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RecoveryChaining:
Learning Local Recovery Policies for Robust Manipulation

Shivam Vats1, Devesh K. Jha2, Maxim Likhachev1, Oliver Kroemer1 and Diego Romeres2

Fig. 1: Due to uncertainty in the grasp of the object, the robot ends up making contact with the shelf during execution resulting in
a collision as well as an in-hand slip failure. However, using the proposed recovery chaining framework, the robot recovers from the
collision state and then hands over control to the nominal place skill. The learnt recovery also allows the robot to correct the slip by
intentionally making contact with the shelf wall. Note that the policy is trained entirely in simulation. [Best viewed in color].

Abstract— Model-based planners and controllers are com-
monly used to solve complex manipulation problems as they
can efficiently optimize diverse objectives and generalize to long
horizon tasks. However, they are limited by the fidelity of their
model which oftentimes leads to failures during deployment.
To enable a robot to recover from such failures, we propose
to use hierarchical reinforcement learning to learn a separate
recovery policy. The recovery policy is triggered when a failure
is detected based on sensory observations and seeks to take the
robot to a state from which it can complete the task using
the nominal model-based controllers. Our approach, called
RecoveryChaining, uses a hybrid action space, where the model-
based controllers are provided as additional nominal options
which allows the recovery policy to decide how to recover, when
to switch to a nominal controller and which controller to switch
to even with sparse rewards. We evaluate our approach in three
multi-step manipulation tasks with sparse rewards, where it
learns significantly more robust recovery policies than those
learned by baselines. Finally, we successfully transfer recovery
policies learned in simulation to a physical robot to demonstrate
the feasibility of sim-to-real transfer with our method.

I. INTRODUCTION

A robot trying to tidy up a house is confronted with a
myriad of possible failures. It might pick up a half-read
‘Planning Algorithms’ book from the table and try to place
it in the top shelf but fail to see the objects already inside.
How does it respond when the book bumps into the clutter
and starts slipping out of its hand? One potential recovery
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behavior would be to first fix the slip by pushing the book
against the shelf and then repositioning it for another attempt.
Humans can quickly come up with robust strategies to deal
with such failures, often with just partial information. For
example, we often use our sense of touch to extract objects
from a bag when we don’t have a clear view of its contents,
and we use our quick reflexes to recover from slipping on a
patch of ice.

However, popular model-based planning approaches [1],
[2] struggle to generate such behaviors on-the-fly because of
their reliance on an approximate model of the environment.
This reliance leads to failures when the robot is faced
with large inaccuracies in the model during deployment [3].
Hence, robots are usually deployed with recovery behaviors
to gracefully handle potential failures. Common recovery
strategies include retrying the previous step [4], backtrack-
ing [5] and hand-designed corrective actions [6]. These
heuristic strategies can be sub-optimal and require signifi-
cant manual engineering effort. In this paper, we propose
to use reinforcement learning (RL) [7], [8] to automate
the discovery of robust recovery behaviours for multi-step
manipulation. RL is capable of discovering and learning
complex robot skills [9], [10] but is limited by the twin
problems of (1) high sample complexity and (2) significant
reward shaping.

To address this, we propose a novel hierarchical rein-
forcement learning (HRL) formulation RecoveryChaining
for recovery learning that is much more sample efficient than
flat RL and can solve challenging manipulation problems
even with a sparse reward. Our main idea is to use a hybrid



action space which consists of primitive robot actions and
temporally extended nominal options that transfer control
to one of the model-based controllers. During exploration,
when the agent takes a nominal action at a state, it verifies in
simulation whether or not the task can be solved reliably by
transferring control to the nominal controllers from that state.
The verification is then used as a binary reward signal for the
recovery policy. RecoveryChaining not only learns how to
recover from the immediate source of failure but also which
nominal controller to recover to. Furthermore. we propose
Lazy RecoveryChaining that improves sample efficiency
by continually training precise binary classifiers for reward
generation to avoid expensive simulation of nominal options
in previously visited states.

We evaluate our approach in three multi-step manipulation
tasks of pick-place, shelf, and cluttered-shelf. The results
show that our approach is able to learn significantly more
robust recoveries than prior methods. In some of the shelf
domain scenarios, the robot is able to learn to leverage
contact with the environment to reduce uncertainty, adjust
for slip, and avoid further collisions. We also show that
our approach is suitable for sim-to-real by transferring the
learned skills to a physical Mitsubishi Electric Assista arm
without the need of any real-world fine-tuning (see figure 1).

II. RELATED WORK

A. Recovery Learning

Recent works have explored the idea of learning recovery
policies using offline datasets for safe exploration [11], [12]
and for recovery from execution failures [13], [14]. For
example, [12] learn a safe set using an offline dataset and
[13] learn skill preconditions by executing the skills from
different initial states. The learned preconditions (or safe
sets) are then used as the goal for recovery learning. This
approach is highly sensitive to the quality of the learned
preconditions and is pessimistic as it tries to stay close to
the offline dataset. To address these issues, our approach uses
online RL with temporally extended actions to better explore
the state space and discover robust policies.

Another common approach for learning reactive policies
is to learn from human demonstrations [15], [16]. However,
these policies are prone to failure if the robot visits out-
of-distribution states during execution. Online data collec-
tion [17] by an expert human is often required to learn
recoveries which makes this approach quite expensive. By
contrast, our approach does not rely on human demonstra-
tions. [18] propose to recover by modulating dynamical
systems learned from segmented demonstrations. However,
this assumes accurate detection of manually specified modes
which we do not require.

B. Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) [19] is an ap-
proach for solving long-horizon decision making problems.
HRL focuses on decomposing a problem into smaller sub-
tasks to enable easier policy learning and better general-
ization. This decomposition allows decisions to be made at

higher levels of abstraction without having to deal with the
low-level details. Skill chaining [20] is a popular approach
to discover skills that allow an agent to solve any task in the
state space. A major challenge in skill chaining is to learn
reliable initiation sets. [21] address this by proposing a com-
bination of pessimistic and optimistic classifiers. However,
such approaches have primarily been evaluated in navigation
domains and transfer to high-dimensional domains such as
manipulation remains an open area of research. Our recovery
learning approach utilizes the HRL framework, wherein
recovery policies from failures are learned to connect them
to the nominal policies. Our approach is inspired by previous
works which show that manipulation policies can be learned
more efficiently by using structured action spaces [22], [23],
[24] such as, object-centric controllers and parameterized
primitives.

III. BACKGROUND

Markov Decision Process (MDP). A Markov Decision
Process (MDP) [7] is defined by the tuple (S,A, T,R, γ, µ)
where S is the state space, A is the action space, T is
the transition function, R is the reward function, γ is the
discount factor and µ is the initial state distribution. The
MDP framework has been used extensively to model tasks
in manipulation for planning and reinforcement learning. A
key assumption made by MDPs is that the system state is
always accurately known. This may not be true for some
state variables, for example, due to errors in pose estimation
of objects or some objects being out of the sensor’s field of
view. The Mixed Observable MDP (MOMDP) [25] accounts
for this uncertainty by factoring the state into two types of
state variables: fully observable variables represented by the
variable x and partially observable variables y. The tuple
(x, y) fully specifies the system state. For example, a robot’s
end-effector pose is usually known quite accurately and
hence should belong to x, while poses of occluded objects
would belong to y.

Options Framework. We model each robot skill as an
option as per the options framework [26]. Each option
consists of three components: (a) a robot control policy π
(b) an initiation set I, also sometimes called a precondition,
which defines the states from which the option can be
executed and (c) a termination condition β which defines the
states in which the option must terminate. Once an option
terminates, the robot may choose to initiate another valid
option. This decision is made by a separate high-level policy
over options which treats the available options as its action
space.

Skill Chaining. Skill chaining (SC) [20] is a popular
approach to solve long horizon RL problems by decomposing
it into shorter sub-problems. A sequence of options is learned
backwards from the goal, such that in each iteration a new
option is learned to reach the precondition of the previously
learned options. The precondition is usually learned using
binary classification and describes the states from which
the option policy can be successfully executed. During the
initiation period of an option it is executed from different



Fig. 2: We propose an approach to learn robust recovery behaviors on top of given nominal controllers using reinforcement learning
that works even with sparse rewards. Here, the robot is trying to place a box on a shelf but accidentally collides with the shelf due to
an imprecise grasp. Using our approach, the robot learns a recovery policy from the failure state in a hybrid action space consisting of
primitive robot actions and temporally extended nominal options that trigger a sub-sequence of the nominal controllers. The recovery
policy is trained to quickly take the robot to the precondition of one of the nominal controllers so that it can transfer control to the
nominal controllers to complete the task. Solid arrows indicate actions taken by the robot and dashed arrows other available actions.

states in the environment to collect data for training the
precondition. The precondition classifier is then frozen and
used to generate success or failure rewards for the option
that is trying to reach it.

IV. PROBLEM STATEMENT

Consider a long-horizon manipulation task defined by
a distribution of start states and a binary goal function
fgoal : S → {0, 1}. As shown in figure 3, we assume
we are given a nominal plan ξnom = (πnom

1 , . . . , πnom
k )

made up of k nominal controllers (or policies) that is
capable of solving the task with non-zero probability. The
nominal plan sequentially executes each nominal policy until
the policy’s termination condition is met. We use a fixed
maximum number of steps as the termination condition for
all the policies in our experiments unless the goal or failure
condition is met. Due to state and actuation uncertainty or
model inaccuracy, the system may deviate from the intended
plan. We assume that we have a failure detector that can
detect impending irrecoverable failures and hence ensure
that the robot is always in a recoverable state. However,
the actual nominal initiation sets are unknown. Our goal
is to robustify the system by efficiently learning a separate
recovery policy that allows the robot to complete the task
after failure detection. In the following section, we describe
our proposed approach and present solutions to some of the
key challenges associated with this learning problem.

V. APPROACH

We model the system as a MOMDP [25], wherein the
robot maintains an estimate ŝ := (x, ŷ) of the true state
s and acts based on (ŝ, o), where o ∈ O corresponds to
sensory observations such as proprioception. Our approach,

Fig. 3: Representation of a sequence of nominal policies that solve a
task specified by a binary function fgoal. Due to model inaccuracies
and stochastic dynamics, the system may deviate from the nominal
plan. A failure detector is used to stop the robot before it encounters
an irrecoverable failure. However, this state could be outside the
preconditions of the nominal policies. Hence, a new recovery policy
πr is learned to take the system back on the nominal plan.

visualized in fig. 2, involves two steps: (1) Failure Discov-
ery. Nominal policies are executed under various conditions
in simulation to induce and record failures. We leverage
privileged information in simulation to record both the true
state s and the corresponding observations associated with
a failure. This allows us to directly reset to the failure in
simulation during recovery learning. (2) Recovery Learning.
Recovery policies are learned in simulation to handle the
failures collected in the previous step using reinforcement
learning. At deployment, the robot executes the nominal plan
and switches to the recovery policy if a failure is detected.

A. Failure Discovery

Failure Detection. We utilize a failure detector that
monitors the execution of the system and raises a flag
fail-condition if unsafe or unexpected conditions are



met, for example, high end-effector forces, dropping an ob-
ject, or slip. We assume that the failure detector can prevent
the robot from encountering irrecoverable failures. While
we hand-design the failure detectors in our experiments,
prior works have shown how they can be learned from
data, e.g., Associative Skill Memories [27] flag deviation
of sensor measurements from previously collected successful
trajectories as a failure and [13] train a failure classifier using
successful and failed trials. We note that failure detection is
an active area of research and is not guaranteed for all types
of tasks.

Failure Discovery. We discover and record potential
failures Dfail of the nominal policies by executing them
from various initial conditions. Once a failure is detected,
execution is terminated and the resulting state s = (x, y) is
recorded. Though, the robot may not have access to the true
world state at test time, we can do so during training either
in simulation or with extra sensors in the physical world.
This is straightforward in simulation but can be done with
extra sensing on a real system for some tasks, for example,
using AprilTag markers to measure object positions. In our
shelf experiments, box position is partially observable, i.e.,
y = posbox while y = {} in pick-place since the environment
is fully observable.

B. Recovery Learning

Our goal is to learn a policy that reliably takes the robot to
the precondition of one of the nominal policies from all the
failures Dfail. For example, if the book in a robot’s hand
slips while putting it on a shelf, recovery should regrasp
the book such that the place controller can be executed.
Since the true preconditions Inom

i are usually unknown,
prior works [11], [12], [14] in recovery learning first estimate
the nominal precondition Înom

i offline. The RL agent then
computes actions to maximize the estimated precondition
r(s, a) = Înom

i (s). However, accurate estimation of pre-
conditions is highly dependent on the quality of the offline
dataset making these approaches brittle and pessimistic.

To address these drawbacks, we propose an online RL
approach that does not rely on known preconditions. Instead
of using learned preconditions, our main observation is that
we can compute a monte-carlo estimate of the precondition
of a nominal controller πnom

i by executing the nominal
plan suffix onomi := (πnom

i , . . . , πnom
k ) at the query state

s. If the plan terminates in a state s′ inside the goal, then
the precondition is satisfied at s, i.e., the precondition can
be estimated as Imc

i (s) = fgoal(s
′). A single monte-

carlo simulation is sufficient in deterministic MDPs but an
average of multiple simulations may be required in stochastic
domains. We use only a single simulation in our experiments.

A Straw-man Approach. A straw-man RL approach to
leverage this observation would be to replace the learned
Inom
i with Imc

i . However, this is highly inefficient as the
environment would have to execute long sequences of nom-
inal controllers, potentially multiple times, in every step to
compute the reward. Ideally the environment need not have

to repeatedly compute the monte-carlo estimates from states
well outside the precondition.

RecoveryChaining. Our key insight is to let the RL agent
decide when to estimate the precondition. We provide the RL
agent with temporally extended nominal options onomi which
simulate the transfer of control to the nominal policy πnom

i .
The sequence of nominal policies onomi = (πnom

i , . . . , πnom
k )

is then executed from that state and the resulting task success
is used as a reward. We choose to make the nominal options
terminal so that the corresponding reward is independent
of the policy being learned and hence is stationary. Monte-
carlo simulations are computationally more expensive than
querying a learned precondition but provide a more reliable
reward estimate in our experience.

RecoveryChaining MDP. Let A be the original action
space of the agent consisting of primitive actions and S be
the state space. S contains an absorbing goal state sg and an
absorbing failure state sf . If the robot satisfies fgoal, then it
transitions to sg with a reward of 1. If fail-condition
is triggered instead, then it transitions to sf with a reward
of 0. The RecoveryChaining MDP is defined by the tuple
(Src, Arc, T rc, rrc, γ, µrc) where

• Src = S ∪ {sd}, where sd is a new absorbing state.
• Arc is a hybrid action space A ∪ {onom1 , . . . , onomk }

consisting of primitive actions and terminal nominal
options that transfer control to the nominal policies.

• The agent transitions to sd after executing onomi ∀ i if
it does not transition to the goal.

• rrc(s ∈ S) = fgoal(s), rrc(sd) = 0.
• µrc = Dfail

The hybrid action space is visulialized in figure 4. Intuitively,
when the agent is far away from the precondition Inom

i and
executes onomi , it gets no reward. After a few trials and errors,
the agent identifies states that lie outside the precondition and
stops executing the nominal option from those states. On the
other hand, as the agent gets closer to the precondition, it
receives higher rewards upon executing onomi and implicitly
learns that it is inside the desired precondition.

This approach has three key advantages:
1) The agent implicitly learns the nominal preconditions

through trial and error and stops computing monte-
carlo estimates for nominal controllers that are not
applicable.

2) The ability to try all the nominal policies allows the
agent to potentially discover novel ways to reuse them.

3) The agent is not obligated to recover to any precondi-
tion. If the correct recovery is to completely avoid the
nominal policies then it can discover such strategies.

C. Lazy RecoveryChaining

Simulation of temporally extended nominal options is the
most computationally expensive step in RecoveryChaining.
In fact, as recovery policy improves, it spends an increasingly
greater chunk of its time evaluating these nominal actions
in known good states because these yield positive rewards.
However, this is inefficient, as we would rather explore



Fig. 4: We use a hybrid action space for reinforcement learning.
It consists of both primitive robot actions and nominal options that
transfer control to a sequence of nominal policies that can take it
to the goal if applied successfully.

uncertain and previously unvisited regions. To address this,
we propose to continually learn regions in which the nominal
option is highly likely to succeed using a conservative binary
classifier, α. Specifically, for every nominal option onomi ,
we train a precise binary classifier αi using data from
its previous mote-carlo rollouts. If the RL agent selects a
nominal option from a state where the classifier is confident
of success, we lazily assign a positive reward instead of
executing the full rollout.

To mitigate approximation error in classification and hence
reward generation, we utilize two strategies. First, we ensure
low false positive rates by training binary classifiers with
high precision. In our experiments, we use XGBoost [28]
to learn probabilistic classifiers and select thresholds that
guarantee high precision. We continually retrain these clas-
sifiers using on-policy data and apply them only when their
precision meets a stringent threshold (≥ 0.95). Second, to
mitigate bias and maintain a balanced dataset, we randomly
perform monte-carlo rollouts with a small (20%) probability
even when the classifiers are confident.

VI. EXPERIMENTS

We evaluate our proposed approach in three challenging
multi-step manipulation environments with sparse rewards.
The purpose of these experiments is to understand (1)
whether our approach can learn robust and composable re-
coveries and (2) how well the hybrid approach of combining
model-based and model-free policies works. While a model-
based planner can be used to compute nominal plans, we
design them manually in our experiments as planning is not
the focus of our work.

Baselines. We compare RecoveryChaining (RC) and Lazy
RC with three baselines. (a) Nominal: completes the task
using just the model-based controllers; (b) Pretrained Pre-
conditions (PP): learns a recovery policy using primitive
actions to reach preconditions learned from offline data; (c)
RL for Recovery (RLR): learns the recovery policy using
standard RL with primitive actions. All the methods use a
sparse reward function.

RL Training. We use a set of discrete action primitives
to learn all the policies for easier sim-to-real transfer. Each

action primitive is defined in the robot’s end-effector frame
and operates only on a single dimension. Translation action
primitives move the end-effector by ±2 cm along x, y or
z axis and rotational primitives apply a roll, pitch or yaw
of ±π/2. We train all RL approaches for 200K timesteps
using Proximal Policy Optimization (PPO) [29] from stable-
baselines [30]. We run all the methods using 5 different seeds
and report the average.

A. Pick-Place Domain

Our first domain is the pick-place task from robosuite [31].
To solve this task, the robot needs to pick a small loaf of
bread from the source bin and place it in the target bin. The
robot gets a 46 dimensional observation consisting of object
poses, end-effector pose, etc. The bread is initialized in a
different location in the source bin in every episode.

Nominal Skills. We designed four nominal controllers:
GOTOGRASP skill takes the robot to a pre-grasp pose over
the object, PICK skill picks up the object, GOTOGOAL
moves the robot to the drop location and PLACE skill
places the object at the drop location. Each controller is
implemented as a state machine that selects a target pose
for the robot end-effector in the Cartesian space based on its
current state. The target end-effector pose is then achieved
using task-space impedance control with fixed impedance.
The nominal skills achieve a success rate of 70% on their
own in this task.

Failures. Most of the failures in this task occur when the
initial location of the bread is close to one of the walls. The
robot needs to reach inside the bin to grasp the object due
to its small size. This causes the end-effector to collide with
the wall leading to a failure that the nominal skills aren’t
capable of handling. Collision is detected using a threshold
on the end-effector forces. We collect a total of 100 failures
for learning recovery.

Recovery. The learned policy finds two different strategies
to recover from these failures. The first strategy rotates the
end-effector along the z axis so that it does not collide
with the wall when the robot reaches inside the bin. The
second, and perhaps more interesting, strategy uses the
gripper fingers to push the object away from the walls before
picking it up. RC uses a combination of these two strategies
to improve the success rate from 70% to 90%. On the other
hand, PP quickly plateaus and converges to a locally optimal
policy (fig 5). It uses preconditions learned from around
300 nominal trajectories as the reward function. RLR is not
able to learn the recovery at all due to sparse reward. We
summarize the success rates in table I.

B. Shelf Domain

Our second domain is a shelf environment with state
uncertainty also implemented using robosuite. In this task,
(fig. 9) the robot needs to pick up a box from a table and
place it inside a shelf in an upright position. The robot
observes a noisy estimate of the position of the box, where,
the noise is sampled from a zero-mean Gaussian distribution
with standard deviation of 1 and 2 cm along the y and z



Fig. 5: Comparison of the learning curves of RecoveryChaining (RC), Lazy RC, Pretrained Preconditions (PP) and RL for Recovery
(RLR) in pick-place, shelf and cluttered-shelf domains. RC and Lazy RC make consistent progress in learning, with Lazy RC learning
faster in 2/3 domains. PP hits a local optimum early in training and is not able to further improve its policy as it is limited by a pretrained
reward model. PP does quite poorly on the shelf task due to its partially observable nature. RLR makes no progress in any of the tasks.
Results are averaged over 5 different seeds.

Fig. 6: The pick-place task requires the robot to pick a small bread
from the source bin and place it in the target bin. The nominal
controllers do not account for the sides of the bin because of which
the end-effector collides with them when the bread is close to the
walls. One such situation is shown in the right figure.

axes, respectively. We also provide the robot the number of
actions taken so far as an observation. This allows it to learn
open-loop policies if needed. The dimensions of the shelf and
the box and the position of the shelf are sampled randomly
in every episode.

Nominal Skills. We designed three nominal skills for the
task assuming that the observations are accurate. PICK skill:
the robot goes to the observed position of the box, closes
the gripper, and picks up the box; MOVE skill: the robot
moves to a pre-placement position conditioned on the given
position of the shelf; PLACE skill: the robot places the box
on the shelf and retracts. These nominal skills can complete
the task reliably if the state estimates are accurate but can fail
when the state estimates are wrong. All the nominal skills
control the robot using task-space impedance control with
fixed impedance.

Failures. We collect failures by executing the nominal
policies in simulation under state uncertainty. The failure
conditions are given by the end-effector forces Fe exceeding
a predefined threshold. The nominal controllers assume per-
fect pose of the box. However, the robot may grasp the box
with an offset due to a wrong position estimate. This leads
to mainly two types of failures: (1) collision: robot collides
with the shelf or the table (2) collision-slip: collision with
the shelf leads to in-hand rotation of the object if there is a

Nom Nom + RC Nom + PP Nom + RLR

Pick-place 70 90 76 70
Shelf 51 83 56 52
Cluttered-shelf 38 57 43 41

TABLE I: Comparison of the overall success rate (%). Recov-
eryChaining (RC) significantly robustifies the nominal controllers
and is the best performing method in all the domains. The im-
provement is more pronounced in the shelf domain as it has state
uncertainty which makes learning more challenging.

delay in stopping the robot.
Recovery. The recovery policy learns to move up and

inside the shelf before switching to the nominal skill because
most collisions happen below the center of mass of the ob-
ject. We found that providing the number of past actions was
crucial to learn a recovery in this task because of unreliable
state estimates. In our ablation studies with different amounts
of state uncertainty, we found that the policy tends to be
more conservative and learns relatively open-loop policies
under high uncertainty. Overall, RC did significantly better
than PP on this task by improving task success from 50.8% to
83.2%. Lazy RC achieved a final recovery rate similar to RC
but was more sample efficient. RC was not able to recover
from failures involving significant in-hand rotation of the
box as it was not provided with its orientation observation.
Additional sensing, for example, slip detection using a tactile
sensor can further improve the recovery policy. The reward
model for PP was learned using 232 nominal trajectories.

C. Cluttered Shelf Domain

We consider a more complex version of the shelf domain
with two objects randomly placed on the shelf. The robot
needs to avoid them while putting the box on the shelf. We
use the same nominal skills used in the shelf domain.

Failures. In addition to monitoring end-effector forces for
collision detection, we also use vision-based failure detection
to avoid toppling objects on the shelf. The failure detector is
triggered if the robot topples or rotates any object by more
than a predefined threshold. Such failures can be detected in
the real world by using object detectors and pose estimation



Fig. 7: (left) Cluttered shelf domain. The robot needs to place a
box on a cluttered shelf with two objects. In addition to avoiding
collision, successful task completion requires the robot to avoid
rotating the objects on the shelf. (right) Failure state. The robot
collides and rotates the objects during execution leading to a failure.

Fig. 8: A comparison of the number of different nominal options
taken by the agent in the pick-place task in every round of
exploration consisting of 120 actions. The agent explores all the
nominal options initially but quickly identifies and commits to the
best nominal controller to recover to.

while we use privileged state information in simulation. We
show an example of a failure in figure 7.

Recovery. We compare the learning curves of RC with PP
in figure 5. RC learns a significantly more reliable recovery
skill than that learned by PP. However, we observe a drop
in performance compared with that on the simpler shelf
task. We believe performance can be improved with longer
training, a dense reward function and a better action space.

D. Analysis of Learned Recoveries

RC can identify the best nominal controller to recover
to. We do not provide the agent any prior knowledge about
where it should recover to and which nominal controller it
should switch to. To understand the exploration behavior of
RC we plot the number of times the agent chooses each
nominal option in a round of exploration in figure 8. Each
round consists of 120 actions. We observe that the agent
initially explores all the nominal controllers but quickly
identifies the most suitable one and commits to recovering
to its precondition. The RC policy implicitly learns the
preconditions of all the nominal controllers through trial and
error and avoids trying to switch to a nominal controller at
states in which it is unlikely to succeed.

RC can reuse the nominal controllers in novel ways.
Prior approaches that use pretrained preconditions, like skill
chaining, provide a pessimistic bias to the RL agent by
freezing the preconditions after the initiation period. This
prevents the agent from discovering novel ways to use the

Fig. 9: While trying the nominal controllers from different states
during exploration, the agent discovers a novel application of the
PLACE controller. (top) The PLACE skill was designed to gently
place the box assuming it is upright. (bottom) To fix the slip due
to a prior collision, RC learns to move deeper inside the shelf than
nominal execution before switching to the PLACE skill. This allows
the robot to fix the orientation of the box by pushing against the
back of the shelf to ensure stable placement.

nominal controllers that may be quite different from the
trajectories used to train the precondition. Sometimes, the
robot needs to use the nominal controllers in novel ways not
seen during nominal execution. We describe one such novel
reuse of the PLACE skill discovered by our agent for the
shelf task in figure 9. In this example, the box undergoes
significant in-hand rotation due to a collision with the shelf
below its center of mass. The robot needs to re-grasp the box
before placing it on the shelf as it may fall over otherwise.
The RC agent discovers that switching to the nominal PLACE
skill from inside the shelf fixes the in-hand slip by aligning
the box with the back of the shelf. This behavior is well
outside the distribution of states visited by the nominal skills
as the PLACE controller is designed to be triggered outside
the shelf.

E. Transfer to a Physical Robot

We transfer the nominal and recovery policies to a real
robot. Our real-world setup includes a 6-DoF Mitsubishi
Electric Assista robot arm with a WSG-32 parallel-jaw grip-
per and a Mitsubishi F/T sensor 1F-FS001-W200 mounted
on the wrist of the robot. We evaluate the feasibility of sim-
to-real transfer of recoveries learned using our approach.
We train the recovery in a simulated Assista robot with
a box and then evaluate it on a real Assista with one
box and two unseen objects- a mustard bottle and a can.
Failures are induced on the real robot by providing incorrect
position estimates of the shelf. Similar to the simulation,
we implement a collision detector on the real robot by using
observations from the F/T sensor on the robot. The robot was
able to recover from both collision and slip (fig. 1) by using
our recovery. The policy generalized well to the mustard
bottle but performed slightly worse on the can because it is
smaller than the box that was used for training and its curved
surface is more prone to slip.

Recovery Rate (%)

Box 100 (5/5)
Mustard bottle 100 (5/5)
Can 80 (4/5)

TABLE II: Summary of real-robot experiments on a real robot. Our
approach generalizes to a mustard bottle and a can despite having
been trained only on a box.



VII. CONCLUSION

We propose a hierarchical reinforcement learning approach
to learn model-free recovery policies for robustifying nom-
inal model-based controllers. Our approach, called Recov-
eryChaining, uses a hybrid action space to efficiently learn
robust recovery policies that can be chained with model-
based controllers. The action space contains temporally ex-
tended nominal options that transfer control to a specific
nominal controller. These nominal options reduce the ef-
fective horizon of the task and enable recovery learning
for multi-step manipulation. We evaluate our approach in
three challenging domains and find that our approach can
significantly improve task success using just a sparse reward.
We also transfer a recovery trained in simulation to a physical
robot to demonstrate the feasibility of sim-to-real transfer.

A major limitation of our method is its reliance on a
physics-based simulator for recovery learning. This limits its
applicability to tasks that can be modeled well in simulation
and introduces the challenge of sim-to-real transfer. Second,
we assume that there exists an initiation set from which the
nominal policies can be reliably executed and that this set
can be reached from failures using a local corrective policy.
Our method will not be effective if the nominal policies
are unreliable everywhere since the recovery policy will not
find any good state to switch to the nominal plan. Finally,
more research is needed in efficiently learning recoveries in
partially observable environments.
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