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Bipedalism for Quadrupedal Robots: Versatile Loco-Manipulation
through Risk-Adaptive Reinforcement Learning

Yuyou Zhang1, Radu Corcodel2, Ding Zhao1

Abstract— Loco-manipulation of quadrupedal robots has
broadened robotic applications, but using legs as manipu-
lators often compromises locomotion, while mounting arms
complicates the system. To mitigate this issue, we introduce
bipedalism for quadrupedal robots, thus freeing the front legs
for versatile interactions with the environment. We propose
a risk-adaptive distributional Reinforcement Learning (RL)
framework designed for quadrupedal robots walking on their
hind legs, balancing worst-case conservativeness with optimal
performance in this inherently unstable task. During training,
the adaptive risk preference is dynamically adjusted based on
the uncertainty of the return, measured by the coefficient of
variation of the estimated return distribution. Extensive exper-
iments in simulation show our method’s superior performance
over baselines. Real-world deployment on a Unitree Go2 robot
further demonstrates the versatility of our policy, enabling tasks
like cart pushing, obstacle probing, and payload transport,
while showcasing robustness against challenging dynamics and
external disturbances.

I. INTRODUCTION

In recent years, the field of quadrupedal robots has made
remarkable progress. In terms of locomotion, improved
capabilities of traversing various terrains and outdoor en-
vironments were developed [1]–[11]. Manipulation skills
[12]–[16] and specialized abilities, such as ball shooting,
dribbling, catching, and goalkeeping [17]–[20], have been
further studied to expand the real-world applicability of
quadrupedal robots. These components enable legged robots
flexible operations in unstructured environments, and are the
building blocks of general sensorimotor skills that facilitate
meaningful interactions between legged robots and their
surroundings.

One way to enable interactions with the environment is to
decouple the locomotion and manipulation components by
equipping the quadrupedal robots with top-mounted robotic
arms [12], [21], [22] or claws [23]. However, adding robotic
arms to quadrupedal robots significantly limits their appli-
cability due to increased weight, energy demand, and addi-
tional spatial constraints. Inspired by bipedalism in human
evolution [24], we adopt bipedal gait for quadrupedal robots
to free up their front legs, which are typically used for
locomotion in a quadrupedal gait, and repurpose them for
manipulation tasks, such as pushing, environment probing,
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payload carrying and other tasks that require non-prehensile
interactions with the surrounding environment.
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Fig. 1. Risk-adaptive distributional RL framework overview for bipedal
locomotion on a Unitree Go2 robot. Using the distortion risk measures ρgα ,
the policy tends to be optimistic (red) in the well-explored states when the
uncertainty of the return distribution is low, and vice versa (green). Versatile
real-world applications such as cart pushing, obstacle probing, and payload
carrying, are enabled by a single locomotion policy. Demonstrations are
available in our supplementary video.

Bipedal locomotion differs from quadrupedal locomotion
in its inherent instability [25] due to the narrower base of
support. These challenges can be exacerbated in the real
world when dynamics and disturbances are unknown [26].
RL is commonly used to learn a control policy with complex
dynamics. RL in standard form is usually risk-neutral and
maximizes the expected accumulated return [27], [28]. The
sim-to-real gap and unexpected perturbations during deploy-
ment can destabilize a risk-neutral policy, which focuses only
on expected return, especially when worst-case returns are
underrepresented in the return distribution [26]. It is thus
crucial to adopt a risk-aware approach to consider these
worst-case scenarios, particularly when the unpredictability
of real-world deployment poses significant risks.

In this work, we propose a risk-adaptive distributional RL
framework, as shown in Figure 1, to learn a robust policy for
inherently unstable bipedal locomotion. Specifically, during
training, we adapt the risk preference dynamically based on
the uncertainty of the return, measured by the coefficient of
variation of the estimated return distribution, instead of pre-



specifying the risk level for policy learning. Extensive simu-
lation experiments demonstrate the superior performance of
our method compared to baseline approaches. In real-world
deployment, we showcase loco-manipulation including cart
pushing, contact-aware obstacle probing, and payload carry-
ing, highlighting the versatility and robustness of the bipedal
locomotion policy. In summary, the main contributions of this
work are:

• We introduce a risk-adaptive RL framework for the
robust bipedal locomotion of quadrupedal robots.

• We propose a novel uncertainty metric based on the
return distribution to adaptively choose the risk level.

• We demonstrate robust real-world applications with
bipedal locomotion under external force, and high-
light three representative tasks including cart pushing,
contact-aware obstacle probing, and payload carrying.

II. RELATED WORK

A. Quadrupedal robot locomotion and manipulation

Previous work either equips the legged robot with a
mounted robotic arm [12]–[15], [21], [22], [29]–[35] or use
one leg as manipulator [17], [18], [36]–[38]. With mounted
arms, mobile manipulation requires coordination between
the robot arm and the legged robot. Instead of decoupling
the manipulation and locomotion controllers like in [29],
[34], more recent work seeks to build manipulation-centric
whole-body controllers to allow better coordination: [21],
[30] formulate a unified whole-body MPC framework, [22]
uses RL to train whole-body control policy for end-effector
tracking, [31] trains RL policy with vision input, [12] uses
diffusion policy to learn from human demonstration, [33]
learns a whole-body force control policy to enable com-
pliance and force application. However, adding a mounted
arm to a quadrupedal robot increases the load and energy
requirements, and unnecessarily adds system complexity.

Loco-manipulation repurposes the robot’s legs for manipu-
lation without changing its embodiment. However, increased
manipulation ability comes at the cost of compromised loco-
motion ability since the robot’s legs are primarily designed
for locomotion. For example, most loco-manipulations have
the robots stand still on three legs and use one leg as
the manipulator [23], [36], [38]–[41]. Inspired by how
bipedalism played an important role in human evolution
by freeing the hands for manipulation [24], we adopt a
bipedal gait to enable flexible loco-manipulation such as bi-
manual pushing, contact-aware obstacle probing, and payload
carrying. Compared to previous work on bipedal locomotion
of quadrupedal robots [7], [42], [43], our work further
explores meaningful interactions between quadrupedal robots
and their surrounding environment, enabled by our robust
bipedal locomotion policy.

B. Risk-aware RL for Robot

Risk awareness is essential for the successful real-world
deployment of autonomous robots, such as drones [44] and
quadrupedal robots [45]–[48]. Distributional RL [49]–[51]
models the distribution of returns explicitly, rather than

estimating the value function as the expected return, making
it widely applicable in risk-sensitive RL [52], [53].

Several works have used distributional RL to improve
the robustness of quadrupedal robot real-world performance.
Li et al. [46] introduce a distribution ensemble actor-critic
approach and demonstrate improved performance in domain
randomization settings. However, the approach is not risk-
aware. Shi et al. [47] takes a risk-adaptive perspective but
can only switch between a risk-neutral (CVaR1) policy and a
risk-averse (CVaR0.5) policy, resembling switch-mode con-
trol. Also, risk-averse learning [47] can ignore high-return
strategies [52]. Schneider et al. [45] propose a risk-aware
Distributional PPO and demonstrate risk-aware locomotion
behavior conditioned on a manually specified risk level at de-
ployment, which relies on human prior knowledge. Different
from previous work, our method enables risk adaptiveness
during training, allowing the actor policy to internalize
risk preference selection automatically. During training, the
value estimation becomes conservative in high-uncertainty
situations and autonomously shifts toward optimism when
the return distribution exhibits low variance. This results in
a policy that is both robust and high-performing, without
requiring manual risk tuning at deployment.

III. PRELIMINARY

Partially Observable Markov Decision Process. We
formulate bipedal locomotion learning as a Partially Ob-
servable Markov Decision Process (POMDP) defined by
(S,A, T , R,Ω, O, γ), where S represents the state space,
A the action space, T : S × A 7→ S is the transition
function, R : S × A 7→ R is the reward function, Ω is
the set of observations, O is the observation function, γ is
the discount factor. The objective is to train a policy π∗

which maximizes the discounted cumulative reward π∗ =
argmaxπ Es0∼ρ0,at∼π(·|st)

[∑
t≥0 γ

tr(st, at)
]
.

Distributional RL. Distributional RL [49]–[51] learns
the value distribution, instead of the expected return as
a value function. With policy π, the return is a random
variable Zπ that represents the cumulated discounted rewards
along one trajectory, Zπ =

∑∞
t=0 γ

tRt. The value function
for many standard RL algorithms is, V π(x) = E[Zπ(x)]
while distributional RL explicitly parameterizes the return
distribution with quantile functions [50], [51] or discrete dis-
tribution [49]. We adopt a similar parameterization as in QR-
DQN [50], where the return distribution is approximated by
estimating the quantiles τ1, · · · , τN , τi = i/N, i = 1, · · · , N ,
with the parametric model θ,

Zθ(x) :=
1

N

N∑
i=1

δθi(x), (1)

where θi(x) is the ith quantile of the return distribution
Zπ(x), and δθi(x) denotes a Dirac function at θi(x).

IV. METHOD

We first introduce the problem setting of the bipedal
locomotion task in section IV-A. Due to the robustness



requirement of balance in bipedal locomotion, we adopt
distributional RL shown in section IV-B. In section IV-C,
we incorporate adaptive risk measures to balance safety in
worst-case scenarios with optimal task performance. The
framework overview of our proposed method is shown in
Figure 1.

A. Control Policy with RL

Observation and Action Space. The bipedal locomotion
policy receives observations which include the propriocep-
tive information, locomotion command, and the last action
at−1 ∈ R12. Proprioceptive information includes joint posi-
tion θt ∈ R12 and joint velocity θ̇t ∈ R12 provided by the
joint encoders and projected gravity in the robot frame gt ∈
R3 from the IMU. The command ct = [vcx, v

c
y, ω

c
yaw, z

c, f c]
includes the velocity command specifying the linear ve-
locities in the longitudinal and lateral directions, angular
velocity around the vertical axis, base height, and stepping
frequency. Privileged observation for the critic network at
the training stage includes extra information only available
in simulation such as joint friction and restitution coefficient.
The dimension of the action space A is 12, which equals the
number of actuators. The predictions of the policy, ∆θt ∈
R12, are the joint angles relative to the nominal quadrupedal
standing position.

Reward Functions. Reward functions consist of task-
specific rewards for bipedal locomotion and auxiliary re-
wards adapted from [54] to optimize foot contact, action
smoothness, energy consumption, joint position, etc. Task-
specific reward functions are listed in Table I. In addition
to Base Height which encourages maintaining base height
zc and Base Pitch to promote an upright position, we also
use Upright Balance to penalize velocity along the z-axis
and changes in pitch angle ṗ when the robot is upright. Ve-
locity tracking rewards include Linear Tracking and Angular
Tracking, where σ and σyaw are scaling factors.

Apart from direct tracking reward, we design a Support
Polygon reward to track the relative position between the
base center of mass (CoM) and the support polygon. When
the CoM moves ahead of the support polygon, the robot
accelerates. Conversely, when the CoM lags behind, the
robot decelerates. This mechanism enables continuous bal-
ance control while tracking the desired velocity, as shown
in Fig. 2. We characterize the relative position between
the robot CoM and support polygon by arctan(∆xb/∆zb).
∆xb and ∆zb are relative positions of the average of two
rear feet in the body frame along the x-axis and z-axis.
arctan(∆xb/∆zb) is expected to be positive when the robot
needs to accelerate and negative when decelerating. This
angle is essentially different than the pitch angle and only
degenerates to the pitch angle when the model is simplified
to a single inverted pendulum. The total reward is a positive
linear function of the task reward, r+ × ec×r− , where r+
is the sum of positive reward terms and r− is the sum of
negative reward terms, c is coefficient set to 0.02.

(a) Accelerate (b) Neutral (c) Decelerate

Fig. 2. The robot accelerates (a), stays neutral (b), and decelerates (c)
by shifting its center of mass (CoM) ahead of, aligned with, or behind the
support polygon.

TABLE I
TASK REWARD FUNCTIONS

Base Height −(z − zc)2

Base Pitch − cos(pc − p)

Upright Balance exp(−v2z/σ) + exp(−ṗ2/σyaw) if is upright, else 0

Linear Tracking exp(−|vxy − vcxy |2/σ) if is upright, else 0

Angular Tracking exp(−|wyaw − wc
yaw|2σyaw) if is upright, else 0

Support Polygon −|vcx|2
(

π
2
− | arctan(∆xb

∆zb
)|
)2

if arctan(∆xb
∆zb

)vcx < 0

B. Risk-aware Distributional PPO

In Distributional PPO, the actor network remains the same
as in standard PPO [27] and is trained to optimize the clipped
objective,

L(ϕ) = Et

[
min(ηt(ϕ)Ât, clip(ηt(ϕ), 1− ϵ, 1 + ϵ)Ât)

]
,

(2)

where ηt(ϕ) =
πϕ(at|ot)

πϕold
(at|ott)

, is the probability ratio be-

tween the new policy πϕ, and old policy πϕold
, Ât is

the estimated advantage computed using the Generalizable
Advantage Estimation (GAE) [55]. The critic network differs
from standard PPO by predicting the quantiles of the value
distribution as in Equation 1, instead of just the expected
value. θi(x) = F−1

Z (τi) for τi = i/N, i = 1, · · · , N are
N−quantiles of the return distribution Zπ(x), and F−1

Z

denotes the inverse CDF of the return distribution Zπ(x).
For a critic network that approximate the return distribution
by predicting θ1(x), · · · , θN (x), the objective is to minimize
the following quantile loss, which effectively minimizes the
1-Wasserstein distance between the empirical distribution
Ẑπ(x) and the parameterized quantile distribution Zπ

θ (x):

L(θ) = Et

[
1

N

N∑
i=1

(τ − 1zt−θi
t<0)(zt − θit)

]
, (3)

where zi ∼ Zπ(xt), and θit = θi(xt).
The value function derived from the return distribution

is used to estimate the advantage Ât for the actor-network
update. Given the return distribution predicted by the critic
network, the risk-neutral value function is calculated as,

V (x) =

N∑
i=1

(τi − τi−1)θi(x) =

N∑
i=1

1

N
θi(x). (4)

To learn a risk-aware policy, the distortion risk measures
ρgα associated with the distortion function gα is applied to



the return distribution. Conditional Value at Risk (CVaR) is
commonly applied to have risk-averse behaviors since only
the left tail is quantified. We apply Wang’s metric [56] so
that the risk preference can be adjusted from averse (α > 0)
to seeking (α < 0) as in equation 5,

gWang
α (τ) = Φ(Φ−1(τ) + α). (5)

Then the new value function is given by the distorted return
distribution as in Equation 6.

Vα(x) = ρgα(Z
π
θ (x)) =

N∑
i=1

(gα(τi)− gα(τi−1)) θi(x).

(6)
When α > 0, the calculation of the value function is
conservative, by assigning more weight to worst-case left
tails, while α < 0 makes the calculation optimistic by
assigning more weight to higher returns.

C. Uncertainty Modeling and Adaptive Risk Level

We assume the transition is deterministic in this POMDP,
then the aleatory uncertainty comes from partial observation
of the state and domain randomization, while the epistemic
uncertainty arises from the lack of environment knowledge
to make informed predictions. Optimism in the face of
epistemic uncertainty encourages exploration, allowing for
the collection of more informative data to maximize long-
term returns [28]. However, conservativeness is essential to
ensure worst-case performance when aleatory uncertainty
is present. We model the uncertainty as the uncertainty of
the parameterized distribution Zπ

θ (x) predicted by the critic
network, represented by the Coefficient of Variation (CV),

CVZπ
θ (x) =

√
Var(Zπ

θ (x))

EZπ
θ (x)

=
σ

µ
. (7)

This normalized measure allows for the comparison of dis-
persion across different return distributions, even if the means
are drastically different from each other. It is particularly
advantageous over non-normalized measures, such as right
truncated variance (RTV) used in [44] and interquartile range
(IQR) used in [47], as the mean of the return distribution
tends to increase significantly during training due to in-
creased rewards.

We formulate the parameter α of the distortion function
gWang
α (τ) as a function of the modeled uncertainty CVZπ

θ (x)

and training steps t,

αt = (α0 − αT )e
− t/T

CVt + αT , (8)

where T is the total training steps. And CVt is the average
over batch of CVZπ

θ (x) at step t. With α0−αT > 0, the policy
begins conservatively and becomes increasingly optimistic as
training progresses. The dependence of αt on CVt directs the
policy to be more conservative when uncertainty is high. The
time-dependent coefficient t

T allows αt to be progressively
more influenced by the uncertainty CVt as training advances.

TABLE II
PROPOSED METHOD AND BASELINES SETTINGS

Method Distributional Fixed Risk Adaptive Risk

DPPO adaptive (ours) ✓ ✗ ✓

DPPO neutral [45] ✓ α = 0 ✗

DPPO averse [45] ✓ α > 0 ✗

DPPO seeking [45] ✓ α < 0 ✗

PPO [27] ✗ ✗ ✗

V. EXPERIMENTS

We evaluate our method across several experiments. In
Section V-A, we demonstrate our method has higher training
rewards compared to baseline methods and ablations. In
Section V-B, we evaluate velocity tracking error across
in-distribution and out-of-distribution target velocities, as
well as under external forces. In Section V-C, we analyze
uncertainty and risk modeling to highlight the importance of
risk-adaptive learning. Finally, in Section V-D, we deploy our
bipedal locomotion policy on the Unitree Go2 robot, showing
that a single policy enables robust bipedal locomotion and
versatile loco-manipulation capabilities.

Simulation setup We use Isaac Gym [57] to train the
bipedal locomotion policy based on the open-source frame-
work in [54]. The target velocity range is [−0.8, 0.8] m/s
for vcx and is [−0.4, 0.4] m/s for vcy , and [−1, 1] rad for
ωyaw. The critic network and actor network both have hidden
dimensions [512, 256, 128]. The output layer size of the critic
network is 64, to predict N = 64 quantiles of the return
distribution.

We initialize our risk-adaptive DPPO with neutral initial
risk α0 = 0 to maintain stability and avoid early catastrophic
failures during training. However, remaining too conservative
may hinder exploration and limit performance improvements.
Therefore, we gradually shift to a more optimistic risk
preference αT = −0.2, encouraging the agent to explore
high-return strategies and accelerate learning. We select these
parameters to avoid over-conservativeness early on, which
may prevent discovering successful quadrupedal-to-bipedal
transitions, and to limit excessive optimism later, which
could destabilize training. We train 4000 agents in parallel for
20k iterations on an NVIDIA RTX 4090 GPU, which takes
approximately 5 hours. We compare our method to baselines
in Table II. All methods share the same hyperparameters if
applicable.

Hardware setup We use the Unitree Go2 robot for real-
world experiments. The computations are performed on a
host computer. The policy runs at 50Hz and the robot
receives the joint position command from the host computer.
Target joint angles were tracked using a PD controller with
gains set to Kp = 25 and Kd = 0.6.

A. Training Performance

Baseline comparison Figure 3 shows the comparison be-
tween proposed risk-adaptive distributional PPO (DPPO) and
baselines in Table II. Parameter α in the distortion function
gWang
α (τ) for DPPO averse is 0.2, and for DPPO seeking is
−0.2, which equals to the final risk αT for DPPO adaptive.
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Fig. 3. Learning curves of proposed method (DPPO adaptive) against
baselines listed in Table II. The rewards are averaged over three seeds, and
the shaded region represents the standard error.

Our method consistently outperforms the baselines in
both velocity tracking and total reward. Risk-neutral DPPO
and PPO perform similarly and both achieve a lower total
reward compared to DPPO with adaptive risk. Risk-seeking
DPPO fails to learn a locomotion policy, resulting in near-
zero rewards after 20k steps, and diverging policy entropy,
indicating that constant risk-seeking can lead to catastrophic
failures. In contrast, risk-adaptive DPPO exhibits higher
policy entropy during training compared to the risk-neutral
baselines (Risk-neutral DPPO and PPO), suggesting that
our method encourages exploration of diverse actions, while
the risk-neutral policies are less exploratory. Risk-averse
DPPO achieves the lowest velocity tracking reward but ranks
second-to-last in total reward, due to its risk-averse strategy,
which minimizes the accumulation of negative penalties that
contribute to the total reward.

Ablations of reward functions To assess the im-
pact of proposed reward functions in Table I, we
compare our method to DPPO adaptive w/o support and
DPPO adaptive w/o balance, where, in each case, one of
the task reward functions is removed. As shown in Figure
4, the absence of the Support Polygon reward function leads
to a significant drop in linear velocity tracking performance,
and the Upright Balance reward function enhances overall
bipedal locomotion performance.
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Fig. 4. Learning curves of our method and reward function ablations. The
rewards are averaged over three seeds, and the shaded region represents the
standard error.

B. Tracking Error Evaluation

We evaluate the learned policy based on success rate and
velocity tracking error. The evaluation is averaged across
4000 environments, each with an episode length of 1000
steps. An episode is considered successful if it does not
terminate early due to the robot crashing. The tracking error
is calculated as the Root mean square error (RMSE) across
all evaluation environments and episode steps.

Across Varying Target Velocities With the training target
velocity vx sampled in the range of [−0.8, 0.8] m/s, we

(a) (b)
Fig. 5. Success Rate (a) and X Tracking Error (b) across target velocities
ranging from -1.0 m/s to 1.0 m/s. Comparison of DPPO adaptive with three
baseline methods.

use in-distribution velocities of [±0.8,±0.5,±0.2, 0.0] m/s
and out-of-distribution (OOD) velocities of ±1.0 m/s as
the evaluation target velocities. We show that risk-adaptive
DPPO outperforms baselines with the highest success rate
and lowest tracking error in Table III. More specifically,
risk-adaptive DPPO achieves the lowest tracking error for
target velocities of -0.25 m/s or higher in Figure 5. For
target velocities below -0.25 m/s, PPO and risk-averse DPPO
perform better, suggesting that backward velocity tracking
may require a more conservative policy. This is consistently
indicated by the generally lower success rate for backward
tracking compared to forward velocity tracking. Despite this,
we did not fully explore the potential of our method by tuning
the initial and final risk levels, as forward velocity tracking
is more common in real-world deployments.

TABLE III
AVERAGE VELOCITY TRACKING ERROR AND SUCCESS RATE ACROSS

DIFFERENT TARGET VELOCITY

Method Success Rate↑ x RMSE ↓ y RMSE ↓

DPPO adaptive (ours) 0.964 ± 0.0044 0.128 ± 0.0100 0.072 ± 0.0002

DPPO averse [45] 0.922± 0.0142 0.135± 0.0088 0.080± 0.0028

DPPO neutral [45] 0.962± 0.0006 0.139± 0.0035 0.074± 0.0010

PPO 0.962± 0.0011 0.149± 0.0003 0.077± 0.0002

Even though backward target velocity prefers a more
conservative policy, we show that risk-adaptive DPPO with
a risk-seeking tendency outperforms neutral and risk-averse
baselines, showing significant generalizability when eval-
uated with OOD velocity command ±1.0 m/s, including
negative backward velocity −1 m/s, as shown in Table IV.

Under external force We evaluate the performance under
external force to further assess the robustness of our proposed
method, as shown in Table V. A 10N external force was
applied downward on each of the robot’s forearms with
a velocity command of 1m/s. Our method achieves the
highest success rate, nearly doubling the second-best, and
also exhibits the smallest drop in success rate compared
to conditions without external force. Although risk-averse
DPPO shows a slightly smaller X tracking error, this doesn’t
indicate better performance, as its success rate is only
half that of our method. The lower error is likely induced
by early-terminated episodes, which could have exhibited
significantly higher tracking errors if they had not failed.



TABLE IV
OUT OF DISTRIBUTION TARGET VELOCITY TRACKING ERROR

Method 1m/s -1m/s

Success Rate ↑ x RMSE ↓ y RMSE ↓ Success Rate↑ x RMSE ↓ y RMSE ↓

DPPO adaptive 0.976 ± 0.009 0.151 ± 0.007 0.072 ± 0.001 0.880 ± 0.009 0.194± 0.039 0.087 ± 0.007

DPPO averse [45] 0.911± 0.088 0.175± 0.021 0.086± 0.010 0.819± 0.010 0.183 ± 0.026 0.094± 0.009

DPPO neutral [45] 0.956± 0.018 0.154± 0.014 0.083± 0.005 0.875± 0.003 0.235± 0.014 0.088± 0.008

PPO 0.929± 0.004 0.174± 0.005 0.097± 0.004 0.864± 0.006 0.249± 0.005 0.098± 0.001

TABLE V
VELOCITY TRACKING ERROR UNDER EXTERNAL FORCE

Method Success Rate↑ Success Rate Drop↓ x RMSE ↓ y RMSE ↓

DPPO adaptive 0.601 ± 0.418 38.42% 0.272± 0.063 0.097 ± 0.021

DPPO averse [45] 0.327± 0.268 64.11% 0.247 ± 0.025 0.120± 0.012

DPPO neutral [45] 0.016± 0.009 98.32% 0.337± 0.026 0.144± 0.004

PPO 0.029± 0.003 89.77% 0.300± 0.001 0.118± 0.004

Our method enables robust adaptation to disturbances while
maintaining high performance by dynamically adjusting risk
based on value function uncertainty during training, which
is further explained in Section V-C.

C. Distribution Uncertainty Visualization

To study how risk adaptiveness improves performance,
we plot the uncertainty of the estimated return distribution,
denoted by the coefficient of variation (CV) in Figure 7. The
robot attempts to follow the 0m/s command, where external
forces are applied for 0.5s at 2s intervals, with magnitudes
ranging from 20N to 100N. Each force exertion corresponds
to an increase in both velocity deviation and uncertainty,
showing temporary instability. After each peak, the uncer-
tainty gradually declines, reflecting the policy effectively
learns to regain stability. With the coefficient of variation
as a metric of the uncertainty of critic network distribution,
we validate that the model identifies these higher-risk or
uncertain situations caused by external perturbations.

At t = 0, the uncertainty is high because the quadrupedal-
to-bipedal transition involves less frequently visited states,
resulting in greater uncertainty in the critic’s value estima-
tion. More optimistic actions can be taken in well-explored
states, such as bipedal tracking without disturbances. This
underscores the importance of risk-adaptive DPPO in balanc-
ing conservatism in high-uncertainty states with optimism in
well-explored states.

D. Real World Deployment

We deploy our policy on the Go2 robot in the real
world, showcasing a single policy that enables versatile loco-
manipulation capabilities, as illustrated in Figure 6. This
policy enables not only basic locomotion such as forward,
backward, and turning maneuvers but also supports complex
interactions to further demonstrate its versatility. The robot
can effectively fulfill tasks such as cart pushing, obstacle
probing, and payload carrying. All of the real-world tasks
introduce external forces that could destabilize the robot and
require the robustness of the policy. Pushing a cart demands
a robust loco-manipulation policy that can adjust the force
applied and stabilize the body accordingly. Obstacle probing
requires the robot to recover from an unstable state when it
runs into an obstacle and probes the obstacle with its front
legs. Carrying a payload increases the weight and shifts the

robot’s center of mass, necessitating dynamic balance and
stability. Remarkably, the success of these real-world tasks
is a direct result of the single bipedal locomotion policy,
without requiring extensive task-specific training. This show-
cases the robustness and versatility of our bipedal locomotion
policy and validates the effectiveness of our proposed risk-
adaptive learning framework.

VI. CONCLUSION

In this work, we introduce a risk-adaptive distributional
RL framework for quadrupedal robots, enabling robust
bipedal locomotion and versatile interactions with complex
environments. Through extensive simulation and real-world
experiments, we validate the robustness and adaptability of
this framework, which is grounded in modeling the return
distribution for risk-adaptive learning. Refining the adapta-
tion strategy for more flexible risk management could further
enhance its performance. Future work may also focus on
high-level planning and closed-loop control to facilitate long-
horizon tasks.
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