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Relaxed barrier function based model predictive control with hard
input constraints

Miguel Castroviejo-Fernandez', Jordan Leung? *

Abstract—This letter focuses on a formulation of Model
Predictive Control (MPC) with an optimal control problem
(OCP) defined by hard input constraints and soft state and
terminal set constraints. The soft constraints are accounted for
as relaxed barrier function terms in the objective function. The
proposed MPC is feasible for any state vector and, assuming
the input constraint set is simple (e.g. a hyperrectangle), leads
to anytime feasible formulations. A theoretical description of
the MPC scheme is conducted. Among other results, asymptotic
stability of the proposed MPC is proven and a region of attrac-
tion (RoA) estimate is derived. Moreover, stability guarantees
when performing a limited number of optimization iterations
are also derived. Numerical results showcase the benefit of
considering the input constraints directly in the OCP instead
of saturating the output of an unconstrained OCP with relaxed
barrier functions, as was previously done in the literature.

I. INTRODUCTION

Model predictive control (MPC) has established itself as a
popular formalism for the control of constrained systems due
to its direct constraint handling capabilities and performance
guarantees. MPC is implemented by solving, at each time
instant, an optimal control problem (OCP) that minimizes an
objective function over a finite input sequence subject to the
system dynamics and constraints. The OCP is parameterized
by the current state vector and the input is selected as the first
element of the optimal input sequence. Stability and recursive
feasibility guarantees for state and input constrained MPC
are readily available, e.g. [1].

Nevertheless, unforeseen disturbances, sensor noise, or the
use of a suboptimal solution can lead to an unexpected
departure of the state from the feasible region of the OCP
leading to an undefined control input [2]. Considerable effort
has been given to designing MPC schemes which are feasible
over the whole state space. A popular approach is to use slack
variables to relax the constraints and modify the objective
[3]-[6]. Slack variables form a natural relaxation strategy, but
the relaxed OCP typically still has constraints that preclude
the use of unconstrained or projection-based optimization,
which complicates the implementation of suboptimal MPC.

A different relaxation of MPC [7] is based on using
relaxed barrier functions to replace both state and input
constraints in the OCP. This leads to an unconstrained,
(at least) twice continuously differentiable, and strongly
convex program that can be solved using sparsity-exploiting
algorithms [8]. In [7], the authors derive global asymptotic
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stability results at the expense of arbitrarily large input
constraint violations. While the approach is appealing, in
practice, input constraints often represent physical limitation
on the actuators. As such, the input produced by [7] must
be saturated after its computation, which may cause perfor-
mance degradation or loss of stability.

In this work, we modify the relaxed barrier MPC formula-
tion of [7] to directly account for the input constraints in the
OCP. More precisely, we propose an MPC scheme with hard
input constraints and soft state and terminal state constraints
encoded as relaxed barrier function terms in the OCP. The
resulting OCP is (at least) twice continuously differentiable,
strongly convex, and feasible for any value of the state
vector. In addition, if the input constraint set is simple, e.g.
a hyperrectangle, it can be readily solved using projected
Newton methods [9] and a feasible solution can be obtained
after any number of iterations. We derive theoretical stability
guarantees for this MPC formulation under both optimal
and suboptimal solutions of the OCP. A numerical study
showcases the advantage of the proposed MPC compared
to that of [7] when strict enforcement of input constraints is
necessary.

In the remainder of this section we introduce some no-
tation and the concept of relaxed barrier functions. Section
IT describes the problem at hand and defines the OCP we
consider. In Section III theoretical guarantees are derived
and Section IV presents numerical results.

A. Notation

Let Z be the set of integers and R the set of real numbers.
Given sets S, A C R, then S4 £ SN A and for a € R,
S>o = Sla,00) and S5 = S(a,00)- The interior and boundary
of a set S C R™ are denoted as S° and 0S8, respectively.
Moreover, aS = {as : s € S}, for all @ € R. Finite
sequences are written in bold font with a subscript denoting
their length, i.e., ay denotes the sequence {ai}iji 61. With a
slight overloading of notation, we also use ay to denote the
set containing elements a; for ¢ = 0,.., N — 1. For a given
matrix A € R™ ™ its i row is denoted by Agy.

B. Relaxed barrier functions

Throughout this work we will make use of relaxed barrier
functions, which are barrier functions extended to be defined
on the whole underlying vector space [10]. We introduce two
specific instances of relaxed barrier functions that are based
on a quadratic relaxing function:

R R:s— 6(s;0) 2 = [(5‘25)2—1] ~1n(s), (1)

2 0



where § € Ry is the relaxation parameter. We note that 3 is
strictly monotone and a continuously differentiable function.
Importantly for the relaxed logarithmic barrier functions
B(6;90) = —1n(d) and 8 — oo as s — —o0.

Definition 1. Let (3(-;6) be defined as in (1). Then, R x
R>o - RU{o0} : s = B(s;9),

—In(s), s>94
B(s;0) & B(s;0), s$<4§,6>0, )
0, §<6,0=0

is a quadratically relaxed logarithmic barrier function.

The relaxed barrier function in Definition 1 is useful to
relax constraints represented as sublevel sets of a functional.
Also, the function B (+; 0) recovers the natural logarithm, i.e.,
the case of zero relaxation. A similar observation applies to
Definition 2, which introduces a relaxation for polytopic set
constraints.

Definition 2. Let 3 be defined in (1), B in (2) and the pair
C e R" ", c € R be such that the set S £ {z € R :
Cz < c} contains the origin in its interior. Then, given
0 € R>o, a relaxed weight recentered logarithmic barrier
function for S is a function Bs : R"* x R>g — RU {0} :
x — Bs(x;9), where
Bs(x;0) £ (1 +w;) ( (cty — Crayas; 0) + ID(C(i))) :
i=1

Moreover, weights wn, ...
gradient of f(x) =

See [11] for details on the selection of the weights w;.

0 ,wy € Rso are such that the
Bs(x;0) at the origin is null.

II. PRELIMINARIES
A. Problem setting

We consider a discrete-time linear system described by:

Tp41 = Axy + Bug, 3)

where the index k& € Z>( denotes the time instant, z; €
R™= is the state vector and u; € R™* is the applied input.
Moreover, the system is subject to the following point-wise
in time polytopic constraints,

v, €X & {r eR™
up €U = {u e R™

s A% < bV
s A%u < b4}

(4a)
(4b)

The sequence €x 41 (un, z°) denotes the trajectory of system
(3) starting from the initial condition 2° € R™ with control
inputs taken from the sequence uy C R™*.

In the following we study an MPC policy whose stability
is guaranteed by selecting a terminal cost and terminal set
constraint that satisfy the usual assumptions required for
stability [1]. We consider a linear terminal control law with
gain K € R™*"= and, for convenience, we define

Ax £ A+ BK, and, Xx £ {x € X : Kz € U}.

We make the following assumption regarding the terminal
set, inspired from [7].

Assumption 1. The terminal set, Xy, has the form
Xy £ {z eR™ :y(x) <1},

where 1 : R™ — R is convex, positive definite, contin-
uously differentiable and satisfies the following contractive
property:
'l/)(AKx) < ’l/)(x), Yz € Xf.
Moreover, (-) is positively homogeneous of degree 1, i.e.,
Va € Rsg @ ¢p(ax) = ayp(z), Vo € R™=.

A set such that Assumption 1 holds can be generated as
an approximation to a polytopic set through the Minkowski
functional [12]. Under Assumption 1 we have that Vy € R>q,

Xy ={z € R™ 1 ¢p(z) <7} (5)
We now introduce an assumption on the constraint sets.

Assumption 2. The sets X, U, Xj contain the origin in
their interior. Moreover, U is bounded and X; is compact.

The N-step reachable set to the terminal set Xy C R"=»
is defined as Ry (X, U, X;) £ {2° € R" : Juy C U such
that & (un,2) € Xy, and En(un,2®) C X'}. We use the
short hand notation R (U, Xy) to denote R (R™ U, Xy),
and when clear from context we may omit its arguments.

B. Optimal control problem

_ The MPC controller we develop here is based on the OCP
P(z), defined as

N—
A
mln JN UN,T) = E

Ou;, &) + F (&n)  (6a)
subject to u; € U, Vi € Z[;?\;_l], & =, (6b)
§iv1 = A& + Buy, Vi € Z n—_1)- (6¢)

The stage cost, / and terminal cost, ﬁ‘ are defined as
U, u) 2 0z, u) + Ao Ba(2;65), Ay € Rug, (7a)
F(z) 2 F(x) + \;Bf(z;8;), \f € Rsg, (7b)

where ((z,u) = [l2]]3 + [ul%. F(z) = |23 with @ = 0,
R = 0 and P = 0. The functions Bz, B ¢ are introduced
to account for the state and terminal state constraints, which
do not appear explicitly in constraints of P(z). They are
relaxed logarithmic barrier functions for the sets X' and Ay
with parameters ., 65 € (0,1] and weights A, Ay €
R>o. More precisely, the function B + 1s arelaxed logarithmic
barrier function for X’y (Definition 1):

By(w;6f) = B(1 — ¥(x); 5). (8)

Similarly, B (m 0z) is a relaxed weight-recentered logarith-
mic barrier function for the polytopic set X'. It is defined
following Definition 2 for the pair (A%,bY). The follow-
ing assumption ensures that the recentering of B, (;0) is
preserved despite the relaxation.

Assumption 3. The relaxation parameter 5, € (0,1] is
chosen such that B,(0;6,) =0, VB;(0;,) =0



Such a relaxation parameter always exists. In particular,
if 0 < § < min(b¥), the recentering is preserved [7]. In
the sequel, we let B, (z) £ B,(x;0) and By £ Bj(x;0),
i.e., they denote the logarithmic barrier functions (before
relaxation) that generate B, and B t, respectively.

The OCP defined in (6) is a strongly convex optimization
problem and Assumption 2 ensures the problem is feasible
and has a unique global solution. We therefore define the
minimizer function for Py (x) and associated state trajectory
as @y (z) and €% 41(x), respectively. Moreover, we let
J% (x) denote the optimal value.

The following assumption is sufficient to ensure stability
and constraint satisfaction for any initial condition in the
interior of Ry (X, U, X f) when considering MPC based on
the unrelaxed variant of P(z) where B, and By are replaced
by the unrelaxed barrier functions B, and By. The result and
proof follows [7, Theorem 1] and is omitted here for brevity.

Assumption 4. 4.1 The matrix Ay is Schur.

4.2 There exists M € R"=*"= M = 0 such that B, (x) <
z' Mz, Yx € N, where N C X, 0 € N° and N is
a convex and compact set.

4.3 The terminal cost matrix P € R™=*"= js a solution to

P=A}PAx+ K"RK 4+ Q+ \, M.

4.4 The terminal set is contained in N, i.e., Xp C N C Xk.
4.5 The function By is a recentered barrier function for Xy,
satisfying By(Axx) — By(x) <0, Vo € X} .

As stated in the introduction, one of the motivations for
softening the state and terminal set constraints is to ensure
the controller generates an input command even when state
constraint violation is unavoidable. To this end, we derive a
region of attraction (RoA) for which the closed-loop system
under the MPC associated with P(x) is asymptotically
stable despite possible violation of the state constraints. The
derivation of the RoA is detailed in the following section.

We note that one can also prove existence of an invariant
subset of Ry (X,U,Xs) for which the solution of P(z)
satisfies the state and terminal constraints, which also ensures
stability of the MPC policy by [7, Theorem 1]. This subset
can be made to approximate the reachable set arbitrarily well
through selection of the relaxation parameters. The proof
of the two aforementioned constraint satisfaction properties
follow those of Theorem 2, Lemma 2, and Corollary 1 in [7]
and have therefore been omitted here.

ITII. THEORETICAL ANALYSIS
A. Stability guarantees despite constraint violation

We now derive an RoA estimate for our MPC scheme
leveraging the stability guarantees for MPC formulations
without terminal set constraints detailed in [13]. The results
in [13] require that the terminal set be a sublevel set of the
terminal cost. However, for the OCP (6), a terminal set Xy
respecting Assumption 1 is not necessarily a sublevel set of
our terminal cost F. As such, we first construct a fictitious
terminal set, X t € A, that has the required properties for

[13, Theorem 1] to hold and that can be made to approximate
X arbitrarily well. More precisely, we let

F(x305) < XpBr(0:85) + 6},

where & is largest P-level set inside X:

.)E‘f()\f,(Sf) = {1’ € R"= ;

& = maxa such that Xp(a) 2 {z: ||z|3 <a} C X 9)
ac

The following result describes properties of X 't

Lemma 1. Under Assumptions 1, 2 and 4, the following
identities hold:

i) € Xy < Bp(x;0) < B;(0;9).

11) Xp( ) C Xf C Xf

i) x € Xf = Agz € /'\Aff, moreover

F(AKI) -

Proof. 1) holds by monotonicity and positive definiteness
of By after noting that z € 9X; <= (z) =
1 <= By(x;0) = B(0;8). For the first inclusion
in ii), take * € Xp, by definition of &, x € A} by i)
this implies By < B(0;0) and as such F(z) < & +
AtBx,(0;0) = x € X;. For the second inclusion in
ii), take any x € Xf, and assume x ¢ AXy. By i), it then
holds that Bf(z) > £;(0;4). Combining this with = € X
we conclude that ||z[|% < & as such z € Xp(a) C Ay,
VYhiCh is a contradiction For iii), take any = € X t, then,
F(Ag)=F(x)+i(z, Kz) = | Axalp—||z |3+, Kz)+
Bf(AK.Z‘) Bf( ) < Bf(AKJ}) Bf( ) < 0, where the
first equality is obtained from the definition of F; the first
inequality from the definition of P in Assumption 4.3 as
well as the upper bound on B, given in Assumption 4.2; the
second inequality from the inclusion of X t in Xy and the
decrease condition in Assumption 4.5. O

F(z) 4+ {(z,Kz) <0,Yz € X;.  (10)

Next we show that by adequately choosing the weight Ay,
the terminal set Xy can be made to contain the set yXy for
any v € [0,1).

Theorem 1. Let Assumptions 1, 2 and 4 hold. For any v €
[0,1) there exists A € Rsq such that for all Ay > A:

X C Xp(Ag, 6p).

Proof. Let & € R> be such that F(z) < &, Va € vX, ie.,
an upper bound on the function F'(z) over vX. Continuity
of I and compactness of Xy ensure a finite & exists. Then,

define
_ 0, ifa<aé
A= { . (11)
(

ax—x

B(0:65) =By (1=v:d5)’ else

Consider any = € yXy and any A; > X. We show that
0 <&+ AB(0;05) — F(x).

Starting from the left hand side:

G+ s B(0; ( ) > G+A g B(0; ) —a—A By (1—7; 65)

6f)—
> & —a+AB(0;0f) — By(1—7;87)) >0



The first inequality above comes from the definition of F, the
upper bound &, property (5) as well as positive definiteness
and strict monotonicity of B . The second inequality comes
from Ay > ) and the fact that the term it multiplies is positive
by the properties of B ¢. The last inequality comes from the
definition of \. O

Remark 1. If X} is obtained as an inner approximation
of a polytope, one can determine & by either solving a
constrained convex program or one may pick the highest
value of F(-) evaluated at the vertices of the scaled polytope
that generated Xy, thanks to Bauer’s maximum principle.

It is worth noting that when Vi (x) # 0, for all x such
that ¢(z) = 1, Theorem 1 provides a way to approximate
Xt arbitrarily well. The result hinges on the fact that the 1-
level set of ) is then equivalent to the boundary of X’. This
property holds for the Minkowski function approximation of
a polytope discussed in [12].

We are now ready to state our main stability result which
depends on a a lower bound on the value of the stage cost
outside the set X t, introduced hereunder.

Assumption 5. Let d be a positive constant such that ||||3)+
)\wéx(x;dx) >dforall x & Xf.

Theorem 2. Let Assumptions 1-5 hold. Then, system (3) with
up = W5(xg) €U is asymptotically stable at the origin with
a region of attraction I'y C Ry (U, Xy), where

Iy (@) < l(2,0) + (N —1)d } (12)

FN{NR ’ +AB7(0;8) + @

Proof. The claim follows from [13, Theorem 1]. The result
holds by the fact that: i) the terminal cost is a class K-
function by positive definiteness of P, positive definiteness
of By, and Ay € R>¢; ii) the descent condition in (10) holds;
iii) the terminal set is a sublevel set of the terminal cost; iv)
for the OCP P(-), Assumption 5 implies that ¢(x, u) > d for
all x & X¢; and finally v) positive definiteness of B, ensures
positive definiteness of /. O

Remark 2. If Ty D Ry(X,U, X}), then the MPC based
on 75(:16) results in a larger RoA than the corresponding
MPC with hard constraints. Furthermore, the closed-loop
system is nominally robustly stable within I'n for sufficiently
small additive disturbances. We emphasize that fN is an
inner-approximation of the true closed-loop RoA and that,
in practice, the globally feasible MPC policy may (robustly)
stabilize states outside of I'y, or even Ry U, xy).

Next, we demonstrate that the relaxation parameters can be
selected so that I' approximates the interior of the reachable
set Ry (U, Xy) arbitrarily well. Before we state the result,
we need to characterize the reachable set to X 't. Note that if
U and Xy are compact, then Ry (U, X ¢) is compact for all
values of N. Secondly, it directly holds that VA C B C R™ :
R (U, A) C R (U, B). Finally, if z € R (U, B) and uy
is such that {i (z, un) € B, then & (z,un) € R _, U, B).

Let us now define an upper bound on the value of the stage
cost over the i-step reachable set, with 7 € Zx>q:

Li(U, X) = max {(z,0), subject to z € RS (U, X). (13)

x

Theorem 3. Let Assumption I, 2 and 5 hold and assume U
is compact. Take any p € Ry 1y and let § be such that

5(05) _ N maxyecy ||U||%% +Zf\i§1£¢ B i
’ Ar(1=p) Ar

where L; is defined in (13), d is defined in Assumption 5, and
& is defined according to (9). Then, for all z € R{ (U, pXy),
it holds that for all 0 < 7 <9, x € Tn(Ay;0).

Proof. Take any z € R (U, p.)e ). Then, there is a feasible
input sequence uy such that {y(z,un) € p/'?f. For the
remainder of this proof we let &y = &n(z,uy). By
definition of the value function for Py () we have that

(14)

N-1
Th(@) < Inlun, @) = > 0E,w) + A Br(én)
~ - N-1 A~
< 0, 0) + N max [lulf + Z} Li+AsBy(€n)
R N-—-1
< {(w,0) + N max ul|% + 2_; Li+ p(a+ A;B(0;67)).

Given the above inequalities, to ensure = € T'n(dy) it is
sufficient to ensure

N—-1
/ N 2 ; A+ A B(0: 6
(7,0) + rggglIUHR+ ;C + p(& + A B(0565))

<U(z,0)+ (N —1)d+ (& + \;B(0;65)).

Rearranging the terms above we equivalently need to show
that

2 N—-1 5.
Nmexcu it 2 5 6 < X5(0;67) + (N — 1)d,
where the left hand side is equal to 3(0;6) by (14). The

desired result is obtained by the assumption that 0 < d;y < 6
and the fact that 5(0;d5) > 8(0;0). O

The value of & satisfying (14) can be calculated by
rearranging the definition in (1).

Remark 3. Theorem 1 and Theorem 3 provide parameter
design choices to ensure that /XA’ t approximates Xy and that
I'n approximates Ry (U, X +) arbitrarily well. Both results
work in synergy: decreasing 0y leads to a lowering of the
lower bound on Ay and increasing Ay leads to an increase
of the upper bound on §y.

Remark 4. Equation (14) requires a bound on the sum of the
stage costs over any trajectory that starts in Ry—1(U, Xy).
The bound (13) corresponds to maximizing the value of the
stage cost over each R; for i =1,..., N — 1, which might



be conservative. In the case where A in (3) is invertible, the
following problem is well posed and gives the tightest bound:

max E Z:I:Z,

:A €Xr; —

) subject to u, CU, xy € Xf,

A'Bu,i=0,...,N —2.

Ti+1

Replacing )E'f by the polytope defining Xy we get the maxi-
mization of a convex function over a polytopic set which can
readily be evaluated through Bauer’s maximum principle.

Due to the very nature of the OCP formulation consid-
ered here, constraint violation may occur. As discussed in
Section II, it is possible to derive bounds on the maximum
constraint violation and a subset of I" ~ for which the closed-
loop trajectories satisfy the constraints. These properties
follow analogously to Lemma 4 and Theorem 6 in [7]

B. Optimization algorithms and suboptimal MPC

A key advantage of the proposed MPC formulation is that,
assuming that U/ is simple, the OCP can be solved efficiently
using projection-based methods such as the projected New-
ton method (PNM) [9]. Moreover, the latter being a descent
method, it provides a suitable framework for analyzing the
impact of a finite number of iterations of the optimizer.

In the reminder of this section we analyze the use of
suboptimal solutions to the OCP (6) for input generation.
We assume that the OCP is solved using an iterative solver
with iterations defined by Z : RN x R™» — RN™ where

Zi(u® z) = Z(T;_, (u™, z), ), forall i € Zs,
Io(’u,(k),.’lf) = j(u(k)a Jf),
where ¢ represents the number of iterations, = is the the
OCP parameter, and u® is a suitably defined initialization,

e.g., the solution to the previous instance of the OCP. The
mapping J provides the following warm-starting procedure:

j<N

— ot + _ J W+
uw,r) =u", where u; =

K§N(x,u),

We make the following assumption on the feasibility and
contractivity of the optimizer, which holds for the PNM [9].

Assumption 6. For any u C RN™ and x € R", the
iteration I produces a feasible input, Z(u,x) € U. Moreover,

In(Z(un,z), z) — Jn(uy,z) <O0.

radial [m]
,-'I> 'I\> o N MO
s

»

‘ in-track [m]
-2 0 2 4 6 8

We introduce a suboptimal trajectory of (3), defined as

a0, 2%) =7, (a5, ), (15a)
(i, 2°) = Axk+Bu(k) (15b)

where the k*" element of the infinite sequence 4 = {ix}22,,
e, i € Zxo, is the number of optimizer iterations per-
formed at time instant k, £y = z° and u( D _ 0. Theorem
4 gives asymptotic stability conditions for the closed loop
system given in (15). We first derive a sufficient condition
ensuring that trajectories of (3) end in the terminal set X t-

Lemma 2. Let Assumptions 1-5 hold and assume that the
weights Ay, 6y have been selected so that (14) holds for some
p € Ryg 1y. Then, for all pairs (uy,x) such that

)d+p(a+AB(0;95)), (16)

the associated N-step forward propagation of the state lies
inside the terminal set, i.e.,

jN(uN,x) < E(LE,O)—F(N—

§N(9c,uN) S Xf.

Proof. Tfuy = 0and {&}N ' = 0, the result holds through
Assumption 2, so assume it is not so. We now show the
result holds by contradiction. Let z,uy be such a pair.
Using the definition of .J we have that Zﬁvz_ol U(&,ug) +
F(En) < €(2,0)+ (N —1)d+p(a+X;B(0;d5)). Reordering
and canceling the term é(x,()) from both sides results in
S O i)+ [luolB < (N —1)d+ p(é+ ApB(0; 67)) —
F(&n). The left hand side in the previous inequality can be
strictly lower bounded by 0 as at least £y or u are non zero
and the stage cost is a positive definite function. Leveraging
the assumption &y (x,un) & Xf and the definition of Xf
we have the necessary condition: 0 < (N — 1)d + (p —
1)(& + ArB(0;6¢)). Rearranging (14), and letting § = d;
an equivalent condition for the previous inequality to hold is
— (N max, ey Jull 2+ V" £i— (N —1)d). It remains
to show the right hand side of the last inequality is strictly
negative. Recall the definition of d in Assumption 5 and that
of £; in (13) and note that RS(U, X;) D Xy by forward
invariance of X’y (Lemma L.iii). This ensures last two terms
are at most equal. Assumption 2 and R > 0 ensure the first
term is strictly negative, concluding the proof. O

Theorem 4. Consider the trajectory & = {i(i,2)}32,
defined in (15). Let Assumptions 1-6 hold and assume that i

Value function

0 20 40 60 80 100
time [s]

Fig. 1: Trajectories in the position plane (left), and evolution of the value function (right), for two initial conditions for the
system controlled with controller 1 (solid lines) and with controller 2 (dashed lines). Cone constraint in black dotted lines.



is sufficiently large so that &y (z, 4%, (ig, x)) € pz’?f, for some

p € 10,1). Then, the closed loop trajectory, &, asymptotically
converges to the origin for any sequence {iy}7>, C Z>o.

Proof. We first note that by Lemma 1.iii) for any =, ux such
that {x (un,x) € Xy it holds that

J(& 1, T (uy,z)) — J(un,z) < é(a:,uo).

This implies that if x, u respect (16) then &; and the warm-
started input sequence also respect (16). The contractive
property in Assumption 6 ensures that this condition is still
respected after any number of optimizer iterations. Thanks to
this and noting that by assumption &y (29, w(?)) € pX, we
conclude that at all time instants k € Z > 0, { (@, 11(]“)) S
X + by Lemma 2. The warm-starting procedure that occurs
at each time instant ensures, through (17), that we have a
strict decrease condition for the positive definite function JIn
along the trajectory of the system, which ensures the result
holds. O

a7

IV. NUMERICAL SIMULATIONS

In this section we aim to illustrate the difference between
our approach and the relaxed barrier MPC [7] for systems
with hard input constraints. More precisely, we compare the
difference between having hard input constraints in the OCP
and saturating the output of the OCP in [7]. We consider
a rendezvous maneuver of a Deputy spacecraft to a Chief
spacecraft. The latter on a circular orbit, 500 km above the
earth, and the motion of the Deputy restricted to the orbital
plane of the Chief. The dynamics are approximated by the
CWH equations [14], a set of linear equations with 4 states
and 2 inputs. The components of the state vector represent
the radial and in-track positions and velocities of the Deputy
relative to the Chief resolved in the Chief centered Hill’s
frame. The input vector corresponds to applied accelerations
along the radial and in-track directions.

During the maneuver, the Deputy is to reach an in-
track relative position of 10 m with zero relative radial
position. Moreover, the Deputy is required to maintain an
in-track position of at least 8 m in front of the Chief, while
remaining inside of a 5 degree cone with an apex at the
Chief (Figure 1). Further, input saturation values of 0.01 N
kg~! and maximum relative velocity constraints of 3 m/s are
considered.

The MPCs in this example use weights of @@ =
diag(1,1072,107%,1072) and R = 10731, a prediction
horizon N = 40, a sampling period of 1 s, and a terminal
gain K given by the solution to the DARE with parameters
Q = I and R = 10*I. The terminal cost matrix P is obtained
following the procedure in [12, Lemma 1, (7)] with v of [12,
Lemma 1, (7)] given as ﬁ + 5% 103. A polytopic terminal
set is obtained starting from the MOAS [15] for dynamics
Ty = ﬁAKa: and with scaling [12, Lemma 2]. We let
A = 1074, 8, = 7% 1072 and chose Ay = 5 * 103, which
is the same order of magnitude as the entries of P. Finally,
07 is selected so that (14) and (11) holds for p = 0.97.
The controller obtained from solving (6) with the above

parameters is denoted by controller 1. We compare this to
an other controller, controller 2, with similar parameters and
defined following [7], i.e. by relaxing all state and input
constraints in the OCP and by applying saturation to the
desired input.

One hundred initial conditions were generated pseudo
randomly and scaled using bisection to be included in In.
To illustrate the difference in performance with the two
approaches we consider reaching a distance of 0.05 m from
the origin as an indicator of convergence. All trajectories
obtained with controller 1 had converged after 50 s. In con-
trast, none of the trajectories for controller 2 had converged
in 50 s. After 100 s, 30 trajectories had converged. Figure 1
(left) illustrates typical trajectories with controller 1 and 2.
Figure 1 (right) shows the evolution of the value function
for controller 1 and controller 2. As derived in theory,
the value function for controller 1 is strictly monotonically
decreasing in contrast to that of controller 2. This hints to a
destabilizing effect caused by the external saturation. Indeed,
when discarding the saturation a strict decrease was observed
and is theoretically confirmed by the stability analysis of
[7]. Note that a range of tuning parameters were tested for
controller 2 to see if the adverse effect could be avoided,
but all values resulted in similar behavior for a large set of
initial conditions.

V. CONCLUSION

In this paper we studied the stability properties of an
MPC scheme with hard input constraints and soft state
constraints encoded through relaxed barrier functions. A
region of attraction estimate was provided and stability
results for a suboptimal implementation were derived. Future
work will focus on the development of a sparsity-exploiting
iteration scheme akin to [8], as well as studying the robust
stability properties of the proposed scheme under bounded
disturbances.
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