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Learning Non-prehensile Manipulation with Force
and Vision Feedback Using Optimization-based
Demonstrations

Yuki Shirai', Kei Ota?, Devesh K. Jha!, and Diego Romeres'

Abstract—Non-prehensile manipulation is challenging due to
complex contact interactions between objects, the environment,
and robots. Model-based approaches can efficiently generate com-
plex trajectories of robots and objects under contact constraints.
However, they tend to be sensitive to model inaccuracies and
require access to privileged information (e.g., object mass, size,
pose), making them less suitable for novel objects. In contrast,
learning-based approaches are typically more robust to modeling
errors but require large amounts of data. In this paper, we bridge
these two approaches to propose a framework for learning closed-
loop non-prehensile manipulation. By leveraging computationally
efficient Contact-Implicit Trajectory Optimization (CITO), we
design demonstration-guided deep Reinforcement Learning (RL),
leading to sample-efficient learning. We also present a sim-
to-real transfer approach using a privileged training strategy,
enabling the robot to perform non-prehensile manipulation using
only proprioception, vision, and force sensing without access to
privileged information. Our method is evaluated on several tasks,
demonstrating that it can successfully perform zero-shot sim-to-
real transfer.

Index Terms—Dexterous Manipulation, Learning from Demon-
stration, Deep Learning in Grasping and Manipulation, Multi-
Contact Whole-Body Motion Planning and Control

I. INTRODUCTION

ON-prehensile manipulation, such as pivoting, pushing,

and sliding, plays an important role in enhancing the
dexterity of robotic systems [1], [2]. These skills allow robots
to interact with the environment more flexibly, enabling them
to adapt to a wide range of tasks without requiring secure
grasps. However, achieving such skills is challenging due
to the inherently complex contact interactions (e.g., making-
breaking contact, sliding-sticking contact). These interactions
introduce non-smooth dynamics that are difficult to model and
control as the number of contacts increases.

Model-based optimization methods, such as CITO and
Model Predictive Control (MPC) [3], [4], [5], have demon-
strated impressive performance, particularly in generating di-
verse trajectories at low computational cost. However, since
these methods, in general, rely on simplified models of ma-
nipulation, they can be highly sensitive to uncertainties due
to model inaccuracies. More critically, they often rely on
offline system identification or online estimation of privileged
information, such as object properties or contact states. This
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dependency limits the applicability of model-based controllers
in real-world scenarios.

Learning-based methods, such as RL, have also shown
impressive performance, especially in their robustness against
various sources of uncertainty [6], [7], [8], [9]. These methods
can operate without privileged information by directly learn-
ing policies from raw observations. However, they typically
require a large number of training samples, resulting in long
training times. This is especially problematic in non-prehensile
manipulation, where the policy must reason object pose,
contact locations, and contact forces from indirect and partial
observations. As a result, RL may fail to discover viable
solutions within a reasonable training time.

In this paper, we propose a framework that integrates the
strengths of model-based planning with learning-based policy
execution for non-prehensile manipulation. As illustrated in
Fig. 2, we first employ CITO to collect a large number of task
demonstrations. Second, a base policy is trained in a simulator
using RL, leveraging the demonstrations (e.g., robot, object,
& contact trajectories) generated by CITO. Third, we train
a privileged information estimator to predict the privileged
information required by the policy from observations. Finally,
we evaluate the trained policy over various baselines in both
simulation and hardware experiments, achieving zero-shot
sim-to-real transfer. Our contributions are as follows.

e A framework for learning contact-rich non-prehensile
manipulation controllers and estimators by leveraging
demonstrations generated by CITO.

e A sim-to-real transfer approach using a privileged in-
formation estimator to reconstruct required privileged
information from temporal visual and force observations.

II. RELATED WORK

Model-Based Optimization for Contact-Rich Manipula-
tion. Optimization-based methods have enabled various non-
prehensile manipulation skills [5], [10], [11], [12]. These
methods design manipulation skills computationally efficiently
by leveraging techniques such as contact smoothing [13] and
mixed-integer optimization [11], [14], [15]. However, these
methods typically require privileged information (i.e., full-state
feedback), which becomes increasingly impractical as task
complexity grows. We relax such assumptions by adopting an
RL approach, while still leveraging CITO to generate a large
number of demonstrations. This strategy enables the agent to
learn manipulation skills significantly more efficiently than
standard RL methods.



(c) Pushing

Fig. 1: Snapshots of successful manipulation on diverse objects in real-world.
Additional examples are provided in the accompanying video.

Learning Contact-Rich Manipulation. Learning-based
methods have demonstrated remarkable success in robotic ma-
nipulation [16], [17], [18], [19]. However, all of these methods
require a large number of training samples, resulting in long
training times. To improve sample efficiency, demonstration-
guided RL has been studied [20], [7], [21], where the demon-
strations are used to guide exploration of RL agent to learn
the policy and improve sample efficiency. However, these
works [22], [23], [24] only consider kinematically feasible
demonstrations. Incorporating contact force information into
demonstrations could be critical to learn fine manipulation due
to very thin margins of error imposed by contact constraints.
Some works [25], [26] leverage human demonstrations to
capture contact forces, but collecting such data at scale is

challenging and often requires significant manual effort. In
contrast, we use CITO to automatically generate robot, object,
and contact force trajectories, providing richer supervision and
greater scalability.

Bridging the sim-to-real gap is another key challenge. Priv-
ileged information used during training is often unavailable
during real-world deployment. One line of work addresses
this issue through student—teacher policy distillation, where
a teacher policy is trained with privileged inputs and a student
policy is subsequently trained via behavior cloning to imitate
the teacher using only sensor observations [27], [28], [17].
Another strategy trains privileged-information estimators to
recover latent physical variables (e.g., pose, friction, mass)
from sensor observations, allowing a privileged-information
policy to be deployed without modification [29], [30], [31],
[32]. While conceptually related, these estimators are typically
designed for settings where the latent variables are smooth
and proprioception provides sufficient information. Also, they
often rely on restrictive assumptions (e.g., fixed object size
[31], [32]). In contrast, contact-rich non-prehensile manipu-
lation requires estimating highly discontinuous latent states
(e.g., sliding—sticking transitions, extrinsic contacts) and han-
dling objects with variable geometries. By leveraging temporal
histories of force measurements and segmentation images, our
privileged information estimator avoids these limitations and
generalizes to novel objects.

III. METHOD

In this section, we present our proposed framework, as
shown in Fig. 2. The objective is to learn non-prehensile
manipulation using only proprioceptive, visual, and force
sensing. The proposed framework consists of three steps. In
Step 1, task demonstrations are generated using CITO. In Step
2, a base policy which has access to the privileged information
is trained using RL with the sampled demonstrations collected
in Step 1. In Step 3, a privileged-information estimator is
trained to estimate the privileged information, which serves as
input to the base policy. The base policy with the predictions
of the trained estimator is ultimately deployed on physical
hardware for real-world validation.

While one could in principle train an RL policy end-to-
end from raw visual observations, such approaches typically
require substantially more samples and are unstable in real-
robot settings [17]. Instead, we train the base policy leveraging
privileged information for efficient training, and then the priv-
ileged information estimator learns to infer this information
from raw sensory inputs (vision and touch).

In this work, we make the following assumptions: (1)
both the objects and the robots are rigid, (2) manipulation
occurs under quasi-static condition in SE(2), and (3) the robot
end-effector pose, camera sensing, and robot contact force
measurements are available throughout manipulation.
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Fig. 2: Overview of our proposed framework. Trainable modules have red edges. Step 1: We collect data using CITO given a user-specified task. Step 2: The
base policy is trained using RL with privileged information and sensor observations, leveraging the demonstrations Do collected in Step 1. Different RL
variants are obtained by running this training pipeline with different rewards in (2). Step 3: The privileged information estimator is trained to estimate the
privileged information. The estimator consists of a CNN and a TCN to process temporal sensor observations, including segmentation and force measurements.
Step 4: During deployment in real-world, the learned estimator and policy run in zero-shot sim-to-real transfer on physical hardware.

A. Step 1: Collecting Demonstrations

We collect a large set of datasets using CITO in [33]. We
consider the following CITO:

T
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where §; := [q?, @] and y; := [A;, A}, Z]. G € R represent
an object pose in SE(2) and q, € R? represent a robot
end-effector position in SE(2), respectively. The end-effector
orientation is kept fixed throughout the task. X; € R?*Ne and
;\: € R? represent contact forces between an object and the
environment, and between an object and the robots, respec-
tively. N, represents the potential extrinsic number of contacts
between the object and the environment. We denote z; €
R2*Ne a5 the extrinsic contact location between the object and
the environment. " € R? represents the linear interpolation
between the start and goal object pose with T' steps. Note
that the cost penalizes only the object pose deviation from the
reference trajectory, and no reference is imposed on the robot
end-effector. We use the subscript ¢ to represent the timestep .
We denote fqy, as non-smooth dynamics of the non-prehensile
manipulation, including nonsmooth contact switching, force
and moment balance, and friction cone constraints. We denote
g as non-dynamics related constraints, such as bounds of

decision variables and collision-avoidance. We emphasize that
the generation of trajectories that satisfy kinematic feasibility
alone and not dynamic feasibility are simple to obtain by
removing some of the fqy, constraints, such as force and
moment balance constraints. Thus, we denote kinematically
feasible dynamics as fyj,. The problem (1) is solved using
solvers such as Gurobi [34]. See [33] for more details. Solving
(1) generates N demonstrations Do = {Di,}Y,, where

o = Ha}i_o, {¥:}i_o}'. While previous works (e.g.,
[22], [23], [24]) only consider q; with fiin, this work explicitly
considers q; and y; with fqy,. In particular, 5\: guides for
agents to learn robot motion direction, while S\f and z; offer
insights into preferred extrinsic contacts.

B. Step 2: Learning Privileged Base-Policy

A base policy is trained to achieve the desired non-
prehensile manipulation in a simulation where privileged infor-
mation is accessible. We formulate the problem as a Markov
Decision Process as follows.

States. States consist of the privileged and non-privileged
information. The privileged information p, includes the ob-
ject pose qf € R3, the object and environment properties
v; € RMr, and the extrinsic contact signal b, € Z"¢. The
object pose q7 lies in the SE(2) and consists of two posi-
tional components and one orientation. v; encodes physical
properties, which are the mass and size of the object, and



the friction constants of both the object and the surrounding
environment geometry. The extrinsic contact signal b; is a
binary vector where each element indicates whether a specific
face of the object is in contact with a predefined environment
surface (e.g., wall, table).

The non-privileged information o; consists of the robot
positions g € R2?, the binary robot contact signal d; € Z!,
and the 2D contact forces A} € R? measured by force
sensors mounted on the robots’ wrists. All observations are
approximately normalized to lie in the range [—1, 1].

Actions. We consider linear translational actions in SE(2)
for each robot, denoted as a7. Specifically, each action repre-
sents a relative position command for the robots’ end-effector.
These action commands are converted into joint torques using
Operational Space Control (OSC) [35].

Rewards. Based on how demonstrations are used, we
consider three distinct reward formulations. We denote three
different RL polices using different demonstrations (i.e., using
different reward formulation) as (1) Vanilla RL, which does not
use any demonstrations, (2) Kinematics-conditioned RL, and
(3) Dynamics-conditioned RL. These policies are obtained by
3 different rewards defined as:

Vanilla RL: 7 =17, + 7, +7,
T =7p+7s+7Ta+ Tkin 2

r=17p+7Ts+ Te+ Tdyn

Kinematics-conditioned RL:

Dynamics-conditioned RL:

First, the progress reward for the pivoting tasks
is r, = o (5-0.) + a2(0?), where 6. =
arccos (3 (I'r (R6R) —1)). Tr(-) denotes the matrix
trace, and R and R® are the goal and current rotation
matrices, respectively. 6., measures the angular deviation
between the current and goal orientations, and g is added as
the offset. While the linear term in 7, is used in [36], [37],
our experiments reveal that the inclusion of the quadratic term
is necessary to achieve higher success rates under domain
randomization (DR) [38] over the size of the objects, which
was not discussed in [37]. The progress reward for the pushing
task is 7, = au1/|q) — QZll3, where g2, is the desired
goal state of the object. Second, the sparse success reward is
defined as rs = aslg (qf), where I is the indicator function
over the goal set G := 3q; € R®|[lqf —qQyul < esi,
where €, is the user-specified positive constant. Third, the
action smoothness reward is given by 7, = aylla;_1 — a;||?,
for avoiding non-smooth actions.

Next, we define the reward based on demonstrations gener-
ated by CITO. For the kinematic reward ry;,, we use object and
robot poses q; and extrinsic contact locations z; obtained by
solving (1) with fi;,. Note that contact force demonstrations
are not available in this setting, as fii, does not have dynamics
constraints. Thus, we compute 7y, as:

riin = os||aj — o(af)|]? 3)

where ¢ retrieves the closest reference robot configuration
q; corresponding to the current object observation q7. Since
both the object and environment parameters are sampled from
a known dataset Do during simulation, the corresponding
object reference trajectory qf is known. Using the current

observation, we identify the closest object configuration within
this trajectory, and consequently retrieve the closest robot
configuration. This reward term encourages the robot to follow
the kinematically feasible behaviors.

Similarly, we define the dynamics reward rqy, by utilizing
the demonstration q; and y, obtained by solving (1) with the
dynamics model fayn:

A Y(ap)
Tayn = og||qr —(q) || +ar arccos (Tto +agb
I EMIECAIVARA

where ¢ retrieves the closest reference robot contact forces
5\: corresponding to qf, following the same logic as ¢. This
reward encourages the robot to follow the dynamically feasible
behaviors. In particular, the arccosine term in 74y, encourages
the robot to perform a similar contact force direction as the
demonstration shows. Importantly, we do not enforce matching
the magnitude of the contact force, as we observe significant
discrepancies between the dynamics model by f4y, and those
in simulators, leading to a potential sim2sim gap in contact
force magnitudes. Hence, this work focuses on the direction
of contact forces. The term b; is used to count if the desired
extrinsic contact states occur. The constants a;—1 2338 are
positive and the others are negative.

C. Step 3: Learning Privileged Information-Estimator

The goal of this step is to train the privileged information
estimator only using sensor observations to predict the priv-
ileged information. Our estimator predicts the raw privileged
information rather than learning a latent representation jointly
with the policy. This choice preserves interpretability and
allows the trained RL policy to be used without modification,
enabling the estimator to serve as a drop-in replacement for
privileged inputs during deployment.

We empirically observe that sensor observations alone are
sufficient for the object whose geometry is in-distribution with
the dataset. However, their reliability declines when there is
uncertainty in object size, which is common when manipulat-
ing novel objects. To address this, we additionally incorporate
vision inputs to improve the estimation of the privileged
information. Directly using RGB images is avoided due to
potential noise, and employing 3D point clouds is excluded
due to their significant computational cost (see [17]). Instead,
we leverage the object segmentation s; derived from the RGB
image, providing a compact but informative representation of
the object.

Therefore, we define a privileged information encoder that
takes the history of the sensor observations, [0i_T, - ,04],
and the history of the segmentation features, [St_7,- - ,St].
Since s; is high-dimensional, we first apply a Convolutional
Neural Network (CNN) to compress the segmentation into a
lower-dimensional feature representation c;. Using the tempo-
ral histories of o; and c;, we use a Temporal Convolutional
Network (TCN) [39] to estimate the privileged information.
We train CNN and TCN jointly via supervised learning using
datasets collected by rolling out the base policy in the sim-



ulator under domain randomization. The supervised learning
objective is to minimize the following loss function:

L= |lp: — pe| % )

where p; is the ground-truth privileged information and p; is
the estimated output from the privileged information encoder.

IV. EXPERIMENT SETUP

We validate our framework across three distinct tasks (see
Fig. 5): Pivoting with Wall: pivoting a box using an external
wall, Pivoting without Wall: pivoting a box without relying
on external support, Pushing: pushing an object on a table.
For the second task, the table surface must provide very high
friction. In simulation, increasing the friction coefficient alone
was insufficient to replicate the real-world behavior. As a
workaround, we add a thin virtual wall of height 1 mm to
simulate the effect of high-friction contact (see Fig. 5). In
the hardware experiments, we test on a variety of previously
unseen objects (see Fig. 1 and the accompanying video) to
assess generalization beyond the training set. We define a trial
as successful if the final orientation error satisfies |0.| < 0.087
rad (i.e., 5°) for all tasks. We describe the setup as follows.

Demonstration Setup. We use the method in [33], random-
izing object and environment parameters to generate diverse
demonstrations. We randomize the mass of the object, the
friction constant of the object and the environment, and the
size of the object. For each task, to ensure sufficient coverage
of contact-rich behaviors, we collect 5000 demonstrations
using 30 Intel 19-13900K CPU cores. Each dataset is generated
within minutes: about 4 minutes (pivoting with wall), 2.5
minutes (without wall), and 8.9 minutes (pushing).

Base Policy Setup. We train the base policy in MuJoCo
simulator [40] using robosuite [41] as a wrapper. The agent
is trained using Soft Actor Critic (SAC) [42]. For SAC, we
use Multi-Layer Perceptron (MLP) for both actor and critic
networks. The simulation runs at 500 Hz, while the policy
operates at 10 Hz. For each episode, we set the maximum
episode length to 300 steps. Overall, training converges within
4 hours on a single NVIDIA RTX 4090. During training, we
apply domain randomization over the objects’ mass and size,
the friction constants of both the object and the environment
(see Table V), and the controller gains used in OSC within
robosuite. Furthermore, we introduce sensor noise to both
privileged information and sensor observations to account for
the estimation errors from the estimator.

Privileged Information Estimator Setup. We first roll-
out the trained base policy over 2000 episodes and col-
lect a dataset containing ground-truth privileged information,
sensor observations, and corresponding segmentation images
(640x480 resolution) of the object using MuJoCo’s rendering
functionality. During data collection, we augment the segmen-
tation images by introducing noise, such as randomly flip-
ping, translating, and rotating segmentation masks, to improve
robustness (see Table VI). We then train the estimator via
supervised learning, minimizing the loss function (5) over
multiple epochs. We use 1" = 5 step history of the observations
for training corresponding to 0.5 second. Overall, training
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Fig. 3: Learning curves for different RL training runs. Solid lines indicate
average success rates, and shaded regions denote standard deviation across
three different seeds. Every 10k step, the current policy is evaluated over 50
episodes, and the success rate is plotted. See Fig. 8 for the pushing result.

converges with 10 epochs (1 hour roughly), depending on the
range of domain randomization.

Hardware Setup. We use a 6 DoF MELFA robot equipped
with a stiffness controller and a 6-axis force/torque sensor.
This hardware enables users to get robot end-effector positions
and the force measurements in the world frame. For object
segmentation, we use FastSAM [43] to generate multiple
instance segmentations from an RGB image captured by an
Intel RealSense D435 camera.

Baselines. We consider the following baselines. (1) MPC
following [12]: MPC solves (1) in a receding-horizon manner,
running at the same frequency as the base policy. This setup
mirrors the sensing and modeling assumptions of model-
based controllers, making MPC a representative baseline. (2)
Behavior Cloning (BC): A supervised policy trained on the
same demonstration dataset as the base, mapping observations
directly to actions using a mean-squared error loss. For both
MPC and BC, we provide privileged information, including
object mass, size, and friction (identified offline), as well as
object pose estimated via AprilTags.

V. RESULTS

In this section, we aim to address the following questions:

1) Do demonstrations generated by CITO facilitate more

effective and efficient learning?

2) How does the base policy’s performance vary with

different demonstrations?

3) How robust is the base policy against baselines?

4) How accurately can the privileged information estimator

predict the privileged information?

5) Can the trained policies be successfully transferred to

real-world hardware experiments?

Do demonstrations generated by CITO facilitate learn-
ing? Across the three tasks, we compare RL performance
using different types of demonstrations, corresponding to
the different reward formulations in (2). RL with kinematic
demonstrations is comparable to prior works such as [22],
[23], which only consider kinematically feasible trajectories.
Overall, RL with dynamics-based demonstrations achieves the
fastest learning as shown in Fig. 3 and Fig. 8. In particular,
in the pivoting without external wall task, neither vanilla RL
nor kinematics-conditioned RL was able to learn the skill.
We attribute this to the task’s tighter feasible action space.
In contrast, dynamics-conditioned RL successfully learns the
skill, benefiting from enriched demonstration.



TABLE I: Number of successful attempts in real.

Mass  Kinematics-conditioned RL ~ Dynamics-conditioned RL
50g 2/5 5/5

110g 5/5 5/5

300g 0/5 5/5

TABLE II: Number of successful attempts in sim.

Task MPC BC Dynamics-conditioned RL
With wall 98 /100  2/100 100 / 100
Without wall 81 /100 0/ 100 100 / 100
Pushing 70 /100 11/100 100 / 100

How does the base policy’s performance vary with
different demonstrations? For the pivoting-with-wall task,
we deploy both kinematics- and dynamics-conditioned RL
policies on a real system using a box of mass 110 g. During
deployment, we vary the mass values used as privileged
information. Table I shows the success rates over five trials.
We observe that dynamics-conditioned RL consistently out-
performs kinematics-conditioned RL. While both policies are
trained with access to privileged information, the dynamics-
conditioned policy benefits from demonstrations that include
contact force references. This enables the policy to learn phys-
ically grounded interaction behaviors during training, leading
to greater robustness against variations in dynamic properties.
In contrast, the kinematics-conditioned policy is trained with
demonstrations that satisfy only geometric feasibility, making
it more sensitive to changes in object properties. These results
highlight the importance of dynamics-aware demonstrations in
contact-rich manipulation tasks.

How robust is the learned policy against baselines? We
evaluate robustness at two levels: (i) performance under nom-
inal randomized variations in simulation, and (ii) robustness
to physical disturbances during real-world deployment. First,
we compare the robustness of our dynamics-conditioned RL
policy against MPC and BC in simulation, evaluating over
100 random seeds with variations in initial configuration and
object properties. As shown in Table II, both MPC and our
dynamics-conditioned RL policy achieve high success rates,
whereas BC performs significantly worse. We attribute this
to a sim-to-sim gap: the TO used in (1) employs a simplified
contact model that is not compatible with MuJoCo, making BC
policies brittle and unable to generalize. While BC followed
by RL fine-tuning can be an alternative, poor BC initialization
makes this equivalent to training from scratch.

Next, we compare the robustness of a dynamics-conditioned
RL policy against an MPC on the real-world pivoting-with-
wall task. The true object length is 0.16 m, and both controllers
receive the same privileged input. To isolate the effect of model
mismatch, we intentionally perturb only this privileged input

TABLE III: Number of successful attempts in real.

MPC  Dynamics-conditioned RL
+5mm 5/5 5/5
—5mm 0/5 5/5
—10mm 0/5 0/5
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Fig. 4: Comparison of our privileged information estimator’s predictions and
the ground truth for the wall friction constant, y- and z-position of the object,
orientation along x-axis, mass, length, and width of the box, and the table
friction constant, for the pivoting with a wall.

during deployment. For example, a —5 mm offset means that
the actual size of the box is shorter than what the controllers
expect. As shown in Table III, both MPC and RL succeed
when the actual object is longer than expected (45mm),
as the contact with the wall is still maintained. However,
when the actual object is shorter than expected (—5mm),
MPC fails completely, while RL remains successful. This
suggests that the learned policy exhibits greater tolerance to
moderate discrepancies in privileged information. At larger
mismatches (—10 mm), even RL fails. These results highlight
the importance of accurate privileged information and motivate
us to develop reliable estimators.

Privileged Information Estimator Performance. We de-
ploy the trained estimator and the policy in MuJoCo and
collect both the ground-truth privileged information and the
corresponding estimator’s predictions. As shown in Fig. 4, our
privileged information estimator can successfully predict the
privileged information with reasonable accuracy.

Hardware Experiments. We deploy our policy and esti-
mator on the real robot using zero-shot sim-to-real transfer.
All objects used in hardware experiments are unseen during
training. For all tasks, the policy successfully completed all
5 out of 5 trials, without access to privileged information as
shown in Fig. 1.

To evaluate sim-to-real transfer, we deploy the learned
dynamics-conditioned RL policy on both the simulation and
hardware for the two pivoting tasks. The resulting object
orientation trajectories over three trials are shown in Fig. 6. We
observe a larger sim-to-real gap for the pivoting with external
wall task than the pivoting without wall task. This is because
for the pivoting with wall task, the object induces the sliding
contact between the object and the wall, and between the



Fig. 5: Snapshots of pivoting without an external wall in sim and real-world.
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Fig. 6: Comparison of the object angle in simulation and the real-world during
pivoting. We execute the same policy both in simulation and in hardware and
collect the object orientation during manipulation over 3 trials. Due to sensor
discrepancies and physical modeling differences, the resulting actions and
motion can differ between simulation and hardware.

object and the table, which are challenging to model precisely
in MuJoCo, leading to a larger sim-to-real gap. In contrast, the
pivoting-without-wall task does not involve sliding contacts,
resulting in better sim-to-real transfer.

VI. CONCLUSION

We present a framework for learning closed-loop controllers
and estimators for contact-rich manipulation. We first leverage
CITO to generate high-quality demonstrations. Then, we per-
form RL using these demonstrations for training a base policy,
enabling sample-efficient learning. Furthermore, we train a
privileged information estimator using only proprioception,
vision, and force sensing, to predict such information that the
policy uses. Our framework is evaluated over several tasks and
achieves successful zero-shot sim-to-real transfer in real-world
experiments.

Limitation. We assume that objects are rigid and ma-
nipulation occurs in SE(2). This limitation arises from the
nature of CITO. The CITO we used in this paper [33] or
other CITO methods [11] do not support such dynamics.
As a result, the performance will decrease when handling
deformable or when considering 3D manipulation. Another
limitation is scalability to long-horizon manipulation. While
our method can handle multiple contact transitions, extending
it to significantly longer-horizon increases both the difficulty of
generating demonstrations and the risk of error accumulation
in the privileged-information estimator.
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APPENDIX

Training Base Policy Details. The training parameters are
summarized in Table IV. The coordinate is illustrated in Fig. 7.
In this work, we operate within the SE(2) group, restricting
pivoting and pushing manipulation to the y — z plane and
x—y plane, respectively. During the training of the base policy,
we perform domain randomization and add sensor noises to
robustify the policy, which is summarized in Table V.

Privileged Information Estimator Details. To train the
privileged information estimator, we roll out the base policy in
simulation and collect privileged information, sensor observa-
tions, and segmentation masks under the same randomization
ranges used for base training. To better reflect real-world sens-
ing, we augment segmentation masks as shown in Table VL

TABLE IV: Hyperparameter setup for the base policy. Note that Qiel1,-- 8]
are the coefficients of the reward terms in (2).

Parameter Value

300k for pivoting with-wall task
1500k for without-wall task
2000k for pushing task

total # of steps

batch size 4096
max # of step for timeout 300
Networks [128, 128] MLP
learning rate for policy le-4
learning rate for Q function 3e-4
discount factor 0.9
replay buffer size le6
# of episodes for evaluation 50
# of episodes for warmstart 50k

a1, a2, a3, a4, a5, as, a7, 8] [1, 0.075, 10, -1, -50, -50, -0.005, 5]
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1 0-000,"800k1600k
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Fig. 7: Definition of

world frame used in this Fig. 8: Learning curves for different RL training

work. runs for the pushing task. See Fig. 3 for other tasks.

TABLE V: Dynamics randomization and sensor noise. A (p1, o) denotes a
Gaussian distribution with mean g and standard deviation o, and U(a, b)
denotes a uniform distribution over the interval of [a, b]. A + symbol indicates
that the sampled noise is added to the original parameter value.

Parameter Range
object mass 4(0.04,0.4) kg
friction for table and wall 4(0.01,0.4)
friction for objects U(0.2,0.7)
friction for robots Uu(0.7,1.7)
object size scale U(0.95,1.05)

proportional gain kj, in OSC
derivative gain kg in OSC
initial object position along y-axis
initial robot position

14(2000, 8000)
2,/ky
+4(—0.015,0.015) m
+4(—0.015,0.015) m

object position observation noise +M(0,0.015)
robot position observation noise +M(0,0.00075)
contact force observation noise +M(0,0.2)

TABLE VI: Segmentation mask domain randomization parameters used
during privileged information estimator data collection.

Noise Type Parameter Value
Erosion/Dilation Probability 0.7
Kernel size choices {3,5,7}
Erosion vs. dilation split 0.5
Random Holes Number of holes 3
Hole radius range (3, 9] pixels
Hole probability 0.5
Full Mask Dropout Probability 0.05
Flip Noise Pixel flip probability 0.01
Edge Perturbation Edge noise probability 0.75
Spatial Augmentation Rotation range +2.5°
Translation range +7.5%
Scaling range [0.95, 1.05]
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