S. Choi, J. Lee, W. Kim, J. Lee, H. Heo, and K. Lee, “Neural
analysis and synthesis: Reconstructing speech from self-supervised
representations,” Proc. NeurIPS, vol. 34, pp. 16 251–16 265, 2021.

[41] C.-Y. Chiu, W.-Y. Hsiao, Y.-C. Yeh, Y.-H. Yang, and A. W.-Y. Su,
“Mixing-specific data augmentation techniques for improved blind
violin/piano source separation,” in Proc. MMSP. IEEE, 2020, pp.
1–6.

[42] R. Toy, “Audio EQ cookbook.” [Online]. Available: https://www.w3.
org/TR/audio-eq-cookbook/

[43] H. Nam, S.-H. Kim, and Y.-H. Park, “FilterAugment: An acoustic
environmental data augmentation method,” in Proc. ICASSP, 2022,
pp. 4308–4312.

[44] P. Sobot, “Pedalboard,” Jul. 2021. [Online]. Available: https:
//doi.org/10.5281/zenodo.7817838

[45] X. Song, Q. Kong, X. Du, and Y. Wang, “CatNet: Music source
separation system with mix-audio augmentation,” arXiv preprint
arXiv:2102.09966, 2021.

[46] S. Rouard, F. Massa, and A. Défossez, “Hybrid transformers for music
source separation,” in Proc. ICASSP. IEEE, 2023, pp. 1–5.

[47] W.-T. Lu, J.-C. Wang, Q. Kong, and Y.-N. Hung, “Music source
separation with band-split RoPE transformer,” in Proc. ICASSP, 2024,
pp. 481–485.

[48] A. Vaswani, Shazeer, N. N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Proc. NeurIPS, 2017.

14 VOLUME ,

https://www.w3.org/TR/audio-eq-cookbook/
https://www.w3.org/TR/audio-eq-cookbook/
https://doi.org/10.5281/zenodo.7817838
https://doi.org/10.5281/zenodo.7817838

	Title Page
	page 2

	
	INTRODUCTION
	Music Source Separation
	Task Definition
	Experimental Setup: Models
	Experimental Setup: Data and Metrics
	Random Mixing Augmentation

	Should we include original mixes at all?
	Influence of the Ratio of Original Mixes
	Training Dynamics Comparison
	Influence of the Number and Variety of Random Mixes
	Applicability to Other Models

	Influence of Consistent Beat and Tonality
	Influence of Consistent Beat and Tonality in Evaluation
	Influence of Consistent Beat and Tonality in Training
	When Does Domain Consistency Matter?: Training with Song-Level Random Mixes
	Why Does Music Source Separation Benefit from Cacophony?

	Influence of Timbre
	Manipulating Timbre during Inference
	EQ Augmentation: Diversifying Timbre during Training

	Making Random Mixes More Random
	Motivation: A Polyphonic Bass Example
	Multiple Sampling of Target Sources

	Improving Random Mixing
	Training Longer with Multiple Sampling and EQAugment
	Effectiveness on Different Architectures
	Comparison with State-of-the-Art Models

	Conclusions and Future Work
	REFERENCES

