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Abstract
Remote estimation of vital signs enables health monitoring for situations in which contact-
based devices are either not available, too intrusive, or too expensive. In this paper, we
present a modular pipeline for pulse signal estimation from video of the face that achieves
state-of-the-art results on publicly available datasets. Our imaging photoplethysmography
(iPPG) system consists of three modules: face and landmark detection, time-series extrac-
tion, and pulse signal/pulse rate estimation. The pulse signal estimation module, which we
call TURNIP (Time-Series U-Net with Recurrence for Noise-Robust Imaging Photoplethys-
mography), allows the system to faithfully reconstruct the underlying pulse signal waveform
and uses it to measure pulse rate and pulse rate variability metrics, even in the presence of
motion. When parts of the face are occluded due to extreme head poses, our system ex-
plicitly detects such “self-occluded" regions and maintains estimation robustness despite the
missing information. Our algorithm provides reliable pulse rate estimates without the need
for specialized sensors or contact with the skin, outperforming previous iPPG methods on
both color (RGB) and near-infrared (NIR) datasets.
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ABSTRACT Remote estimation of vital signs enables health monitoring for situations in which contact-
based devices are either not available, too intrusive, or too expensive. In this paper, we present a modular
pipeline for pulse signal estimation from video of the face that achieves state-of-the-art results on publicly
available datasets. Our imaging photoplethysmography (iPPG) system consists of three modules: face
and landmark detection, time-series extraction, and pulse signal/pulse rate estimation. The pulse signal
estimation module, which we call TURNIP (Time-Series U-Net with Recurrence for Noise-Robust Imaging
Photoplethysmography), allows the system to faithfully reconstruct the underlying pulse signal waveform
and uses it to measure pulse rate and pulse rate variability metrics, even in the presence of motion. When
parts of the face are occluded due to extreme head poses, our system explicitly detects such ““‘self-occluded"”
regions and maintains estimation robustness despite the missing information. Our algorithm provides reliable
pulse rate estimates without the need for specialized sensors or contact with the skin, outperforming previous

iPPG methods on both color (RGB) and near-infrared (NIR) datasets.

INDEX TERMS Heart rate estimation, Signal Denoising, Vital Sign Estimation, RPPG, iPPG

I. INTRODUCTION

Health monitoring can improve the lives and increase the
lifespans of all people, healthy or not. And with an increasing
aging population globally, health monitoring can ease health
difficulties for both the aging and their caregivers. From
small commercial devices such as smart watches to large
clinical machines such as CT scanners, medical devices keep
physicians, patients, and everyday users aware of their health.
These devices, however, are themselves a barrier to health
monitoring—commercial devices tend to be expensive, while
clinical devices are only accessible in medical facilities. Fur-
thermore, medical equipment that requires physical contact
with the body can be invasive and uncomfortable, limiting
wider adoption of ubiquitous health monitoring technologies.

The COVID-19 pandemic has renewed interest in non-
contact measurements of vital signs [[1]], [2], including pulse
rate [3[|-[]8], breathing rate [9]-[12]], blood pressure [13]],
and pulse transit time [9]. Remote healthcare has allowed
patients to receive quality care even when offices are closed,
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leading to healthier and safer lives. Beyond healthcare, this
type of monitoring could potentially be used in safety-critical
applications such as driver-monitoring [8[], [14] and heavy
equipment operation. Measuring quantities such as pulse rate
and pulse rate variability—defined as fluctuations in the in-
terval between successive beats of a heart, measured using
PPG techniques—and doing so from facial video only can be
used from hospital-based settings, to consumer electronics,
and even safety-critical applications.

Imaging photoplethysmography (iPPG), also known as re-
mote photoplethysmography (rPPG), is the process of de-
termining the pulse rate and/or pulse waveform from non-
contact video of the skin (e.g., the face). The key to accurately
estimating the pulse waveform is to first measure the variation
in the image intensity of the skin that contains the underlying
pulse signal, which is weak and noisy, then extract the pulse
signal through denoising [S]], [15] or signal processing-based
estimation [16]-[18]]. Many pre-deep-learning methods [5],
[15]-[17] first detect the face in each video frame, then
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average the RGB pixel intensities across the entire face region
in each frame, to obtain a 3-channel (R, G, B) time series.
These algorithms estimate the underlying pulse signal from
the spatially averaged 3-channel signal either by de-mixing
under model-free assumptions of blind source separation [5]],
[[15] or by projecting the RGB signals onto different color
subspaces [16], [17]. Deep learning-based methods discussed
in [3[], [4], [19] input video frames directly and use attention
modules to extract the pulse signal from the face region.

The SparsePPG [[14] and AutoSparsePPG [8]] methods first
segment the face into regions and record the variation in
the mean intensity value of each region over time. Unlike
approaches presented in [5], [L15]-[18]], which extract a 3-
channel (R, G, B) time series from the video, these meth-
ods [8]], [14] extract a multi-channel time series whose chan-
nels represent facial regions rather than colors. The model
estimates the pulse rate from the multi-channel time series
by assuming that the pulse signal is sparse in the frequency
domain and uses sparsity-promoting algorithms to find the
underlying heart-rate frequencies that are shared across facial
regions. Our proposed method adopts a similar multi-region
analysis, but rather than using sparsity-driven algorithms as
presented in [§]], [14], we develop a network architecture that
learns to extract the underlying pulse signal from the multi-
region time series.

We adopt a modular framework for pulse signal estimation
that achieves state-of-the-art results on publicly available
datasets. We demonstrate the effectiveness of our algorithm
in two imaging domains: the color (RGB) domain and the
near-infrared (NIR) domain. Our model can recover the pulse
rate in the presence of substantial motion, and our system’s
detection and special handling of self-occluded landmarks
(facial landmarks that are occluded by other parts of the face)
makes our method more robust to extreme head poses such as
profile views. In addition, we explore a pulse rate variability
analysis, which reflects neurocardiac function and autonomic
nervous system activity. Our algorithmic paradigm includes
three modules: a face and landmark detection module, a time-
series extraction module, and a pulse signal estimation mod-
ule called TURNIP (Time-Series U-Net with Recurrence for
Noise-Robust Imaging Photoplethysmographyﬂ). The sys-
tem reconstructs the underlying pulse signal, which is then
used for pulse rate and pulse rate variability estimation. The
face detection and landmark detection module, as well as
the TURNIP iPPG estimation module, contain deep-learning
components, while the time-series extraction module explic-
itly records the temporal variation of the light intensity within
each facial region. As a combined system, these three mod-
ules determine the pulse rate with state-of-the-art accuracy,
even when head motion is present in the data.

'An earlier version of this work appeared in [20], where the “N" in
TURNIP stood for Near-Infrared. In the current paper, we expand the algo-
rithm to operate on RGB input, enable the handling of occlusions, and employ
an improved face and landmark detector. We also evaluate our algorithm on a
larger dataset, demonstrate improved performance relative to state-of-the-art
deep-learning methods, and add a pulse rate variability analysis to the paper.

2

To summarize, our contributions are as follows:

o We design a modular, interpretable pipeline for pulse-
rate estimation and pulse rate variability from face
videos; this pipeline consists of a face and landmark
detection module, a time-series extraction module, and
a pulse signal estimation module.

o We propose TURNIP, a time-series U-Net with Gated
Recurrent Units (GRUs) as pass-through connections,
which reconstructs the underlying pulse signal.

o For color (RGB) videos, we demonstrate that the ratio
of the red and green color channels [17], [21]], [22] in
a spatio-temporal neural network better denoises input
signals than raw color channels, leading to improved
pulse signal estimation.

« We handle extreme head poses and poorly framed video
by automatically identifying self-occluded or outside-
of-frame landmarks, enabling our method to learn to
handle bad information and be robust to extreme poses.

o We evaluate our algorithm on three publicly available
datasets from the RGB and NIR domains, achieving
state-of-the-art results on all datasets.

The rest of the paper is organized as follows: in Section [I}
we discuss related work. This is followed by our pulse signal
and pulse rate estimation technique in Section Datasets
used for evaluation are discused in Section The imple-
mentation details and experimental results are described in
Section [V} and we conclude in Section[V]]

Il. RELATED WORK

A. PULSE RATE ESTIMATION

Pulse Signal estimation can be separated into signal
processing-based methods [5]], [8], [14]-[17], [23]] and deep
neural network methods [3]], [4]], [7]], [24/]-[32]. We discuss
each individually below.

1) Signal Processing-Based Methods
Signal processing-based methods include blind source sep-
aration (BSS) methods such as [5]], [15] and model-based
methods such as [14], [16], [[17]. Blind Source Separation
techniques [5]], [15]] consider the measured signal to contain
both the underlying pulse signal and noise. To separate the
signal from the noise, they use Principal Component Analysis
(PCA) or Independent Component Analysis (ICA), depend-
ing on whether they desire the projected data to lie in the
coordinate systems of maximum variance or statistical inde-
pendence. Unlike these BSS methods, which do not consider
skin-reflection models such as [18]], CHROM [17]] explicitly
considers a subject’s skin color as well as the light source
upon the skin. It does so by eliminating the specular reflection
component and white-balancing the underlying pulse signal
using a standardized skin-tone vector. PBV [|16] restricts all
color variations to the pulsatile direction, assumes that the
pulsatile signal is uncorrelated with other signal sources, and
solves for a projection vector to obtain the pulsatile signal.
The methods SparsePPG [14]] and AutoSparsePPG [] are
built upon sparse recovery algorithms. Recognizing that the
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pulse-rate signal is quasi-periodic in time and sparse in the
frequency domain, these methods seek to recover the peak
frequency coefficients of the pulse signal. After segmenting
the face into five regions and extracting a time-series from
pixel intensities across video frames, these methods solve
an optimization problem in which they seek to extract the
underlying sparse set of frequency coefficients that describe
the periodicity of the pulse signal. They assume that the
set of active frequencies that correspond to the pulse signal
should be the same across the five facial regions, and they
use techniques in joint sparsity to solve for the target signal.

2) Deep-Learning Methods

Deep learning methods have recently surpassed classical sig-
nal processing-based methods in heart rate estimation perfor-
mance. PhysNet [33[] was among the first end-to-end methods
to use spatio-temporal neural networks to reconstruct a pulse
waveform directly from raw RGB video. Some methods, such
as [3]], obviate the need for explicitly-defined signal extraction
techniques such as those described in the previous paragraph.
Using the skin reflection model defined in [18]], [3]] inputs
the difference between consecutive frames, rather than the
frames themselves, to eliminate the stationary skin reflection
color. The algorithm then uses the MSE loss between this
difference signal and the corresponding difference signal of
the ground-truth waveform. To account for motion, an atten-
tion mechanism is developed using soft-attention masks from
1 x 1 convolutions that are multiplied with the motion model
feature map; the result only highlights the skin region for sig-
nal extraction. Follow-up work [4]] improves on this attention
mechanism by claiming that changes in background and *“dis-
traction" regions (such as the hair) can improve the quality of
the attention mechanism to focus more on skin pixels. The
work TS-CAN [19] added temporal shift modules [34] to [3]]
for better temporal processing, and MetaPhys [7] used this
network in a meta-learning paradigm for few-shot adaptation
across datasets in both supervised and unsupervised training
procedures. A benefit of 3], [4], [7], [19], [24] is that these
methods are end-to-end: RGB video frames are input, and the
pulse signal is output. As a result, however, these methods
become hard to interpret.

B. PULSE RATE VARIABILITY ESTIMATION

In addition to measuring the pulse rate, we explore our al-
gorithm’s capability to measure pulse rate variability (PRV),
which is closely related to heart rate variability (HRV). Pulse
Rate Variability, defined by the time interval between adjacent
heart beats and the fluctuations between them as measured
through PPG, measures the heart-brain dynamic interactions
and is closely associated with autonomic nervous system
activity [35]]. Fluctuations in the inter-beat interval (IBI) are
due to the dynamic relationship between the sympathetic
nervous system and the parasympathetic nervous system, as
well as respiratory sinus arrhythmia and changes in tone of
the vasculature [35]]. Measuring these changes through pulse
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rate variability can give insight into functioning of the heart,
intestines, blood pressure, and more.

Measuring pulse rate variability, however, is highly depen-
dent on the type of signal recorded (e.g. ECG vs PPG), the
age of the subjects, and specifically, the length of the time
recording. While 24-hour signal recordings are considered to
be the “gold-standard" for measurement, shorter length signal
may or may not correspond with the 24 hour measurements.
To this end [36]-[40] have established correlations between
shorter duration measurements and the gold-standard 24-
hours recording. We follow the work of [38]] detailing PRV
for short term measurements using PPG waves, and report
the power of the High Frequency (HF) components of the
interbeat interval signal (in ms?) and the root mean square of
successive differences between normal heartbeats (RMSSD)
measured in milliseconds (ms). For a full description of pulse
rate variability, we refer the reader to [35]].

lll. METHOD

Our pulse rate estimation framework comprises three mod-
ules, outlined in black in Figure m a face and landmark
detector, a time-series extractor, and a pulse signal estimator.
Each component is described in the following subsections.

A. FACE AND LANDMARK DETECTION

Given the raw, unprocessed video, we detect the face box
in each frame using [41]], and the cropped faces are input to
the LUVLI landmark detection algorithm [42]. In addition to
estimating the locations of facial landmarks, LUVLi is unique
in that it also estimates the uncertainty associated with each
landmark’s location, as well as determining whether each
landmark is self—occludecﬂ (i.e., occluded by another part of
the face).

In this work, we consider a landmark to be invisible if
LUVLIi determines either that it is self-occluded or that its
location is outside of the image frame, as illustrated in Fig-
ure 3} Given that pulsatile signals in rPPG are weak, label-
ing landmarks as invisible is important to alert downstream
modules of any noise that may corrupt the underlying PPG
signal. We use these labels in generating the time series that
are input to TURNIP, as described below. Previous methods
such as [43] do not identify landmarks that are invisible,
implicitly assuming that changes in face pose do not affect
signal extraction. Other methods [3[], [19], [24]], [33]] must
learn to ignore unreliable facial regions using deep learning
techniques such as attention.

B. TIME SERIES EXTRACTION

1) Generating Additional Landmarks

Given the landmark points in each frame and their visibility
labels, we extract the temporal pulsatile signal, potentially
noisy, at different regions in the face. To improve signal

2The LUVLIi method [42] includes a visibility estimator that outputs a
number in the range (0, 1) for each landmark, where outputs close to 0 (below
a threshold) indicate that the landmark is self-occluded.
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FIGURE 1: Our system for pulse signal estimation from video is composed of three modules, outlined in black: face and
landmark detection, time series extraction, and pulse signal estimation. The pulse rate and pulse rate variability can then be
estimated from the denoised pulse signal that is output from TURNIP.

reconstruction, we augment the number of landmarks by in-
terpolating/extrapolating new landmarks on the cheeks, chin,
and forehead as illustrated in Figure 2] We obtain the new
landmarks on the cheeks and chin area by linearly inter-
polating between two existing landmarks. For example, we
interpolate between the lower lip and the jawline to get chin
landmarks. To extrapolate landmarks on the forehead, we
first calculate a direction vector Veyeprow along the right and
left eyebrows by fitting a line to all visible eyebrow land-
marks, then compute the perpendicular vector Vigrehead- We
then extrapolate two rows of landmarks in the direction of
Vioreheads USing one-fifth the distance between the inside eye
corner and the corresponding mouth corner as the offset for
each row. If one of the 68 landmarks is invisible (as defined
in Section [[II-A), then we propagate its invisible label to
every one of the augmented landmarks whose locations were
determined using the invisible landmark. This is illustrated by
the examples in Figure [3] Landmark augmentation from 68
to 145 landmarks helps to capture more regions of the face,
including the critical forehead regions; this is particularly
helpful in cases in which the pulsatile signal is weak or noisy
in other regions. Using fewer regions of the face (e.g., using
5 large regions instead of 48 small regions) is also possible;
we conduct an ablation study in Section [V]to explore this.

2) Handling Pixel Intensities

We incorporate three design features into the time series ex-
traction module that contribute to our state-of-the-art results:
1) We use these 145 landmark locations in each frame to
define 48 facial regions, and within each region we average
the pixel intensity values across all pixels in the region.

4

This step reduces noise. 2) If a region is defined using an
invisible landmark, we assign that region a large out-of-range
value instead of averaging its intensity; this step recognizes
that some signals will be inherently incorrect and noisy, and
should be ignored or used for noise-robustness. 3) For the
RGB datasets (MMSE-HR and PURE), instead of extracting
pixel intensities from a single color channel (e.g., the green
channel of an RGB image), we extract a channel defined by
the red-divided-by-green (R/G) intensity

_ X[, 0]

- X[, 1]
where X is the RGB pixel signal over T frames in dimen-
sion 0, and the color channels are in dimension 1; under
the assumption that noise due to motion and illumination
affects each color channel equally, the ratio of color channels
should be robust to such noise as compared to individual color
channels. All these steps differ significantly from previous
work. Previous methods [[30], [43]] extract a signal by stacking
all color channels from video in both the RGB and YUV
space (and [30]] uses [[17]], [18] as additional signals) and then
hope that the neural network can extract the best information.
Other methods [J3]], [4], [19]], [44] input cropped video frames
directly, and guide the neural network to extract the signal
representation. Our method carefully designs the signal ex-
traction technique, allowing the users to understand the inputs
to the pulse signal estimation module.

ey

3) Filtering and Normalizing the Signals

Finally, we temporally filter each of the 48 spatial regions
using a fifth-order Butterworth filter with cutoff frequencies
at 0.7 Hz and 4 Hz as in [4], corresponding to 42 beats per
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minute (bpm) and 240 bpm, respectively. Next, we perform
AC/DC normalization by subtracting the signal’s mean, then
dividing by the same mean:

~ Xi — Mi

g = i) @)
Hi

yi= 2 3)
|3ill2

where x; is the signal from region i, and y; is the temporal
mean intensity in region i. The AC-DC normalized signal is
¥, after which we apply Ly normalization in Equation (3));
these two steps normalize our signal in the range [-1, 1]. The
concatenation of y; results in a 48-channel time series y; €
R*8%250 that is input to the TURNIP denoiser network, which
estimates the pulse signal.

C. TURNIP PULSE SIGNAL ESTIMATION

The extracted time series is windowed into 7 x 48 chunks
for input into the TURNIP module, where T is the length of
the time window. Segmenting the skin pixels into regions and
spatially averaging them reduces noise; however, noise is still
present due to facial deformations resulting from expressions,
motion-related noise, and lighting variations, among other
sources of noise. The network must learn to extract the pulse
signal based on the statistics of the ground-truth data.

We design our architecture as a U-Net style neural net-
work [45]. However, skip connections of the U-net in the
form of gated recurrent units (GRUs) are used to incorporate
temporal recurrence. The architecture of our pulse signal
estimation module, which we call Time-Series U-net with Re-
currence for Noise-Robust Imaging Photoplethysmography
(TURNIP), is shown in Figure 4]

The T x 48 signal is passed to the neural network as 48
channels. It goes through three stages of convolution (with
kernel size 7) and downsampling, first by a factor of three
and then by a factor of two. After reaching the lowest res-
olution, the signal is convolved and upsampled back to the
original spatial and channel dimension over multiple stages.
At every resolution of the U-net, we connect the encoding
and decoding sub-networks by a skip connection module
(each indicated by a purple rectangle in Figure[d). In parallel
with each 1 x 1 convolutional skip connection (which is
present in a typical U-net), we introduce a novel recurrent skip
connection that uses gated recurrent units (GRUs) to provide
temporally recurrent features. The output (hidden states) of
this GRU layer is concatenated with the output of the standard
(1 x 1) skip connection layer before being concatenated with
the input to the corresponding convolution+upsampling layer.
At each time scale, the convolutional layers of the U-net
process all of the samples from the time window in parallel. In
contrast, the new recurrent GRU layers process the temporal
samples sequentially. This recurrence effectively extends the
temporal receptive field at each layer of the U-net. After the
last upsampling layer, we append a 1x1 convolutional layer
to collapse the channel dimension to a single channel for
appropriate calculation of a loss.
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TABLE 1: Testing on three datasets in both the RGB and NIR
domains

MMSE-HR [46 MR-NIRP Car [8] PURE [47] |
Domain RGB NIR RGB |
Resolution 1040x 1392 640x 640 640x480
Frame Rate (fps) 25 30 30
Codec h264 h264 h264
No. Videos 102 19 60
No. subject 40 18 10
Male/Female Subjects 17/23 16/2 8/2
GT Signal Type BP Wave Pulse Ox Pulse Ox
GT Sampling Rate (Hz) 1000 60 60

Training the TURNIP pulse signal estimation module re-
quires an appropriate selection of loss function. We chose to
minimize one minus the Pearson Correlation Coefficient, a
measure of covariance between two variables. Consider two
vectors Z and zg representing the predicted waveform and the
ground-truth waveform of length 7', respectively. We define
a function F (Z, g ) such that

T -ZT2y — pizfiy,
V(T2 — 2)(T -2l — 42,

We then seek to minimize this function with respect to the
parameters of the neural network

F(Z,2q) = 1— )

0" = argmin F(Z, z) (5)
]

During training, we also design a novel data augmentation
scheme that aims to capture lower and higher frequencies of
the target pulse rate range, for which sufficient training data
may not be available. In our “SpeedUp" augmentation, we
crop the input window of length 7 by a random percentage
between 20% and 40%, and linearly interpolate the samples
back to the original window size T. For the ‘““SlowDown"
augmentation, we randomly chose a length that is 20% to 40%
larger than our target time windows (e.g. 1.2 x T), extract
the signal from the video, and linearly interpolate the signal
to the target length T. In these ways our “SpeedUp" and
“SlowDown" augmentation have extrapolated the statistics of
the data to higher and lower frequencies respectively.

As compared to methods such as [30]], [43] that ingest
a variety of signal sources and transform them into signal
output, or methods such as [3]], [4], [24] that need to extract
and estimate a signal from video, our method serves only
as a denoiser. Our method takes a noisy signal estimate and
outputs a cleaner signal estimate. In Section we show
that our formulation produces state-of-the-art results on major
datasets, and we conduct ablation studies to demonstrate the
effectiveness of our design choices.

IV. DATASETS

We test our algorithm on three video datasets in both the RGB
and Near-Infrared (NIR) modalities, and describe the datasets
in Table|l|and below, as well as the the challenges associated
with each dataset. We train and test on each dataset indepen-
dently, except for the cross-dataset evaluation described in

5
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FIGURE 2: Generating of landmark and feature regions. We first start by detecting 68 landmarks from the LUVLi [42] landmark
detector. We then interpolate these landmarks across the cheeks and chin and extrapolate them up the forehead, to generate 145
landmarks. We use these landmarks to define 48 regions. Finally, we aggregate the pixel intensities in each region using spatial

averaging to obtain a 48-channel time-series.

FIGURE 3: These example frames show the augmented
set of 145 landmarks, with invisible landmarks shown in
red. Landmarks are labeled invisible if they are either self-
occluded (occluded by another part of the face, as illustrated
in the left image) or outside of the image boundary (as
illustrated in the right image). Finally, landmarks are also
labeled invisible if their locations were determined by inter-
polating/extrapolating from an invisible landmark. Previous
algorithms such as [8]], [[14]] do not detect when landmarks
are invisible, which means that such landmarks can cause
previous methods to have incorrect results in frames that have
extreme head rotations or translations. Because we explicitly
detect invisible landmarks and label them as such, our algo-
rithm can learn to be more robust to extreme poses.

Section[V-DI] For each dataset, we downsample the ground-
truth signal to the frame rate of the video. We then apply
the AC-DC normalization, Ls normalization, and bandpass
filtering described in Section[[lI-B3] We follow the evaluation

6

protocol of previous literature to ensure no data leakage.

MMSE-HR [46]: In the MMSE-HR dataset, various emo-
tions are elicited from subjects while ground-truth blood-
pressure waveforms (synchronized with the video) are cap-
tured using a finger sensor that was calibrated with a blood
pressure cuff. This dataset contains considerable head motion
and occlusions, to which our algorithms are robust. During
training, we used 10-second windows (T = 250 samples),
and shift the time window by 60 samples. Since we are per-
forming leave-one-subject-out cross validation, this results in
an average of 8026 windows for training and 9.7 windows for
testing. During test time, we evaluate our model on 10-second
samples with no overlap. We concatenate three 10-second
windows and perform evaluation on 30-second windows to
match the 30-second window evaluation protocol of [4]].

MERL-Rice Near-Infrared Pulse (MR-NIRP) Car [8]:
Recorded using an NIR camera with a 940 = 5 nm band-
pass filter, the MR-NIRP Car dataset includes facial videos
(duration 2-5 min.) with synchronized ground-truth PPG
waveforms collected using a fingertip pulse oximeter. The
dataset is split into a “Driving" subset and ““Garage" subset.
During “Driving", data were captured while driving through
a city, resulting in illumination changes and head motion.
There were 14 daytime videos and 4 videos that were captured
at night. The “Garage" subset was recorded while the car
was parked inside a garage, with less head motion and much
less variation in illumination. As in [_8], we evaluate only
on the “minimal head motion condition" for all scenarios—
we note, however, that even this scenario contains significant
head motion in the Driving subset. An advantage of the NIR
modality is that it minimizes illumination variations [8|]]. How-
ever, NIR frequencies introduce new challenges for iPPG,
including weaker blood-flow-related intensity changes in the
NIR portion of the spectrum and low signal-to-noise ratio

VOLUME 11, 20-
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FIGURE 4: The TURNIP Pulse Signal Estimation module. The signals from the 48 individual regions are extracted at input to
the network as a 7 x 48 matrix. The spatio-temporal network denoises the signal to the statistics of the data, and outputs a clean

signal. See Figure|§| for example input and output of TURNIP.

(SNR) due to reduced sensitivity of camera sensors. The
results demonstrate that despite these challenges, our method
is able to accurately estimate subjects’ pulse rates.

PURE [47]: In the PURE dataset, subjects perform vari-
ous head motion tasks while synchronized video and pulse
waveform data (from a fingertip pulse oximeter) are cap-
tured. There are six head-motion tasks: Steady, Talking, Slow
Translation, Fast Translation, Small Rotation, and Medium
Rotation. We split the dataset into train/validation/test/splits
as in [48]], resulting in 7613 training windows and 136 test
windows.

V. EXPERIMENTS AND RESULTS

A. EVALUATION PROTOCOL

1) Pulse Rate Estimation

To compute the pulse rate estimate, we first multiply the time-
series by a hanning window to avoid spectral leakage. We
then take the L-point FFT, where L = 100xsignal length.
We square the magnitude of the coefficients to get the power,
and take the bin with highest power (among the positive
frequencies) as our estimate of the pulse rate.

We follow the evaluation protocols as described in [4]
and report the Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) between the predicted pulse rate and
the ground-truth pulse rate. The MAE is defined as

sz Y . |Ri — Ri| (6)
and the RMSE is defined as

1 A
S (R = Ri)? ™
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where R; is the ground-truth pulse rate in time window i, R;
is the predicted pulse rate in time window #, and N is the total
number of time windows. In addition, we report the PTE6
(Percent of Time that Error < 6 bpm), which is defined as

1, if[Ri—Ri| <6
0, otherwise

1
PTEG6 = EEN Y P, where P; = {

®)
This quantity describes the percentage of pulse rate estimates
that are within 6 beats per minute (bpm) of the ground-truth
pulse rate. We chose this metric as it roughly encodes the
notion of what percent of the time the estimated pulse rate
is correct.

For a fair comparison against previous methods, we evalu-
ate on 30-second time windows for the MMSE-HR dataset
in accordance with evaluation protocols from [4], and on
10-second time windows for the MR-NIRP Car dataset to
conform to our evaluation protocols in [20]. We evaluate on
30-second windows on the PURE dataset to conform with
previous literature [48]).

2) Pulse Rate Variability Metrics

We report the metrics as described in [35]], [38] which enu-
merate the ultra-short duration metrics that correlate well
with the 24-hours recordings. Given that signals in the PURE
dataset are approximately 1 min long, we report the power of
the High Frequency (HF) components of the interbeat interval
in milliseconds squared (ms?) and the root mean square of
successive differences between normal heart beats (RMSSD)
in milliseconds (ms) [35]. We report these numbers using
the HeartPy [49], [50] python library, which standardizes

7
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the computation of the above metrics. We do not report the
low frequency components of the interbeat interval signal
as this metrics needs at least 2 minutes of recording, nor
the low-frequency/high-frequency ratio as this metric is most
accurately reported on signals of 24-hr duration.

B. IMPLEMENTATION DETAILS

For face detection, as described in Section [II-A] we use
the off-the-shelf detector as trained by [41]]. The time series
extraction was described in detail in Section Below,
we describe the training procedure for the landmark detection
introduced in Section [T[-Alfor the MMSE-HR results and the
TURNIP iPPG estimator described in Section [II=CL

LUVLi Landmark Localization: In addition to accurate
locations of facial landmarks, the LUVLi landmark detec-
tor [42] outputs a visibility for each landmark that indicates
whether the landmark is ““self-occluded" (signifying that the
landmark is occluded by another part of the face, e.g., in the
case of a profile face). If LUVLi determines that a landmark is
invisible (self-occluded or outside of the image boundaries),
then for every face region that is defined using that landmark’s
location, our time series extraction module sets the region’s
intensity value to -10, which is a large negative value outside
of the normalized range of the signal. This enables TURNIP
to learn to ignore those regions when estimating the pulse
signal. We show that this novel use of landmark visibility
serves as a pseudo-attention mechanism that improves pulse
signal estimation.

TURNIP iPPG Estimation: We use the architecture
shown in Figure [d] In consists of a three stage U-Net with
48 input channels; the time-resolution decreases while the
channel dimension doubles at each stage until we reach 512
channels; we then decode this input by increasing the time-
resolution and decreasing the channel resolution, adding GRU
output along the way. The hidden state of the GRU is re-
initialized for each time window of length T that is fed into
the network. For the MMSE-HR dataset, we use the Adam
optimizer with an initial learning rate of 1.5 x 10~2 and
weight decay of 1 x 10~* trained for 8 epochs. We found the
same hyperparameters worked well for PURE. On the MR-
NIRP Car dataset, we use a learning rate of 1.5x 10~ reduced
at each epoch by a factor of 0.05. The learning rate is decayed
by a factor of 0.99 at each epoch, and we train for 8 epochs.
We use 10-second time window, and shift the window by 60
samples to generate our training set. Given the limited data,
we use leave-one-subject-out cross validation for MMSE-HR
and MR-NIRP Car datasets, and the train/val/test splits of the
PURE dataset.

During test time, to replicate the 30-second-window eval-
uation process as described by [4]] on the MMSE-HR dataset,
we concatenate three 10-second output windows of TURNIP
to form a 30-second evaluation window. On the MR-NIRP
Car dataset, we follow the evaluation protocol we described
in [20]], which uses the same metrics as in [4] but evaluates
on 10-second windows. To be consistent with [20] on the
MR-NIRP Car dataset, we use the OpenFace landmark de-
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TABLE 2: Results on the MMSE-HR dataset using 30-second
windows (TURNIP results show mean and standard deviation
across four random network initializations). The results for
ICA [6], CHROM [17]], and POS [[18]] are copied from [4]]. Au-
toSparsePPG uses our signal extraction techniques, while [3]],
[4] have no analogous signal extraction technique.

MAE RMSE PTE6
Method (bpm) ) (bpm) | (%) 1
ICA [6] 5.44 12.00 -
CHROM [17] 3.74 8.11
POS [18] 3.90 9.61
AutoSparsePPG [_8] 4.55 14.42 88.10
CAN [3] 4.06 9.51 -
InverseCAN [4] 2.27 4.90
Federated [53] 2.99 -

Physformer [54] 2.84 5.36
EfficientPhys-C [55] 291 5.43
ND-DeeprPPG [56] 1.84 4.83

ContrastPhys [44] 1.11 3.83 -
TURNIP 1.04 2.84 93.02

TABLE 3: Results on the PURE dataset. The results listed are
based on implementations of [[57]]

MAE RMSE PTE6

Method (bpm)J  (bpm) | (%) 1
CHROM [17] 2.07 9.92 -
POS [ 18] 5.44 12.00
HR-CNN [438| 1.84 2.37
CVD [43] 1.29 2.01
Gideon [58] 2.1 2.6
DualGAN [57] 0.82 1.31
Yue et. al [59] 1.23 2.01
ContrastPhys [44] 0.48 0.98 -
TURNIP 0.36 0.67 100

tector [S1]], [52]], and smooth the resulting landmark locations
using a 10-frame moving average. In the next subsection, we
show that our model achieves state-of-the-art performance on
the datasets.

C. RESULTS
1) Pulse Rate Estimation Analysis
We show our results on the MMSE-HR dataset in Table 21
On this challenging dataset, we reduce the RMSE error from
3.83 [44] to 3.46 bpm, and are second best in terms of MAE.
Furthermore, compared to the previous deep-learning-based
methods [3]], [4], our modular system is more interpretable,
as it does not involve the black-box attention mechanisms
and signal reconstruction of these end-to-end approaches.
Our pipeline has interpretable inputs and outputs that show
exactly how a signal is extracted and how the underlying pulse
waveform is estimated, which is a significant advantage over
purely end-to-end methods. We see similar improvements
on the PURE dataset, as shown in Table E} We exceed per-
formance on both signal processing-based methods as well
as deep-learning methods. In addition, we perform a cross-
dataset performance study, which we defer to the ablation
studies.

In addition, we report our results using 10-sec time win-
dows on the MMSE-HR dataset in Table ] corresponding to
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TABLE 4: Comparison of on the MMSE-HR dataset using
10-second vs. 30-second windows

MAE RMSE PTE6
Method
etho (bpm)J  (bpm) | (%) 1
TURNIP (30-sec) 1.17+0.11 3.46+0.21 93.21+1.14
TURNIP (10-sec) 2.814+0.08 9.5940.26 89.31+0.58

TABLE 5: Results on the MR-NIRP Car dataset

MR-NIRP Car
Driving Garage
Method RMSE PTE6 | RMSE PTE6

Gpm) L (BT | Gbpm)l (%) 1
>15 24.6 >15 374

DistancePPG [60]]

SparsePPG [14] >15 17.4 >15 35.6
AutoSparsePPG (8] 11.6 61.0 5.1 81.9
PhysNet-STSL-NIR [4]] 13.2 532 6.3 88.8
TURNIP 11.4 65.1 4.6 89.7

the evaluation protocol we use on the MR-NIRP Car dataset.
We believe that 10-sec windows are more appropriate for
evaluation for several reasons: 1) Because 30-sec windows
average the pulse rate over a long duration, short-term errors
in pulse rate can be averaged out, making it seem as if a
method estimates pulse rate more accurately than it actually
does. (In fact, some of the videos in the MMSE-HR dataset
are not much longer than 30 sec.) 2) In many real-world
applications, shorter wait times are more desirable or neces-
sary. 3) The (more challenging) 10-sec window scenario more
closely resembles a real-time, instantaneous measurement of
pulse rate, which may be important for clinical acceptance
in the future. The results in Table 4] show that for 10-sec
windows, the MAE and RMSE are higher and the PTEG6 is
lower; this demonstrates that the 10-sec evaluation protocol
is more challenging, with more room for performance gains
that may lead to further improvements in algorithms.

Our algorithm outperforms previous methods on the near-
infrared MR-NIRP Car dataset [8|] as well, as shown in Table
E} Note that for this dataset, we use the OpenFace landmark
detector [52] rather than LUVLI [42], and we average the
landmark locations across 10 frames as described in [20].
On both the Driving (city driving) subset and the Garage
(car running while parked in a garage) subset of the MR-
NIRP Car dataset, we achieve significantly higher PTE6 than
previous methods, indicating that our algorithm captures the
true pulse rate (within 6 bpm) a greater percentage of the time
than previous methods. We also achieve smaller root-mean-
squared error (RMSE) than previous methods on both subsets,
showing that our method also reduces the error on a window-
by-window basis. Even though the pulsatile signal is weaker
in the NIR domain than in RGB, our method is still able to
estimate the underlying pulse wave for pulse rate estimation
more accurately than previous methods.

2) Statistical Analysis of Pulse Rate Estimation

We perform a modified Bland-Altman analysis—plotting the
ground-truth pulse rate against the difference between the
ground-truth and predicted pulse rate—for both the MMSE-
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HR dataset and PURE dataset in Figure [5] On the MMSE-
HR dataset, we see that we have a mean difference between
predicted and ground-truth pulse rates of 0.48, which shows
that our predictions accurately match the ground-truth mea-
surements. Furthermore, only two of our estimates fall outside
of the 95% limits of agreement, defined as 1.96 x the standard
deviation of the differences. The greatest difference between
the predicted and ground-truth pulse rates occur at higher
pulse rate ranges, which most likely means that there was
insufficient training data at those rates.

We do the same for the PURE dataset and show the results
in Figure[5|on 10-second windows to show a variety of heart-
rate estimates. In both cases, we see a mean difference very
close to zero. Also, nearly all of our pulse rate estimates fall
within our limits of agreement, and the ones that are outside
our limits are still within 2 bpm of the ground truth.

3) Pulse Rate Variability Analysis

We perform a HRV analysis on the predicted signals from
TURNIP and the ground-truth and display the results in Fig-
ure[8] We do this on the PURE dataset, for which videos are
at at least 1-minute long. We note that our mean difference
for the higher frequency component is -805.49 ms? while for
the RMSSD metric our mean difference is -34.83 ms. For the
high-frequency power estimate, many of our estimates have a
difference close to zero, validating our ability to correctly pre-
dict the high frequency power. We notice a similar trend for
the RMSSD metric. We believe that further research should
focus on reconstructing waveform characteristics more effec-
tively.

4) Qualitative Analysis

In Figure @ each part ((a), (b), or (c)) shows example result
waveforms for a single 10-sec time window from the test set
of the MMSE-HR dataset. For each time window, the left
column shows time-domain waveforms, and the right column
shows the same signal in the frequency domain. In both the
top and bottom rows, the signals in orange show the ground-
truth pulse signal, while the overlaid signals in blue show the
estimated signals. In the top row, the blue signal shows one
channel (from one face region) of the output of our time series
extraction module, before TURNIP pulse signal estimation.
In the bottom row, the blue signal shows our system’s final
estimate of the pulse signal, after TURNIP pulse signal esti-
mation. The peak frequency of each frequency domain graph
provides the system’s estimate of the pulse rate.

From the frequency domain graphs (lower right of each
part), we can see that our TURNIP pulse signal estima-
tor closely reconstructs the underlying spectrum, attenuating
spurious peaks and generating an accurate pulse rate estimate.
In Figure[6|(a), we see that the extracted time series signal (top
row blue curves) has significant power at a lower frequency;
our TURNIP algorithm attenuates this frequency and boosts
the correct one. In (b), we see that the extracted time series
signal is noisy in the frequency domain (blue curve at top
right), with strong peaks at lower and higher frequencies
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Modified Bland-Altman Plot -- MMSE-HR
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FIGURE 6: iPPG estimation for three different signals The signals in orange are the ground-truth, with a peak frequency at
107.52 bpm in (a), 82.44 bpm in (b), and 91.08 bpm in (c), while the signals in blue are the inputs/outputs of our TURNIP pulse
signal estimation algorithm. The top and bottom rows respectively show the estimate before and after TURNIP pulse signal
estimation. Each row shows the time-domain signals on the left and frequency-domain power spectra on the right. The title of
each frequency spectrum plot shows the peak frequency of the estimated signal.

TABLE 6: Cross Dataset Comparison

. MAE RMSE PTE6
Train Dataset | Test Dataset (bpm) | (bpm) L (%) 1
PURE MMSE-HR 4.35 13.54 89.14
MMSE-HR PURE 0.68 1.06 99.26

than the true pulse rate, and the predicted pulse rate before
TURNIP is greater than 6-beats away from the ground-truth.
Our TURNIP pulse signal estimator attenuates the spurious
peaks and correctly predicts the true pulse rate (blue curve in
bottom right). Figure[6](c) shows similar behavior.

D. ABLATION STUDIES

1) Cross-Dataset Evaluation

In this experiment, we train on one dataset and test on another
dataset without any further fine-tuining; we show the results

10

in Table [} We see that MMSE-HR transfers very well to the
PURE dataset. We believe this occurs because of the nature
of the MMSE-HR dataset—firstly, there is more data upon
which to train and secondly, it contains many examples of
unconstrained motion with corresponding ground-truth signal
from which the network can learn. The PURE dataset does
not have the same distribution of unconstrained noise data.
In addition to the significantly smaller dataset size, it does
not contain the same noise characteristics that are typically
found in the MMSE-HR dataset. Overall though, we still
see good performance. When training on PURE and testing
on MMSE-HR, we perform a Bland-Altman analysis and
display the results in Figure [7] We see that, on average, we
overestimate the ground-truth signal by approximately 3 beats
per minute, but the majority of our performance degradation
results from a few outliers. Therefore, we see that the majority
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Training on PURE, and testing on MMSE-HR
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FIGURE 7: A modified Bland-Altman Analysis when train-
ing on PURE and testing on MMSE-HR. Each point repre-

sents a non-overlapping 10-second window of the MMSE-HR
dataset. We see that we do well, except for a few large outliers.

TABLE 7: Pulse Rate estimation using different color chan-
nels and motion conditions

. MAE RMSE PTE6

Dataset Motion — Channel (bpm) | (bpm) | (%Y}
Low Motion — Green 1.34 341 92.40

Low Motion — RoG 0.80 2.33 96.20

MMSE-HR High Motion — Green 2.92 11.72 90.44
High Motion — RoG 1.92 5.02 92.50

Low Motion — Green 2.17 7.78 93.95

Low Motion — RoG 1.11 4.85 97.17

PURE  —roh Motion — Green | 2.23 727 9433
High Motion — RoG 1.99 7.18 95.28

of estimates, when training on PURE and testing on MMSE-
HR, are within 5 beats of the true pulse rate.

2) Effect of Channel Ratio and Performance in low and
high-motion conditions

In Table[7} we show the performance of TURNIP when the
input channel is green or RedoverGreen (RoG) for low motion
videos vs high motion videos. In the PURE dataset, we define
as ‘“high motion" the videos labeled by the dataset authors
as Slow Translation, Fast Translation, and Medium Rotation,
while the “low motion" videos are those labeled as Steady,
Talking, and Small Rotation.

For each video in the MMSE-HR dataset, we measure the
amount of motion in the video as follows. First, we compute
the standard deviation across all frames of the 2D location
of each of the 68 facial landmarks found by LUVLi [42].
Next, we compute the mean of these 68 standard deviations
to obtain a single scalar measure of motion in the video. For
each subject, the one video with the most motion is considered
"high motion," and the remaining videos of that subject are
considered to be "low motion." See the appendix for the exact
splits. As we can see from the table, in all scenarios the RoG
channel improves heart-rate estimation performance, whether
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it be high motion or low motion. This shows the effectiveness
of our use of color channels.

TABLE 8: Color Channel performance on the MMSE-HR
dataset

MAE RMSE PTE6

Method (bpm)|  (bpm)| %) 1
Red 3.66+£0.87 9.2241.32 82.9440.44
Blue 44934231  47.33£4.01 1.554+0.52
Green 1.6340.21 5.93+1.11 90.88+0.84
{Red, Green} 1.8140.31 5.47+1.31 87.7240.48
{Green, Blue} 2.45+0.61 8.03£1.05 89.1440.33
{Red, Blue} 3.041+0.55 8.45+£1.75 85.2740.61
Red-over-Green (R/G) 1.1740.11 3.4640.21 93.21+1.14
Green-over-Red 3.76+0.21 8.56+0.44 77.514+0.51
Blue-over-Green 4.41£0.31 11.01+£0.62  79.84+0.48
Green-over-Blue 4.6740.18 11.0940.18  78.29+0.18
Red-over-Blue 4.6640.48 10.8440.28  81.39+0.36
Blue-over-Red 4.7240.61 10.764+0.32  78.29+0.22
{Red, Green, Blue} 2.93 £0.18 10.13+0.47  89.14 +0.15

3) Using multiple color channels

In Table [8] we experiment with different color channels as
input to TURNIP, stacking the color channels into a matrix of
size T x 48 x 3 for {Red,Green,Blue} input or 7 x 48 x 2
for 2-color input such as {Red,Green}. When we include
the other color channels, including the weaker blue signal,
we introduce in-domain noise that makes optimization more
difficult. The 3-channel R,G,B TURNIP cannot replicate the
more-optimal ratio of the red and green channels, nor does it
learn how to handle the noise as effectively. We notice the best
results when inputting the red over green channel directly, and
report these results. This shows a simple modification to the
signal extraction procedure in the RGB image domain can
result in state-of-the-art performance.

4) Handling self-occluded landmarks

One of our contributions involves the detection and handling
of self-occluded and out-of-frame landmarks during train-
ing, which improves model robustness during inference. We
show in Table [J] the effects of incorporating or omitting the
occlusion handling module. On the challenging MMSE-HR
dataset, using our occlusion handling improves performance,
increasing PTE6 from 93.02 to 93.21.

5) Finding the optimal number of Facial Regions

All standard landmark detectors, including LUVLI, output 68
landmarks across the face. Determining the number of regions
to use, however, is a design choice that we explore. Using 48
regions creates multiple regions across the chin, right and left
forehead, and right and left cheek as in Figure [} to generate
96 regions, we split each of the 48 regions in half. We also

TABLE 9: Understanding effect of occlusion handling

. . MAE RMSE PTE6
9
Occlusion Handling? (bpm) | (bpm) | (%) 1
X 1.21£0.07  3.53£0.24  93.01£0.95
v 1.17+0.11  3.46+0.21 93.21+1.14
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FIGURE 8: A Bland-Altman Analysis on the HF, and RMSSD metrics as described in Section on all 1-min videos of the

PURE test set.

TABLE 10: Comparing the 5-region TURNIP vs the 48-
region TURNIP

Type MAE (bpm) | RMSE(bpm) | PTE6 (%) 1
TURNIP 5-region 1.35 3.53 92.24
TURNIP 48-region 1.04 2.84 93.02
TURNIP 96-region 1.23 3.33 92.79

TABLE 11: Effects of data augmentation and GRU on
TURNIP performance using the MR-NIRP Car dataset (10-
second windows) and MMSE-HR dataset (30-second win-
dows).

Method ~ MR-NIRP Car MMSE-HR
Driving Garage
Aug. GRU | RMSE PTE6 RMSE PTE6 | RMSE PTE6
X v 10.7 61.9 59 81.9 5.72 91.47
4 X 11.4 63.3 5.0 89.7 3.73 89.92
v v 11.4 65.1 4.6 89.7 3.46 93.21

defined 5 regions which are super regions of the chin, right
forehead, left forehead, right cheek, and left cheek.

TURNIP was re-trained in the 5-channel and 96-channel
scenarios. We see optimal performance when using 48 regions
in Table[T0] We surmise that 5 regions are too few to capture
robust signals when motion and illumination noise is high.
Conversely, 96 regions are too small especially during the
spatial averaging step in time-series extraction, resulting in
pixel signals that are extremely sensitive to pixel outliers.
Therefore, 48 regions are ideal.

6) Effects of Gated Recurrent Unit, Data Augmentation, and
comparing against LSTM

Table [T1] shows the effect of including or omitting the
GRU component in our spatio-temporal denoising U-Net. We
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clearly see that the GRU plays an important role in improving
the performance. The table shows that our data augmentation
generally improves results on the MR-NIRP Car dataset. We
see that data augmentation improves the PTE6 on the MMSE-
HR dataset and both subsets of the MR-NIRP Car dataset, and
it improves RMSE on all but the the “‘Driving" subset of MR-
NIRP Car. The data augmentation and GRU both help our
method outperform the previous methods on the MR-NIRP
Car dataset, as shown in Table 3}

We also compare our choice of the GRU, a simpler ar-
chitecture, against another popular recurrent unit, the LSTM.
We replace all GRU units in Figure d] with LSTM units, and
retrain TURNIP: our results are in Table We achieve
best performance when using TURNIP with the GRU. One
potential reason this occurs is because of overfitting with
LSTMs due to parameter counts. Consider an input size / and
a hidden state size of H. In an LSTM there are four gates
(input, forget, cell, and output), each of which has a weight
matrix that transforms the input to the hidden size (/ X H, and
the hidden state to the hidden size (H x H). Then, there are
biases for each gate (H). The number of parameters can be
written as

Parameterspsty = 4 %X (I x H)+ (H xH) +H)

=4xHx((I+H+1) ©)

The GRU only has three gates (update, reset, new hidden

state). Considering an input size / and a hidden state size of

H, for each gate we have a transformation from the input to

the hidden size (I x H, and the hidden state to the hidden size

(H x H). Then, there are biases for each gate (H). The number
of parameters can be written as

Parametersgry = 3 X (I x H) + (H xH) + H)

=3xHx (I +H+1) (10
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TABLE 12: Comparing performance on the MMSE-HR
dataset when using GRUs and LSTMs

Type MAE (bpm) | RMSE(bpm)| PTE6 (%) 1
TURNIP w/LSTM 1.35 3.53 92.24
TURNIP w/GRU 1.04 2.84 93.02

TABLE 13: Evaluating ICA/CHROM/POS using our signal
extraction pipeline on the MMSE-HR dataset

MAE RMSE PTE6
Method (bpm) . (bpm) |  (bpm) T

ICA [6] 5.44 12.00 -

ICA (our pipeline) 7.62 16.57 74.41
CHROM [17] 3.74 8.11 -

CHROM (our pipeline) 2.84 9.77 88.97
POS (18] 3.90 9.61 -

POS (our pipeline) 4.08 11.25 82.94

[ TURNIP [ 1.04 2.84 93.02 |

Therefore the LSTM has about 33% more parameters.
We surmise that, while the performance with the LSTM is
still very good, some of the parameters in the LSTM are
overfitting the data, which results in worse performance. For
this reason, we select the GRU.

7) Effects of our Signal Extraction on ICA/POS/CHROM

We evaluate the performance of ICA/POS/CHROM on our
custom signal extraction pipeline (Face Detection + LUVLi
Landmark Detection + Time-Series Extraction) and display
the results in Table [I3] We note a few differences in imple-
mentation: as compared to TURNIP which used 48 subre-
gions (which were later collapsed into one through convolu-
tional layers), the original [ICA/CHROMY/POS used the entire
face as a single region for estimation. For our implementation
of ICA/CHROM/POS, we extracted a 48 channel time series
from the video; to capture the pulse rate, we converted each
region into its power spectrum, summed each frequency bin
across all 48 regions, and selected the bin with the highest
power as our pulse rate estimate. We note that TURNIP
has superior performance under the same signal extraction
technique, showing the validity of our method.

8) Use of Correlation loss compared to traditional losses

For TURNIP, we were inspired by the work of [33]] and chose
to use the correlation loss to train our network. The Pearson
correlation coefficient is suitable for aligning signals and their
peaks in the time domain. This occurs because the correlation
between two sinusoids is maximized when the signals are in-
phase, which is the desired effect. However, various other
losses have been used to train rPPG network. We compare
the use of the correlation loss against the Ly (MSE) loss and
the Ly loss in terms of heart rate estimation performance
in Table [[4] We see that all three methods generate similar
performance, with the correlation loss providing the best
performance in terms of MAE and RMSE. This indicates that

VOLUME 11, 20-

TABLE 14: Comparing TURNIP trained on three different
losses

Type MAE (bpm) | RMSE(bpm) |  PTE6 (%) 1
TURNIP w/ L; loss 1.12 3.21 94.57
TURNIP w/L5 loss 1.06 2.95 95.34
TURNIP w/Correlation loss 1.04 2.84 93.02

our model is not brittle to various algorithmic design choices
and works well across the design space.

VI. CONCLUSION

In this paper, we build a modular pipeline for non-contact
pulse rate estimation and pulse rate variability from facial
videos that is composed of modules that perform face and
landmark detection, time series extraction, and pulse signal
estimation. Compared to previous end-to-end deep-network
methods that map directly from the RGB frames to the
final output, our modular algorithm significantly improves
the estimation results. Our novel handling of self-occluded
and out-of-frame landmarks in our time series extractor and
TURNIP pulse signal estimator make our algorithm robust to
varying levels of occlusion. Additionally, our signal model
uses the ratio of pixel intensities of the red channel to the
green channel for RGB videos, and leads to significant im-
provements across metrics. Our results demonstrate a new
state-of-the-art in estimating pulse signals from facial videos,
and our model achieves this using stages that are modular and
interpretable. We have tested our algorithm in two different
imaging domains (RGB and near-infrared), outperforming
previous methods in both domains.

Future work should continue to address real-world remote
pulse rate and pulse rate variability estimation with increasing
variation in illumination and motion. While this work and
many previous works address some of the fundamental issues
associated with illumination variation and motion, further
research could help make algorithms even more robust to
these issues.

APPENDIX

In Table[7] we tested our algorithm on high-motion and low-
motion splits of the PURE and MMSE-HR datasets. We
enumerate the data splits below.

« High-motion (PURE): Videos labeled as 03-Slow
Translation, 04-Fast Translation, and 06-Medium Rota-
tion.

« Low-Motion (PURE):Videos labeled as 01-Steady, 02-
Talking, and 05-Small Rotation

« High-Motion (MMSE-HR): F005-T10, F006-T11,
F007-T11, FO008-T10, F009-T11, FO10-T11, FO11-
T11,F012-T11, F013-T8, FO14-T8, FO15-T8, FO16-T8,
FO017-T8, FO18-T1, FO019-T11, F020-T10, FO21-T11,
F022-T10, F023-T10, F024-T10, F025-T10, F026-T10,
F027-T10, M001-T11, M002-T11, M003-T10, M004-
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T10, M005-T10, M006-T10, M007-T10, MOO8-T11,
MO009-T10, M010-T11, MO11-T8, M012-T11, MO13-
T11, M014-T10, M015-T10, MO16-T11, MO17-T10
Low-motion (MMSE-HR): F005-T11, FO006-T10,
F007-T10, FO08-T11, FO09-T10, FO10-T10, FO11-T10,
F012-T10, FO13-T10, FO13-T11, FO13-T1, FO14-T10,
F014-T11, FO14-T1, FO15-T10, FO15-T11, FO15-T1,
F016-T10, FO16-T11, FO16-T1, FO17-T10, FO17-T11,
F017-T1, FO18-T10, FO18-T11, FO18-T8, FO019-T10,
F020-T11, F020-T1, F020-T8, F021-T10, F022-T11,
F022-T1, F022-T8, F023-T11, F024-T111, FO25-T11,
F026-T11, F027-T11, M001-T10, M002-T10, M0O03-
T11, M004-T11, M005-T11, M006-T10, M007-T11,
MO008-T10, M009-T11, M010-T10, MO11-T11, MO12-
T10, MO13-T10, M014-T11, M016-T11, M016-T10,
MO17-T11
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