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Abstract
When detecting anomalous sounds in complex environments, one of the main difficulties
is that trained models must be sensitive to subtle differences in monitored target signals,
while many practical applications also require them to be insensitive to changes in acoustic
domains. Examples of such domain shifts include changing the type of microphone or the
location of acoustic sensors, which can have a much stronger impact on the acoustic signal
than subtle anomalies themselves. Moreover, users typically aim to train a model only on
source domain data, which they may have a relatively large collection of, and they hope that
such a trained model will be able to generalize well to an unseen target domain by providing
only a minimal number of samples to characterize the acoustic signals in that domain. In
this work, we review and discuss recent publications focusing on this domain generalization
problem for anomalous sound detection in the context of the DCASE challenges on acoustic
machine condition monitoring.
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Abstract—When detecting anomalous sounds in complex environments,
one of the main difficulties is that trained models must be sensitive
to subtle differences in monitored target signals, while many practical
applications also require them to be insensitive to changes in acoustic
domains. Examples of such domain shifts include changing the type of
microphone or the location of acoustic sensors, which can have a much
stronger impact on the acoustic signal than subtle anomalies themselves.
Moreover, users typically aim to train a model only on source domain data,
which they may have a relatively large collection of, and they hope that
such a trained model will be able to generalize well to an unseen target
domain by providing only a minimal number of samples to characterize
the acoustic signals in that domain. In this work, we review and discuss
recent publications focusing on this domain generalization problem for
anomalous sound detection in the context of the DCASE challenges on
acoustic machine condition monitoring.

Index Terms—anomalous sound detection, domain shift, domain
adaptation, domain generalization, machine condition monitoring

1. INTRODUCTION

Anomalous sound detection (ASD) has a wide range of applications,
including acoustic monitoring of machines [1]–[5], health [6], [7],
roads [8], smart home environments [9], or public places [10].
The goal in all these applications is to distinguish between normal
and anomalous audio recordings. Usually, ASD systems are trained
exclusively with normal data, as anomalous data is often difficult and
costly to obtain.

One of the major difficulties that ASD systems need to overcome
is how to robustly handle so-called domain shifts, changes in
the recorded audio signal that are caused by changes in acoustic
environments, sensors, or properties of monitored sound sources
themselves. Inherently, domain shifts have a strong impact on the
audio signal and thus also affect the outcome of ASD systems if
no precautions are taken. However, in most applications, this effect
is not desirable and should be suppressed. Ideally, trained ASD
systems should be completely insensitive to domain shifts, while
being very sensitive to modifications of the monitored target signals
that indicate the occurrence of application-dependent anomalies. As
these differences may be very subtle compared to changes caused
by domain shifts, especially in noisy environments with many sound
sources, developing ASD systems that perform well in domain-shifted
conditions is very challenging.

This paper, which extends a non-peer reviewed manuscript [11],
reviews the latest works on how to handle domain shifts for ASD in
the context of the annual DCASE challenge [12]. We first describe
the challenges posed by domain shifts and the resulting domain
mismatch, illustrated in Fig. 1. We then describe the two main types
of approaches to handling them, domain adaptation (DA) and domain
generalization (DG), defining the terms, listing publicly available
datasets, and reviewing recently published works related to these
topics. Last but not least, the limitations of different approaches are
discussed and future directions of research are identified.
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Fig. 1: Illustration of the domain mismatch between the anomaly scores of a
source domain and a target domain. Normal and anomalous samples are usually
less well separated in the target domain than in the source domain, which
decreases domain-independent performance over the performance obtained
for the source domain alone. Furthermore, the optimal decision thresholds for
separating the scores belonging to the normal and anomalous data of different
data domains differ substantially, which significantly decreases performance
when using only a single threshold for both domains.

2. DOMAIN SHIFTS

The goal of ASD is to determine, based on a sound recording of a
phenomenon, whether that phenomenon is normal or anomalous. In
the context of the DCASE Challenges, the objective is to differentiate
between normal and anomalous sounds produced by a known type of
machine. The normal/anomalous characteristic of a phenomenon is
an intrinsic property of that phenomenon: as such, the determination
by the ASD system should ideally be independent of the conditions
in which the sound was recorded, as long as the change in conditions
does not alter the observability and nature of the phenomenon’s
normal/anomalous characteristic. Such changes include the use of
microphones of different types or in different locations, the presence or
absence of other sound sources, or modifications in certain properties
of the monitored sound sources themselves, e.g., the use of different
settings of the monitored machines.

ASD systems are however often placed in a conundrum: their only
view of the phenomenon’s normal/anomalous characteristic is via a
training set of normal data recorded under a certain set of conditions,
referred to as a source domain, and they are expected to make a
determination on the normal/anomalous characteristic on a new sample
recorded under a potentially different set of conditions, referred to
as a target domain, for which they only have a few training samples.
Changes in the recording conditions occurring between the source
domain and the target domain constitute a so-called domain shift.
ASD systems thus need to implicitly disentangle the effects on the
sound signal of the normal/anomalous characteristic and the recording
conditions, in order to be robust to changes in these conditions.

An additional difficulty lies in the large imbalance often observed in
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Table 1: DCASE ASD datasets in domain-shifted conditions.
# recordings (per section)

# machine types # sections (per machine type) source domain target domain

Name Purpose total dev. set eval. set total dev. set eval. set split normal anomalous normal anomalous supplemental

DCASE2021 [1] DA 7 7 7 6 3 3 train 1000 0 3 0 0
test 100 100 100 100 0

DCASE2022 [2] DG 7 7 7 6 3 3 train 990 0 10 0 0
test 50 50 50 50 0

DCASE2023 [3] DG 14 7 7 1 1 1 train 990 0 10 0 0
test 50 50 50 50 0

DCASE2024 [4] DG 16 7 9 1 1 1 train 990 0 10 0 0
test 50 50 50 50 0

DCASE2025 [5] DG 14 7 7 1 1 1 train 990 0 10 0 100
test 50 50 50 50 0

practice between the number of available training samples in the source
and target domains. Many training samples are typically available
for the source domain, while only a few training samples may be
available for the target domain. Recording a large amount of new
training samples after a domain shift occurred may be impractical, as
it requires much effort, and thus is very costly; domain shifts may
also frequently or even continuously occur; and operators may not
even be aware of such domain shifts.

A consequence of domain shifts related to differences in signal space
is that anomaly scores are usually also distributed very differently
across both domains. This results in a so-called domain mismatch,
illustrated in Fig. 1. Since the embedding models were trained with
no or few samples belonging to the target domain, the anomaly
score distributions for the normal and anomalous samples are not
well-separated in the target domain, which inherently leads to a
worse ASD performance than in the source domain. Furthermore, the
optimal decision thresholds differ substantially, further degrading the
performance if the same decision threshold is used for both domains.

3. DOMAIN ADAPTATION

One way to handle domain shifts is to adapt an existing ASD system
that was trained with sufficient data from a source domain to a specific
target domain. Here, the main challenge is that the training set for the
target domain consists of only very few samples and thus knowledge
from the source domain, which may differ substantially from the target
domain, needs to be transferred somehow to obtain a well-performing
system. Note that once a system is adapted to a target domain, it may
no longer perform well in the source domain it was trained on.

3.1. Datasets

A dataset focusing on handling domain shifts for ASD through
DA is the DCASE2021 ASD dataset [1]. This dataset contains 10 s
recordings of five different machine types from MIMII DUE [13]
and two additional machine types from ToyADMOS2 [14] that are
combined with background noise from real factories. The dataset is
divided into a development set and an evaluation set, which both
contain three sections for each machine type. These sections are
specific partitions of the dataset for calculating the performance and
may contain recordings from multiple machines of the same type.
Both the development and evaluation sets consist of a training split
and a test split. The training splits contain only normal data, of which
1,000 samples belong to the source domain and only 3 samples belong
to the target domain, resulting in a very imbalanced dataset in terms
of domain. For each training file, additional attribute information
about machine settings or the acoustic environment is provided, and it
can be utilized for training ASD systems. The test splits contain 200
samples for each domain, of which one half are normal and the other

half are anomalous. For each test file, it is known whether these files
belong to the source or the target domain, but it is unknown whether
they are normal or anomalous. Summarized statistics of this dataset
can be found in the top part of Table 1.

3.2. Approaches
Approaches for DA mostly focus on first training an ASD system
with data from the source domain and then adapting this trained
system to a specific target domain. One possibility to do this is to
fine-tune an entire model that was trained in the source domain with
data belonging to the target domain [15], [16]. This changes the
problem of balancing the very differently sized training datasets of
both domains to a problem of preventing the model from overfitting
to the few target domain samples available for training. In [17], only
the parameters of batch normalization layers [36] are fine-tuned to
the target domain to minimize the computational costs needed for the
adaptation while also reducing overfitting effects. A similar idea based
on domain-specific normalization layers is realized in [18] by using
AutoDIAL [37]. The authors of [19] propose to use gradient-based
meta learning [38] and a prototypical loss [39] in order to more
effectively adapt to target domains with only a very small amount
of training samples. Another DA approach is to simply train a joint
embedding model for both domains but estimate the distributions of
each domain individually [16], [20]. Table 2 briefly summarizes all
mentioned approaches.

4. DOMAIN GENERALIZATION
Adapting models for each new domain with the possible need of
re-training models, fine-tuning hyperparameters, or even replacing
system components is very impractical, as it is computationally costly
and may require expert knowledge. It is thus much more desirable
to strive for domain generalization (DG) [40], [41], with the goal
of obtaining a model that performs well in the source domain and
generalizes well to unseen target domains by only providing a few
samples to define how normal sounds belonging to these domains
should sound like. Since DG is literally a generalization of DA to
arbitrary domains rather than a specific target domain, it is more
difficult to obtain such a model. To highlight the practical differences
between DA and DG, the reader is reminded that for DA, models can
be fully adapted to a specific target domain, even if performance in
the source domain is weak after adaptation. In contrast, DG requires
strong performance in the source and target domain, using even the
same decision threshold for the anomaly scores in both domains.

4.1. Datasets
Currently, there are four DCASE ASD datasets focusing on DG: the
DCASE2022 [2], DCASE2023 [3], DCASE2024 [4], and DCASE2025
[5] datasets, which are all based on MIMII DG [42] as well as,
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Table 2: ASD approaches for handling domain shifts.

Topic Strategy Reference Main idea DCASE datasets used

DA - Chen et al [15] fine-tune model 2021
DA - Kuroyanagi et al [16] fine-tune models and domain-specific backends 2021
DA - Yamaguchi et al [17] fine-tune batch normalization layers other
DA - Lopez et al [18] domain-specific normalization with AutoDIAL 2021
DA - Chen et al [19] gradient-based meta learning 2021
DA - Wilkinghoff [20] domain-specific backends 2021

DG domain specialization Kuroyanagi et al [21] domain-specific models and domain classifier 2022
DG domain specialization Kuroyanagi et al [21] balance mini-batches with mixup 2022
DG domain specialization Guan et al [22] balance domains with SMOTE 2022
DG domain specialization Junjie et al [23] balance domains with SMOTE 2023
DG domain specialization Chen et al [24] balance domains with SMOTE and a mixup variant 2022,2023

DG domain-invariant representations Deng et al [25] normalize samples independently for each batch 2022
DG domain-invariant representations Nejjar et al [26] VICreg extension with mixup 2022
DG domain-invariant representations Yan et al [27] minimize covariance differences between domains 2020, 2022

DG feature disentanglement Venkatesh et al [28] discriminative tasks for sections and attributes 2022
DG feature disentanglement Dohi et al [29] disentangle attributes with normalizing flow other
DG feature disentanglement Lan et al [30] Mahalanobis distances for hierarchical metadata 2022
DG feature disentanglement Guan et al [31] gradient reversal with hierarchical metadata 2022

DG anomaly score calculation Harada et al [32] domain-specific Mahalanobis distance 2022
DG anomaly score calculation Wilkinghoff [33] nearest neighbor based anomaly scores 2022
DG anomaly score calculation Wilkinghoff et al [34] local density based score normalization 2020, 2023, 2024
DG anomaly score calculation Saengthong et al [35] domain-wise standardization of scores 2020, 2023

respectively, ToyADMOS2 [14], ToyADMOS2+ [43], and ToyAD-
MOS2# [44]. A part of the DCASE2024 dataset was recorded with
the same setup as IMAD-DS [45]. IMAD-DS is another ASD dataset
containing noisy multi-sensor signals of two machines in domain-
shifted conditions recorded with a microphone, an accelerometer, and a
gyroscope. The fundamental difference with the DCASE2021 dataset,
which focuses on DA, is that the domain of individual test samples
is unknown during inference. Moreover, the performance for each
section is computed jointly for the source and target domains, i.e., a
single decision threshold needs to be used for both domains. Other less
severe differences include the size of all test sets, which is only half
the size of the DCASE2021 test sets, and the availability of 10 normal
training samples belonging to the target domain instead of 3. The
differences between the DCASE2021 and DCASE2022 datasets end
there, making them relatively similar. In contrast, the DCASE2023,
DCASE2024, and DCASE2025 datasets only consist of a single
section for each machine type, and the development and evaluation sets
contain recordings of completely different machine types. Furthermore,
the DCASE2024 and DCASE2025 datasets have noise conditions
that are exclusively used for specific machine types, and for some
machine types no additional attribute information is provided. The
major difference between the DCASE2024 and DCASE2025 datasets
is that supplemental recordings containing noise-free recordings of
normal machine sounds or only background noise are provided for
the train splits of the DCASE2025 dataset. Each year, modifications
to the datasets result in a more realistic yet more challenging ASD
task. For more details about these datasets, the reader is referred to
Table 1 and the corresponding references.

4.2. Approaches

DG approaches for ASD in the context of DCASE can be grouped
into four different strategies, which will now be discussed. Table 2
contains an overview of these approaches.

4.2.1. Domain Specialization: A simple approach for reducing
domain mismatch is to balance the number of training samples
belonging to the source and target domains. This can be achieved
by balancing the domains in each mini-batch [21] or using more

sophisticated approaches [22]–[24] such as synthetic minority over-
sampling technique (SMOTE) [46]. However, since this approach
trains models for specific domain shifts and thus requires to re-train
the entire ASD system for each possible domain shift, this can be
referred to as weak DG or domain specialization. Note that in contrast
to DA, ASD systems need to work well for all domains without
knowledge about the domain a given sample belongs to. Another
way to handle this is to train domain-specific models and a domain
classifier [21].

4.2.2. Domain-invariant Representations: The idea of domain-
invariant representation learning [47] or domain-mixing-based ap-
proaches [2] is to reduce the variance between multiple domains based
on the assumption that this also reduces the variance to other arbitrary
target domains. In [25], individual samples of a batch are normalized
independently of each other instead of using batch normalization [36]
to avoid learning statistics that over-emphasize the source domain
due to the highly imbalanced number of samples. The authors of
[26] propose DG-mix, an extension of variance-invariance-covariance
regularization (VICreg) [48] for self-supervised pre-training, using
a loss term that minimizes the difference between domains and
virtual domains created by mixup [49] before fine-tuning the model.
Motivated by [50], which reduces the difference between second-
order statistics of intermediate representations from domain-specific
convolutional neural networks, [27] aims at reducing the difference
between second-order statistics of source domain features and target
domain features. To this end, the authors applied augmentations such
as pitch shifting, time shifting, time stretching, adding white noise, and
Filteraugment [51] to target domain samples to create more diverse
domain shifts for training.

4.2.3. Feature Disentanglement: The main idea of feature dis-
entanglement [52] is to decompose representations into domain-
related features that are invariant for different domains and domain-
unrelated features that capture the variability of different domains.
The latter are independent of the domain and thus also generalize
well to unseen domains. A possible way to achieve this is to use a
domain-classification-based approach [2]. In most works on ASD in
the DCASE context, this is achieved by focusing on the provided
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Table 3: Comparison of different types of DG approaches.

DG approach Effort Requires labels Effectiveness

Domain Specialization high yes high
Domain-invariant Representations medium no medium
Feature Disentanglement low yes medium
Anomaly Score Calculation very low sometimes low

attribute information. The authors of [28] use two discriminative
tasks for the sections and attributes. In [29], attribute information
is disentangled in a normalizing-flow-based ASD model. In [30], a
combination of a hierarchical metadata structure and attribute-specific
Mahalanobis distances is used to learn more domain-related features.
This approach is extended by [31] with gradient-reversal-based feature
disentanglement of attribute information [53] and the use of a focal
loss [54].

4.2.4. Anomaly Score Calculation: Last but not least, DG capabili-
ties can also be improved by modifying the anomaly score computation.
This approach has the advantage of not requiring expensive re-training
of the neural networks that serve as the basis of state-of-the-art ASD
systems. To this end, [32] uses an autoencoder and calculates the
Mahalanobis distance between input data and reconstruction using
domain-specific covariance matrices. For discriminative ASD systems,
it was shown that simple nearest-neighbor-based anomaly scores lead
to better results than estimating domain-specific distributions [33].
Further improvements can be obtained by normalizing the anomaly
scores to reduce the domain mismatch. Examples are normalizing the
anomaly scores based on local densities of normal reference samples
[34], [55] or by a domain-wise standardization of the anomaly score
distributions [35].

5. LIMITATIONS AND FUTURE DIRECTIONS

All presented DG approaches have limitations. A comparison of the
approaches can be found in Table 3. Although domain specialization
approaches are highly effective, they can only adapt to specific
domains and thus the entire ASD system, including the embedding
model, needs to be re-trained for each domain shift, which is highly
impractical as it is a strenuous process requiring access to domain
labels. Obtaining domain-invariant representations does not require
domain labels, but requires to simulate a diverse set of realistic
domain shifts, which is a difficult task by itself and thus may limit
the effectiveness. Feature disentanglement does not require much
additional effort, but does require access to labeled data of various
domains to be effective, which may not always be available. Focusing
only on the calculation of the anomaly scores usually does not
require one to modify the training of the embedding models. However,
this approach is still sensitive to domain shifts if these also affect
the obtained embeddings, thus limiting its effectiveness, even when
making use of domain labels. Depending on the application and
the available data, different DG approaches can be jointly used
to mitigate the limitations of individual approaches. For example,
anomaly score calculation approaches for DG can be used regardless
of the learned representations, and simulated domain shifts, as used
when learning domain-invariant representations, can also be used for
feature disentanglement. However, the underlying issues of individual
approaches persist and future work on DG is needed to solve these
problems and identify potential synergies between specific approaches.

A future direction of research is continuous DA [56]. Here, the
discrete indices for the domains are replaced with continuous ones
to model the underlying relations between different domains. This
improves consistency and may even allow to handle domains for which
no training samples are available. Another direction is continual DA

[57] that aims at handling domain shifts in non-stationary environments
where domains are not static and may change continuously over time.
In these environments, only adapting to a fixed domain is not sufficient.
Note that continuous domain indices and continuously adapting to
non-static domains can also be realized for DG. As a third direction,
explaining the decisions of ASD systems is an open problem [58],
[59], particularly in domain-shifted conditions. Here, future work may
focus on explaining decisions of ASD in unknown target domains [60]
or explaining domain shifts themselves [61]. Explainable ASD systems
that focus on particular characteristics of the data may even offer better
DG capabilities [62]. Last but not least, the semi-supervised ASD
setting in the DCASE context can be relaxed to an unsupervised setting
where even the training dataset may contain unlabeled anomalies [63].

6. CONCLUSION
In this work, we reviewed recent work on how to handle domain shifts
for ASD tasks related to DCASE. We first defined domain shifts in
the context of ASD, then discussed the topics of domain adaptation
(DA) and domain generalization (DG) by motivating and defining
these terms, presenting relevant datasets, and collecting different
works related to these topics. In particular, DG approaches were
grouped into domain specialization, domain-invariant representations,
feature disentanglement, and anomaly score calculation. Furthermore,
continuous and continual DA as well as explainable DG were identified
as possible future research directions. For future work, we plan to
compare all presented techniques with ASDKit [64] through extensive
experiments to identify the best approaches and potential synergies.
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