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Abstract

Prehensile autonomous manipulation, such as peg insertion, tool use, or assembly, require
precise in-hand under- standing of the object pose and the extrinsic contacts made during
interactions. Providing accurate estimation of pose and contacts is challenging. Tactile
sensors can provide local geometry at the sensor and force information about the grasp, but
the locality of sensing means resolving poses and contacts from tactile alone is often an ill-
posed problem, as multiple configurations can be consistent with the observations. Adding
visual feedback can help resolve ambiguities, but can suffer from noise and occlusions. In
this work, we propose a method that pairs local observations from sensing with the physical
constraints of contact. We pro- pose a set of factors that ensure local consistency with
tactile observations as well as enforcing physical plausibility, namely, that the estimated pose
and contacts must respect the kinematic and force constraints of quasi-static rigid body
interactions. We formalize our problem as a factor graph, allowing for efficient estimation.
In our experiments, we demonstrate that our method outperforms existing geometric and
contact-informed estimation pipelines, especially when only tactile information is available.
Video results can be found at tacgraph.github.io
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Simultaneous Extrinsic Contact and In-Hand Pose Estimation via

Distributed Tactile Sensing
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Abstract—Prehensile autonomous manipulation, such as peg
insertion, tool use, or assembly, require precise in-hand under-
standing of the object pose and the extrinsic contacts made during
interactions. Providing accurate estimation of pose and contacts
is challenging. Tactile sensors can provide local geometry at the
sensor and force information about the grasp, but the locality
of sensing means resolving poses and contacts from tactile alone
is often an ill-posed problem, as multiple configurations can be
consistent with the observations. Adding visual feedback can help
resolve ambiguities, but can suffer from noise and occlusions. In
this work, we propose a method that pairs local observations
from sensing with the physical constraints of contact. We pro-
pose a set of factors that ensure local consistency with tactile
observations as well as enforcing physical plausibility, namely,
that the estimated pose and contacts must respect the kinematic
and force constraints of quasi-static rigid body interactions. We
formalize our problem as a factor graph, allowing for efficient
estimation. In our experiments, we demonstrate that our method
outperforms existing geometric and contact-informed estimation
pipelines, especially when only tactile information is available.
Video results can be found at tacgraph.github.io.

Index Terms—In-Hand Manipulation, Force and Tactile Sens-
ing, Perception for Grasping and Manipulation

I. INTRODUCTION

REHENSILE manipulation tasks require precise reason-

ing over grasped object poses and contacts. Even small
errors in object pose can prevent proper insertion of an
object [[1] or yield an undesired placement [2]. Effective tool
use similarly relies on precise application of contacts and
forces [3]. We require systems capable of simultaneously
estimating where a grasped object is and how it is in contact
with the environment.

Methods for object pose estimation largely rely on visual
feedback [4] 15]]. Prehensile manipulation, however, often suf-
fers visual occlusions due to the grasp and/or environment and
sensor noise can corrupt estimation results. Distributed visuo-
tactile sensors are a promising form of feedback for prehensile
manipulation [6} [7] that can complement visual sensing [S§]].
These sensors utilize a compliant material that deforms on
contact and a camera to observe these deformations. This pro-
vides local geometric information where the sensor contacts
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Fig. 1: We propose TacGraph, an estimator that exploits
geometric consistency, force balance, non-penetration, and
contact kinematics to jointly estimate the object pose and
extrinsic contacts.

the object. While these geometric observations can resolve in-
hand pose for small or highly featured objects [9], for many
objects, the local nature of these observations still results in
significant ambiguities [10] and must be paired with visual
feedback for better convergence [11].

The compliance of the visuo-tactile sensor can also provide
a signal of extrinsic contact, between the grasped object and
the environment. How the sensor deforms when an extrinsic
contact is made is indicative of the force experienced in the
grasp [12], which in turn can be used as a signal to infer
extrinsic contacts [13] [14]. Precisely identifying contact is
still challenging, however, as multiple contact points can yield
near-identical force profiles in the grasp.

In this work, we investigate how jointly estimating the object
pose and extrinsic contacts can help resolve ambiguities and
address noise. Intuitively, these two are tightly coupled, as
the object pose determines which contacts are possible, and
conversely, where contact is being made constrains object
poses. We enforce non-penetration with the (assumed known)
environment and ensure that the estimated extrinsic contact is
kinematically feasible (i.e., lies on the surface of the object
and environment) and yields forces consistent with tactile
feedback. The result is a system that enforces consistency
across multiple forms of feedback (geometry and forces) while
enforcing physical realism (see Fig. [T). This reduces the space
of acceptable solutions, resulting in accurate estimation.

Our contributions are as follows:

o A set of object agnostic models for extracting geometric
and force signals for our estimator from tactile feedback.
o A factor graph method for simultaneous extrinsic con-
tact and in-hand pose estimation, TacGraph, which
jointly enforces geometric consistency, force balance,
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non-penetration, and contact kinematics.
¢ Demonstration of our method on a physical system and
comparison to baselines.

II. RELATED WORK

A. Extrinsic Contact Estimation

Accurate recovery of extrinsic contacts is challenging due
to the broad nature of contacts possible and the indirect and
partial sensing available. Kim et al. [15] learns to predict image
contact masks directly from visual feedback. Other methods
learn to predict line or patch geometries from point cloud and
Force/Torque feedback [16, [17]. Higuera et al. [18] and Ota et
al [19] predict extrinsic contact patches based on distributed
visuo-tactile feedback. Lee et al.[20] predicts extrinsic contact
patch along with in-hand pose. These methods rely on expen-
sive object-specific training, unlike our method which trains
only object-agnostic components.

Kim et al. [14] and Kim et al. [13] utilize visuo-tactile
feedback to estimate an extrinsic contact. Without knowledge
of object geometry, their method utilizes the in-hand displace-
ments observed from tactile sensing and active exploratory
interactions to derive contact line or point. However, this work
does not consider object pose.

B. Prehensile Object Pose Estimation

Tac2Pose [10] learns to perform object pose estimation via
an object-specific tactile model that returns pose distributions
consistent with observed tactile feedback. Follow up work
fuses incorporates visual feedback to further resolve ambigu-
ity [L1]. Dikhale et al. [21] fuse tactile and visual feedback
to learn to predict object poses directly, akin to purely visual
based tracking models [5].

Several works investigate model-based estimation with com-
bined visual and tactile feedback. Several works jointly re-
construct and estimate pose from visual and tactile geometric
feedback [22 [8]. Zhong et al. [23] extends model-based pose
estimation to include free-space non-penetration constraints
as well as tactile point clouds, but does not consider contact
consistency of any form.

C. Joint Prehensile Pose and Extrinsic Contact Estimation

Bronars et al. [24] extends Tac2Pose [10] to include ad-
ditional geometric contact constraints, however, it does not
utilize the wrench consistency and relies on the object-specific
models of Tac2Pose.

SCOPE [25]] and Multi-Scope [26] propose a model-based
approach that utilizes Force/Torque feedback on the robot
and environment to simultaneously estimate object and en-
vironment pose and extrinsic contacts, utilizing the physical
constraints of contact. However, assuming F/T sensing on the
environment is often unrealistic and their approach does not
incorporate geometric consistency.

III. PROBLEM STATEMENT

Our goal is to estimate the pose of a grasped object and the
extrinsic contact that the grasped object makes with a known
environment. We make the following assumptions:

o The object is rigid and has a known geometry M,,.

o The environment is rigid, has a known geometry M.,
and is static.

o The grasp is elastic, meaning it complies due to external
contact, but the object returns to the same location when
the extrinsic contact is removed.

o We assume that the extrinsic contact can be described as
a single summary contact point and force, and does not
induce a torque.

We utilize feedback from a pair of Gelsight tactile sen-
sors [9], located at the grasp, and robot proprioception. For
some experiments, we additionally provide visual feedback
from an external camera. Our inputs are:

« (Optional) PV € RMv>3 _ initial partial point cloud of

object from external camera.

e g: € SE(3) - gripper pose at time t.

o IL IF € REXWX3 _ Gelsight tactile images from the
left and right gripper fingers at time ¢.

e M,, M, - triangle mesh geometry of the grasped object
and environment.

Our goal is to estimate the object pose as well as the contact
point and contact force. Our desired outputs are:

e 0; € SE(3) - object pose at time ¢.

e ¢; € R3 - contact point at time ¢.

e f: € R3 - contact force at ¢, at time ¢.

IV. TACGRAPH: FACTOR GRAPH BASED ESTIMATION

We propose our method for simultaneously estimating in-
hand object pose and extrinsic contacts from tactile feedback.
First, we propose a set of object agnostic tactile models
for extracting useful geometric and force signals to be used
downstream. Second, we propose TacGraph, our factor-graph
based estimator. An overview of our method is shown in Fig.[2]

A. Tactile Models

Distributed visuo-tactile sensors provide several forms of
feedback that are valuable for contact-rich prehensile ma-
nipulation. First, we gain local geometric information from
the grasp. Second, the deformation allowed by the sensor
upon an external contact provides information about a) the in-
hand displacement of the object and b) the force applied on
the object. We propose a set of object-agnostic models that
extracts these feedback terms from the raw tactile images.

We use the initial tactile observations (i.e., at ¢ = 0), to
predict a tactile point cloud PT € RN7*3, We train a model
that takes in a tactile image (either from the left or right sensor)
and yields a depth image D € R¥*W We threshold the depth
to determine which pixels are in contact and de-project the
depths to yield our final point cloud P7.

As the grasped object makes contact with its environment,
the compliance of the Gelsight sensor means the object moves
in the grasp. In order to accurately recover the object pose,
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Fig. 2: Overview of our proposed methodology. First, we propose a set of tactile models which process raw distributed tactile
observations into geometric and force feedback terms. Second, these terms are utilized, along with known geometries and
optionally with visual feedback, in a factor-graph based estimator, TacGraph, which estimates the object pose and extrinsic
contacts. Observations, variables, and factors that are fixed (non time-varying) are double circled. Factors only active when

contact is detected are connected with dashed lines.

we must then reason about this displacement. We train an in-
hand displacement model which takes in both tactile images
and predicts d; € SE(3), the relative displacement of the
object in-hand.

Finally, we wish to determine the in-hand wrench experi-
enced at the grasp, which is helpful for contact localization
and for resolving the contact force 25]. We train an
additional model that takes in both tactile images and predicts
w; € RS, the wrench experience at the grasp. Additionally,
we can utilize our predicted wrench to estimate whether the
system is in contact at time ¢: by = ||w||g > €.

B. TacGraph

Our goal is to incorporate our tactile feedback terms along
with the physical constraints of contact to determine the
maximum a posteriori (MAP) estimate of our variables. As
stated in Sec. we aim to recover the object pose and
extrinsic contact information at each time ¢.

We assume that the grasp is elastic, that is, the object moves
in-hand due to sensor compliance upon the application of
an external force, and returns to the same rest pose when
the external force is removed. As described in Sec. [[V-A]
we estimate this in-hand displacement §; from the tactile
feedback. As such, we perform a change of variables and infer
o; by estimating a single rest pose o, € SE(3) and applying
the predicted in-hand displacement at a given time ¢.

O = gtgétgor (1)

We use the prefix g to indicate that the displacement and rest
pose are both expressed in the gripper pose frame, but drop
the frames from here on.

A natural way to describe our MAP estimation problem
is as a Factor Graph, a bi-partite graph of variables and the
factors which describe the relationship between variables [28].

Assuming Gaussian noise models on the factors, the MAP
estimation becomes a sum of nonlinear least-squares.

O:’CT:T?ff:T: argmin H(O’I“acltTafltT) (2)
or,crr, frr
T
H) =llha(on)[, + D {lIna(o)I 2, + o
t=1

1[be](|[hs (0, )3, + [[haler, £)l[%,)}

The structure of the factor graph is shown in Fig. 2] in the
box. Note, b; is an observation (see Sec. , not a variable
being solved for, and is used to enable contact-specific factors
only when the object is actively in contact. Each factor h; has
an accompanying covariance matrix Y; which is empirically
selected. The resulting MAP problem can be solved efficiently
using the iSAM2 solver .

C. Factors

1) Geometric Consistency: Our first factor ensures the
estimated rest pose o, is consistent with the observed object
point cloud at time ¢ = 0. This point cloud P includes the
tactile point cloud PT and, if available, a visual point cloud
PV. As we assume that the grasp is elastic, it is sufficient
to ensure the rest pose is geometrically consistent, without
enforcing at each time step.

We define our factor error function as the signed-distance
value of each point of the observed point cloud to the surface
of the object:

hi(o; P,M,) =S (€]

Here, S is a vector containing the signed distance value of
each point to the surface.

Si = SDF(o, ' P |M,) ©)

SDF is the signed distance value computed using the geome-
try M,. We transform each point into the object frame using



the estimated o,.. Both the SDF and the SDF gradients can be
efficiently computed using a triangle mesh geometry [23].

2) Non-Penetration: We ensure the estimated pose at each
time-step does not yield penetration with the environment
geometry. We apply Eq. [I] to get the estimated object pose,
considering the observed gripper pose and in-hand displace-
ment, as well as the current estimate of the rest pose.

Given the known geometries M., M, and the object pose,
we then compute a penetration check. In practice, we approx-
imate our object geometry for this factor as a point cloud
Pebi ¢ RNPX3 by sampling points on the surface of the
geometry M,. Our factor error function then returns for each
point the distance to the surface of the environment, if the
point is inside of the environment geometry, thus indicating
penetration.

h2(or|M07M€agtaat) = S (6)

Once again S is a vector which contains the SDF terms when
a point is in penetration.

S; = min(0, SDF(g:6,0, P | M.)) 7

Each point is transformed into the world frame before evalu-
ating the SDF against the environment geometry.

3) Contact Kinematics: When we detect that contact has
been made b;, we add additional variables and factors to
the graph at that time step to estimate the contact location
and force. First, we address the kinematic constraints on the
contact. Namely, the contact point ¢; should lie on the surface
of both the environment and object geometries. This amounts
to the following error function:

_ SDF(ct|Me) (8)
B SDF((gt(stor)ilcﬂMo)

We again apply Eq. [I] to derive the object pose and invert to
map the point to the object frame.

4) Force Balance: In Sec. [V-A] we showed how we
can recover the wrench experienced at the grasp w; from
our tactile sensors. This in-hand wrench is the result of the
application of an external contact force. As such, we add a
factor which ensures that the in-hand wrench implied by the
contact matches our w; observation.

To estimate the in-hand wrench applied by a contact force
f+ applied at c¢;, we apply the contact Jacobian to map the
force from the contact point to the gripper frame.

wy = J(g; ‘er) fi 9)

We can then define our factor error function as the difference
between the observed and predicted in-hand wrench.

h3(0r7 Ct; M€7 Mo)

h4(ctaft§gt) = w; — wy (10)

D. Inference

Solving for the MAP estimate with our proposed TacGraph
enables us to find the most likely rest pose o, and contact
points ¢1.7 and forces fi.7. We then apply Eq. [T to resolve
our object poses at each timestep 01.7.

The non-linear nature of our system means that the min-
imization performed by iSAM2 in Eq. 2] is subject to local

,'

Fig. 3: Our experimental setup. On the left ATI Gamma is an
example object fixture. On the right ATI Gamma is the sen-
sorized press surface we use for data collection/experiments.

4SS

Test

i1

slanted
rectangle

Train

quarter
cylinder

cylinder rectangle wrench screwdriver

Fig. 4: Train/Test objects used in our experiments.

minimums. As such, we initialize a set of particles to represent
possible rest poses {0}, 02,...,05}. We then perform our
inference procedure on each rest pose particle separately,
resulting in K solutions. We utilize our factor graph cost
in Eq. |§| to score each solution particle, and select our final
solution accordingly:

(1)

. k _k k
oy, cip, fir = arg;mnH(o,., el fir)

We utilize Iterative Closest Point (ICP) to match our initial
rest pose particles to the available point cloud P. We apply
a sampling heuristic based on likely grasp directions [10] to
ensure that the rest pose particles cover the space of possible
initializations well.

V. IMPLEMENTATION

A. Experimental Setup

Our experimental setup is shown in Fig. 3] We use a WSG-
50 parallel jaw gripper attached to a KUKA LBR iiwa Med
R820 robot. We attach a GelSight Mini sensor to each finger.
We have an external Intel Realsense D435 sensor for visual
feedback. We utilize Segment Anything Model for visual
point cloud segmentation [30]. Two ATI Gamma Force/Torque
sensors are mounted in the scene and used to attach fixtures
and environment geometries. We utilize these extrinsic F/T
sensors only for training our tactile models and evaluation; our
method does not utilize these sensors’ feedback. Our tactile
models are implemented using Pytorch and our factor graph
is implemented using GTSAM [31]].
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B. Tactile Model Training

We train our tactile models described in Sec. [[V-A] utilizing
datasets collected on our physical system, using three different
train objects (see Fig. d). All models are convolutional models
trained via supervised learning.

1) Tactile Depth: To generate tactile images with ground
truth depth labels, we rigidly attach fixtures of known geome-
try to our environment and apply random grasps to the fixture,
adjusting the position and orientation of the grasp. Then using
the known fixture geometry, we render corresponding depth
images.

2) In-Hand Displacement: To generate in-hand displace-
ment labels, we rigidly attach fixtures of known geometry
to our environment. Following Kim and Rodriguez [14]], we
randomly grasp the fixture, then apply small delta motions
to the end effector. These delta motions become the in-hand
displacement labels d; associated with the tactile images.

3) In-Hand Wrench: To generate in-hand wrench labels, we
utilize the tabletop fixture shown in Fig. [3] and grasp objects,
with randomized grasps, from a fixture before performing a
random poke into the tabletop. We then use the environment
mounted F/T sensor to get the wrench caused by the poke
wy. We transform this wrench into the grasp frame, recovered
from the robot proprioception, to label the wrench.

VI. EXPERIMENTS

A. Baselines

o ICP: Iterative Closest Point enforces geometric consis-
tency in the object pose. To estimate a contact point and
force, we use our tactile models to detect when contact
occurs as well as the force. When in contact, we select
the point on the object closest to the environment as

our contact point, assigning the predicted force from the
tactile model.

CHSEL [23]]: CHSEL adds free-space reasoning as well
as a Quality Diversity (QD) to gradient-based pose reg-
istration. CHSEL thus considers geometric consistency
and non-penetration via free points. At each timestep,
we sample points from the surface of the environment,
transform into the grasp frame, and add as free points in
the CHSEL optimization, to ensure the object does not
collide. We follow the same procedure as ICP to label
extrinsic contact. We run 2 CHSEL iterations per update.
SCOPE [26]: SCOPE utilizes non-penetration, contact
kinematics, and force balance for pose and contact esti-
mation via a dual particle filter method. Object pose par-
ticles are scored based on non-penetration and their con-
tacts, determined by a Contact Particle Filter (CPF) [27]
associated for each object pose particle to estimate the
most likely contacts. We modify SCOPE to fit our setup
by removing environment pose filtering and replace the
F/T sensing with our learned tactile model. Note, this
method does not consider geometric consistency. We run
two versions of SCOPE. SCOPE (v1) uses 8 pose and 30
contact particles, with 3 iterations every update. SCOPE
(v2) uses 64 pose and 200 contact particles, with 20
iterations every update.

All methods are initialized with the same procedure as Tac-
Graph for fair comparison.

B. Pose and Contact Estimation

We test pose and contact estimation performance on the
objects shown in Fig. @] For the environment geometry, we
use the geometry shown on the right ATI Gamma F/T sensor
in Fig. 3] Each object is grasped from a fixture, randomizing



Methods Train Test
cylinder rectangle cqyulair;;err r:iiZEZie wrench screwdriver

+ ICP 3.08 (0.65) 3.68 (0.73) 3.09 (1.08) 4.86 (4.81) 2.19 (0.76) 3.33 (1.25)
.E g CHSEL 1.04 (0.36) 1.97 (0.39) 1.23 (0.51) 12.28 (5.11) 1.66 (0.88) 2.44 (0.83)
.‘§” & SCOPE (v1) 5.96 (2.83) 7.11 (2.70) 16.50 (2.69) 15.56 (4.36) 5.86 (1.68) 7.34 (2.53)
SCOPE (v2) 4.77 (2.50) 2.59 (1.22) 14.04 (5.55) 13.28 (4.79) 3.45 (1.57) 5.63 (3.11)
TacGraph 0.68 (0.23) 1.48 (0.14) 1.34 (0.34) 1.05 (0.32) 0.92 (0.28) 1.62 (0.22)

ICP 17.80 (13.86)  17.15 (10.66) 23.70 (7.58) 20.10 (6.94) 16.77 (6.03) 12.32 (7.87)

%) CHSEL 30.33 (12.01)  28.55 (17.20) 28.40 (6.86) 20.71 (7.09) 13.61 (8.16) 29.42 (17.20)
& SCOPE (v1) 9.01 (6.49) 12.26 (12.38)  16.13 (10.33) 18.44 (5.08) 9.89 (7.39) 8.32 (3.85)
SCOPE (v2) 4.16 (1.00) 4.37 (2.78) 10.74 (5.37) 12.90 (4.94) 4.75 (3.77) 11.03 (5.31)
TacGraph 2.96 (2.54) 1.29 (2.24) 8.45 (5.70) 7.58 (6.18) 0.78 (0.40) 1.54 (1.29)

TABLE I: Quantitative results for pose estimation. Mean and std. dev. of Averaged 3D Distance (ADD) in mm reported; best
for each method in Vision+Tactile and Tactile regime highlighted.

‘ Methods Train

Test

Overall
cylinder rectangle ci/ulaj_rntdeerr r:iigijﬁe wrench screwdriver

+ o ICP 3.43 (0.80) 4.77 (2.10) 4.33 (2.48) 5.30 (5.68) 2.61 (1.34) 4.38 (1.17) 4.14 (2.92)
.5 g CHSEL 1.84 (1.02) 3.15 (2.72) 2.79 (2.62) 12.59 (9.44) 2.44 (1.41) 3.15 (0.55) 4.33 (5.62)
f§” ] SCOPE (v1) 5.43 (2.33) 9.59 (8.45) 6.33 (3.09) 10.97 (4.51) 4.84 (3.53) 36.51 (14.33) 12.28 (13.28)
SCOPE (v2) 4.64 (2.48) 8.71 (8.52) 5.33 (3.38) 9.48 (5.35) 3.75 (1.87) 27.10 (17.32) 9.83 (11.59)
TacGraph 2.78 (1.31) 4.79 (4.63) 1.93 (1.06) 7.03 (6.11) 2.29 (1.13) 3.29 (1.20) 3.68 (3.72)

ICp 18.20 (13.49)  17.38 (10.98)  18.65 (8.92) 20.71 (8.19) 17.06 (5.54) 13.20 (7.70) 17.53 (9.75)
% CHSEL 25.16 (14.40)  32.66 (14.68) 22.54 (9.46) 21.15 (10.17)  13.54 (8.08) 31.41 (18.30) 24.41 (14.52)
& SCOPE (v1) 8.19 (8.31) 15.49 (12.55)  9.25 (12.25) 16.36 (8.89) 11.15 (8.39) 36.74 (13.21) 16.20 (14.49)
SCOPE (v2) 4.73 (2.25) 11.16 (10.65) 3.72 (2.59) 9.34 (5.32) 6.98 (5.35) 26.49 (13.63) 10.40 (10.93)
TacGraph 3.29 (1.52) 2.60 (2.02) 3.82 (2.55) 7.63 (7.03) 2.34 (0.85) 2.64 (1.69) 3.72 (3.78)

TABLE II: Quantitative results for contact point estimation. Mean and std. dev. of distance to G.T. contact point in mm reported;
best for each method in Vision+Tactile and Tactile regime highlighted.

Methods Vision + Tactile Tactile
ICP 0.68 (0.39) 0.68 (0.39)
CHSEL 0.68 (0.39) 0.68 (0.39)
SCOPE (v1) 0.61 (0.37) 0.63 (0.44)
SCOPE (v2) 0.62 (0.37) 0.61 (0.41)
TacGraph 0.61 (0.36) 0.61 (0.36)

TABLE III: Summary Quantitative results for contact force es-
timation. Mean and std. dev. of difference to G.T. contact force
in Newtons reported; best for each method in Vision+Tactile
and Tactile regime highlighted.

the in-hand grasp pose. We perform a fixed set of three angled
pokes into the environment. We get sensor feedback before
poking and once during each poke, when contact is made. We
run inference for each method under two conditions: Vision +
Tactile and Tactile. We apply each method iteratively on each
subsequent timestep of data.

1) Metrics: We determine the ground truth pose of the
object using the fixture (tolerance of ~I1mm). We use the
Average 3D Distance metric [10] using 1000 points as our
object pose metric.

For the extrinsic contact, we utilize the F/T sensor mounted
under the environment. We compute the ground truth contact
by sampling a set of candidate contact points on the environ-

ment surface C € RE*3, We then identify the ground truth
by solving the following minimization:

c; = argmin||r" — C x 7|2 (12)
l

fFT and /7T are the force and torque at the sensor. The
ground truth force is then f; = ff7. We compute the
euclidean errors on the contact point and force estimate.

2) Results: We report our pose estimation results in Table[l]
When vision is available, ICP can perform well, but its
performance is subject to sensor noise. CHSEL can rectify
some noise via its non-penetration handling. Neither method
works well on tactile-only, as they cannot exploit contact to
improve. SCOPE outperforms ICP and CHSEL on tactile only,
as it can exploit the contact information, but lack of geometric
feedback and noise in the filtering reduce precision. We find
that TacGraph consistently outperforms the baselines across
nearly all cases, exploiting contact to inform the object pose.

Table [[] and Table show the contact estimation perfor-
mance. When Vision and Tactile are available, we find that ge-
ometric based methods perform comparably to ours. However,
when vision is removed the contact estimate quickly drifts due
to the pose error. In contrast, our method retains similar overall
contact estimate performance. Since all methods utilize the
learned tactile force model, force estimates differ only slightly



Tactile-Only

Object
SCOPE  SCOPE
ICp CHSEL 1) v2) TacGraph

cylinder 4/10 4/10 4/10 1/10 7710
rectangle 2/10 6/10 0/10 1710 6/10
quarter 4,40 1710 0/10  0/10 1710
cylinder

wrench 5/10  3/10 3/10 1/10 9710

Overall 11/40 14/40 7/40 3/40  23/40

TABLE IV: Tactile-Only Peg Insertion Results (Success /
Attempt)

- we can see that TacGraph can improve force estimates, due
to improved contact location and torque feedback at the grasp.

Fig.[5| shows qualitative predictions by TacGraph. In Fig.
we show the progression of K particles by their weight (i.e.,
e~ H()). We see that TacGraph uses subsequent contacts to
correctly identify the correct local solution, rejecting initial
solutions that may be consistent with only the local geometric
information.

C. Peg Insertion

We evaluate how our proposed methodology aids in a
prehensile task requiring precise in-hand pose estimation. We
perform a peg insertion task with several objects from Fig.
Each fixture for insertion is designed per the object geometry
with 3 mm clearance. We perform the same inference proce-
dure outlined in Sec. fixing the grasps across run for fair
comparison. We then take the final rest pose estimate o} and
perform an open-loop insertion. We use a F/T sensor mounted
under the insertion fixture to stop and release if a force greater
than 5 N is registered. If no force threshold is met, the object
is released 5 mm above the floor of the insertion fixture. We
run our experiment in the challenging tactile-only setting.

Results: The peg insertion success rates are reported across
10 presses per object for four of our objects for a total of
40 trials in Tab. [[V}] Our method is able to, from tactile
alone, achieve precise open-loop peg insertion, outperforming
the baselines across the objects. The quarter cylinder
object we found had a noisy depth prediction from our model,
as the gelsight is not as sensitive in the normal direction of
the sensor, which caused a low success rate. We found ICP
and CHSEL could align the overall orientation of the object
well in some cases, and hence can succeed despite inaccurate
poses, while SCOPE struggled to achieve accurate orientations
leading to many failures.

VII. DISCUSSION

In this work, we proposed TacGraph, a factor-graph based
method that can utilize the physical constraints of contact,
along with sensory feedback, to resolve object pose and
contact simultaneously. While our results demonstrate the
value of uniting physical constraints and sensory feedback,
the work has several limitations.

TacGraph is still inherently a local method, which means we
are sensitive to initialization. A potential extension to explore

is enforcing diversity across particles [23]. In the experiments,
our contact interactions here were manually selected - in
future, we would like to utilize our estimator online during
contact-rich tasks, as well as exploring action selection to
explicitly drive down uncertainty in poses [32].

Our method has several limiting assumptions: that we know
object and environment geometries, that no relative slip occurs,
and that contact can be described by a single point. Exploring
how we can utilize reconstructed object models could relax our
geometry assumption [[10} |8]. Utilizing our proposed TacGraph
estimator in a control loop could allow corrective actions
to avoid high force/torque interactions, thereby avoiding or
limiting slip. Additionally, if one could detect a slip event [33],
the estimator could be re-initialized. Finally, extending to
handle multiple contact points or extended contact geometries
would help extend this work to a more rich set of interactions.
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