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Abstract

Data-driven dynamic models typically offer faster execution than their physics-
based counterparts described by large systems of nonlinear differential-algebraic
equations (DAEs) with quantitatively reasonable accuracy. Therefore, de-
velopment of such models can be extremely useful for design optimization,
controls, fault detection and diagnostics of vapor compression based building
Heating, ventilation and air conditioning (HVAC) systems. As the complex-
ity and scale of vapor compression systems (VCS) increase rapidly across the
industry, a modular approach of generating and interconnecting data-driven
component models enables model reuse and efficient adaption to arbitrary
system layouts. Despite the flexibility, the modular integration for system
model generation can suffer from nonphysical behaviors of violating conserva-
tion laws due to inevitable prediction errors associated with each component.
This paper presents a data-driven modeling framework that exploits state-of-
the-art deep learning techniques for constructing component models, while
enforcing physical conservation for system simulations. A general-purpose
system solver is developed to handle arbitrary configurations by automat-
ically integrating data-driven or interchangeable physics-based component
models into a system model. Results of an air-source heat pump system
reveal a significant speedup with good agreement, compared to high-fidelity
first-principles models.
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Nomenclature

Symbols

Mass flow rate [kg/s]
Heat transfer rate [J/kg]
Area [m?]

Internal energy [J]
Factor [—]

Specific enthalpy [J/kg]
Mass [kg]

v R T - om o O3

Power [W]

Pressure [Pa

3

T Temperature [K]
Greek letters

n Efficiency [—]

w Compressor speed [Hz]
o) Valve opening [—]

p Density [kg/m3]
Subscript

a Air

amb  Ambient

cond Condenser



dis  Discharge
e Refrigerant state close to exit

evap Evaporator

1 Refrigerant state close to inlet
m Inlet

8 Isentropic

lat  Latent

loss Heat loss
out  Outlet

r Refrigerant
suc  Suction
sys  System

tot  Total

v Volumetric



1. Introduction

A staggering 40% of building energy consumption can be attributed to
heating, ventilation and air conditioning (HVAC) systems (Energy, 2010)
where vapor compression systems (VCS) serve as key components for space
conditioning. With the emerging demand for adopting energy-efficient VCS
equipment for HVAC systems in residential and commercial building sec-
tors, design optimization and control for performance improvement of VCS
are vital in reducing energy utilization and achieving a sustainable future.
Development of accurate and computationally affordable dynamic models of
such systems serves an important role in this process by facilitating system
performance analysis, design and evaluation of control, fault detection and
diagnostics (FDD) algorithms, etc.

Dynamic modeling of VCS has been an active research area over past
decades (Rasmussen, 2012; Li et al., 2014). The modeling paradigms ap-
pearing in the literature can be roughly categorized by the level of physi-
cal information embraced to develop a model as white-box, grey-box, and
black-box. While white-box models employ physical conservation laws and
black-box models, contrarily, are identified in a data-driven fashion, the most
commonly seen models fall under the category of gray-box. This type of mod-
els is largely built upon physical laws, but incorporates empirical correlations
to simplify certain descriptions. In the following context, these models are
referred to as physics-based models, in order to draw a distinction from black-
box or data-driven models.

To capture the complex thermo-fluid behaviors of VCS that dominantly
reside in two-phase heat exchangers (HX), physics-based models are de-
scribed by a set of governing conservation equations, i.e., mass, energy, and
momentum. A solution scheme for these models generally involves spatial dis-
cretization and nonlinear algebraic coupling, which results in systems of non-
linear differential-algebraic equations (DAEs) (Laughman and Qiao, 2018;
Chakrabarty et al., 2021). The two dominant discretization schemes, namely
finite volume (FV) and moving boundary (MB), have been extensively stud-
ied and found appropriate for different applications. The FV approach is
able to capture exhaustive flow behaviors spatially within HX at a cost of
simulation speed due to high dimensionality, while the MB method features
a low-order formulation but suffers from a lack of robustness as a result of
inherent discontinuities (Bendapudi et al., 2008; Qiao et al., 2016; Kim et al.,
2021; Ma et al., 2021). Despite successes in predicting transient behaviors



of various VCS configurations using physics-based models through experi-
mental validations (Qiao et al., 2015b; Ma, 2024), the applicability of these
physics-based dynamic models for control and FDD purposes continues to
encounter remarkable challenges regarding computational speed, robustness
and initialization as the complexity and scale of system configurations tend
to increase rapidly in the near future (Zhang et al., 2019).

In contrast, data-driven models constitute a solution path regarding chal-
lenges for a variety of real-time applications, as they omit vastly the underly-
ing physics of the phenomena within components. Constructing data-driven
surrogate models for high-fidelity physics-based models in model-based de-
sign applications has gained significant interest recently (Loka et al., 2023).
With advances in scientific machine learning capability and enrichment of
large-scale experimental data sets, most models have been investigated for
steady-state performance prediction of VCS and their components, e.g. Shao
et al. (2012); Yousaf et al. (2023); Wang et al. (2024), with a very limited
number of studies focusing on characterizing the nonlinear dynamic behav-
iors. Among them, Habtom (1999) pioneered employing feedforward neural
networks fed with delayed output signals for the identification of a refrigera-
tion system using samples collected on a laboratory setup to predict tempera-
ture and humidity inside the system. Following a similar approach, Yoon and
Lee (2010) developed neural network models trained by experimental data
to capture the dynamics of an air-to-water heat pump system where past
control inputs to the system augmented with model outputs were fed into
the model for predictions. Chen and Fu (2020) proposed a Long Short-Term
Memory (LSTM) model, to predict the performance of an electrical vehicle
air conditioner. Chen et al. (2022) subsequently explored an implementa-
tion of integrating recurrent neural network (RNN) based heat exchanger
models and a multilayer perceptions (MLPs) compressor model into an air
conditioner system model. However, their data-driven component models
were implicitly coupled at the training stage through shared input variables
(e.g., compressor speed was used as an input to both compressor and heat
exchanger model development) which hindered their reusability for different
system configurations.

It appears to be a common practice in existing studies to develop a single
data-driven model for capturing the dynamics of an entire system neglecting
interactive behaviors of components, or component models within a system
that are confined to a specific system layout. As a consequence, a model
generated in this manner is solely valid for a specific system of interest under
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certain operating conditions, without any ease in modifying system config-
urations and reusing it for broader purposes. Furthermore, training of a
system-level model can be prohibitively expensive for large-scale system ar-
chitectures such as variable refrigerant flow (VRF) systems that consist of
multiple indoor units under a wide range of operating conditions, even though
a number of identical components are often employed within the system
and can be efficiently represented by the same component model. A modu-
lar approach is therefore attractive for general-purpose model development.
Creating and integrating data-driven component models or a combination of
data-driven and physics-based models in a hybrid fashion offers the flexibility
to reuse readily trained models for arbitrary cycle configurations. Moreover,
the importance of enforcing physical conservation laws arises concerning the
integration of data-driven component models for a system model in pres-
ence of inevitable prediction errors associated with each component model
Hansen et al. (2023). Without a care of physical conservation constraints,
data-driven models could carry out unrealistic predictions and suffer from
numerical failures.

Despite a great amount of research efforts in dynamic VCS modeling,
there exists room for further advancements in modeling approaches con-
cerning simulation accuracy, efficiency and robustness. Clearly a literature
screening indicates an absence of a general modeling framework for VCS that
can incorporate physics-constrained data-driven modeling techniques for con-
structing component models and consequently system models for arbitrary
configurations. This paper aims to complete the research gap of a physics-
constrained data-driven modeling framework and broaden research interests
regarding high performance computational tools for dynamic VCS modeling.
The state-of-the-art deep learning methods were exploited to construct com-
ponent models with generalized interfaces for physical conservation. After
that, a system solver was employed to complete a system model that can in-
tegrate data-driven and physics-based component models interchangeably in
a hybrid fashion. To the authors’ knowledge, this is the first demonstration
of a novel physics-constrained hybrid modeling framework within the field.
In summary, the proposed dynamic modeling framework offers appealing fea-
tures including

e Physical conservation enforcement: The design of fast, accurate and ro-
bust data-driven component models involves superimposing constraints
of physical conservation laws that lead to physically conserving system



model aggregation.

e Flexible model adaption: Generalized interfaces are adopted for deep
learning component models under categories of heat exchanger and
mass-flow device, which allows interchanges between data-driven and
physics-based model deployment as needed.

e Modular model integration: A general-purpose system solver is pro-
posed to seamlessly integrate component models for arbitrary cycle
configurations and enable model reuses.

The remainder of this paper is structured as follows. Section 2 describes
methodologies of component modeling and system model integration. Sec-
tion 3 presents a case study where data-driven models are generated for a
dual compressor air-source heat pump (ASHP) system and compared with
physics-based Modelica models to demonstrate the efficacy of the proposed
approach. Section 4 summarizes conclusions of the present paper, followed
by discussions in Section 5.

2. Methodologies

2.1. Data-driven dynamic modeling overview

The modularity of deep learning dynamic vapor compression system (VCS)
modeling can be realized by constructing models that capture the behavior of
each individual component and then integrating them following the physical
conservation laws. Since the dominant dynamics reside in two-phase heat
exchangers (HX), autoregressive time-series prediction modeling approaches
can be employed to capture the complex behavior, while mass-flow devices
such as compressors and valves are effectively modeled using feedforward
formulations with nonlinear function mappings under quasi-steady-state as-
sumptions. Depending on the input/output arrangements for deriving com-
ponent models, solution procedures of an integrated system model may in-
volve numerical iterations to determine intermediate variables, at every time
step when system dynamics are simulated to evolve on time.

Key elements of the proposed modeling framework are outlined as follows:

e Feedforward static models for mass-flow devices using nonlinear per-
formance mappings;



e Time-series prediction models for two-phase head exchangers using re-
current neural networks constrained by physical conservation laws;

e A system solver designed to handle arbitrary configurations of data-
driven models, capable of formulating and solving residual equations to
systematically determine intermediate variables and make predictions
orderly.

2.2. Feedforward neural network static component models

2.2.1. Compressor

Development of quasi-steady-state compressor models is carried out as a
multi-input-multi-output (MIMO) mapping task. In general, variable-speed
compressor models take inputs of the refrigerant suction state, discharge
pressure and actuation signals, while predicting mass flow rate, power and
discharge temperature or enthalpy as outputs. Black-box models (e.g., 10-
coefficient polynomials) rely on a large set of data for training, and usually
suffer from non-physical behaviors and poor extrapolation performance out-
side the operating envelope that is specified to generate the data. Therefore,
instead of direct input-output mapping, physical knowledge can be incor-
porated by mapping from inputs to efficiencies that describe compression
processes including volumetric and isentropic efficiencies (Yang et al., 2009).
To complete a compressor model, an energy balance can be formed across
the compressor, which is characterized by a heat loss factor to account for
heat losses to the ambient. Consequently, feedforward neural networks are
exploited to define a mapping y = f(x) with

Yy = [nv Nis floss}T € R37 (1)
T = [OJ Psuc hfsuc pdis]T € R4 (2)

where outputs consist of volumetric efficiency, isentropic efficiency and heat
loss factor, model inputs are compressor speed, suction pressure, suction
enthalpy and discharge pressure. After that, compressor performance can be
predicted utilizing those neural network model outputs and readily available
inputs. The refrigerant mass flow rate is calculated by

m = wnvpsuch (3>



where V; is the displacement of compressor volume and p,. is the suction
density. The power consumption is determined by

m(hdis,is - hsuc) (4)
Nis

where hg;s s is the discharge enthalpy assuming an isentropic compression
process. Afterwards, the discharge enthalpy can be obtained by
P - . 0ss
hdis = hsuc + & <5>

m

pP—

where the heat loss is obtained as a ratio to the power input using the pre-
dicted heat loss factor onss = flossP. It is important to note that by predict-
ing these dimensionless efficiencies using neural network models, the overall
compressor model is applicable to other refrigerants since thermodynamic
property evaluations are absent during training given a dataset of inputs and
outputs specified in Eq. (1) and (2). In addition, compressor model outputs
can be bounded to physically feasible values by limiting predicted efficiencies
to valid ranges, which is essential to robust system simulations when coupled
to other component models.

2.2.2. Expansion valve

Generating expansion valve models follows a similar approach as compres-
sors. A feedforward neural network is trained to predict a combined term of
discharge coefficient C; and valve opening area A that is often unavailable
to model development with model inputs of inlet pressure p;,, inlet enthalpy
hin, outlet pressure p,,; as well as a normalized valve opening signal ¢ which
determines the valve opening area by A = Ain + ¢(Amaz — Amin). The
refrigerant mass flow rate through the valve can subsequently be predicted
by adopting a typical throttling process description

m = CdA\/2pm(pm - pout)- (6>

Furthermore, the expansion process is assumed to be enthalpic, leading to
houwt = hin. To summarize, a mapping for expansion valve models is specified
as

y=[CaA hou]' €R’ (7)
T = [pm hm Pout ¢]T € R4' (8>

Fig. (1) outlines feedforward neural networks employed in the present work
for compressor and expansion valve modeling.
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Figure 1: Data-driven mass flow device models using feedforward neural networks: (a)
compressor; (b) expansion valve.

2.3. Recurrent neural network heat exchanger modeling

Considering a fixed-step time discretization, a general description of HX
dynamics can be presented in a time-invariant form

Y, = P(wo.t, o) 9)

where y, denotes observable outputs at time instance ¢, y denotes the ini-
tial condition of internal states, wg.; represents a sequence of inputs that
manipulate those states and ®(-) is an unknown nonlinear map governing
system behaviors. Without access to the internal states, data-driven models
seek a nonlinear approximator f(-) that can predict outputs y, depending
on historical values of inputs and outputs to certain orders

Y = f(ytfny:tflﬁ Ut—n,:t) (10)

where a time interval of 1 second is utilized here and in the following context
for illustration.

Apparently, the selection of n, and n,, is of critical importance to the per-
formance of resulting models, as a trade-off between prediction accuracy and
model complexities. Apart from that, choices of input and output variables
play a vital role in model prediction capabilities. Regarding heat exchanger
as a generic control volume, input-output responses are typically captured by
the time evolution of the refrigerant and the secondary fluid states at the in-
let and outlet of flow paths. Fig. 2 depicts those variables for a fin-and-tube
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HX commonly employed in an ASHP system, where inlet mass flow rate and
enthalpy, back pressure, and upstream enthalpy at the outlet in a reverse-flow
scenario are featured as inputs for the refrigerant low, while inlet conditions,
flow rate and ambient pressure are considered for the air side. Correspond-
ingly, outputs of a HX model include the refrigerant states at infinitesimal
points on edges of the HX inlet and exit as well as exit temperature and heat
capacities of the air flow.

Air flow

l(Ta,int ¢a,in: Thar pamb)
(mr,in: hr,in) [ r,i]/\/\/\/{ T,e] (pr,out' hr,out)
Refrigerant flow hyi hre

l(Ta,er Qa,tot' Qa,lat)

Figure 2: Overview of input and output variables commonly adopted for data-driven HX
modeling that may violate conservation laws (output variables are marked in red).

This setup may initially look adequate concerning the predictive perfor-
mance of a heat exchanger component model, however, issues of violating
conservation laws arise when such models are integrated into a system. Con-
sider an ASHP system comprised of n heat exchangers and m mass-flow
devices. An energy balance can be formed with regard to the entire system
as

dEss ~— - “ :
d—ty = Z Qr + Z(Pk: — Qkloss) (11)
=1 =1

where E,,, represents the internal energy of the entire system, Q) represents
the air-side capacity of each heat exchanger following the sign convention
that inflow energy (e.g., for evaporator) is positive and outflow is negative,
P, and Qk,loss are power input and heat loss of each mass-flow device, re-
spectively. Since capacities, power and heat loss are predicted separately by
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individual component models, their balance can not be enforced at steady-
state conditions due to inevitable prediction errors, consequently violating
the energy conservation stated in Eq. (11). To tackle this issue, the internal
energy of a heat exchanger is incorporated as a model input and updated
subject to a forward difference scheme with a time step At

B = Erp + (Mpinhikin — Mkouthiou + Qu)At k=1,2....n  (12)

which describes the heat exchanger energy balance in a discrete-time form.
Usually air-side mass and energy storage are negligible for cross-flow heat
exchangers, which leads to a quasi-steady-state model description. As a
result, heat exchanger internal energy is composed of energy storage in the
refrigerant and metal walls. Following this scheme, the total energy source
for a system at every time step can be obtained by summing up those of
heat exchangers as shown in Eq. (12), since mass flow devices are modeled
as static components without energy storage

n

AE’tot = Z(mk,inhk,in - mk,outhk,out + Qk) (13>

k=1

Along the refrigerant loop, enthalpy flows across mass flow devices can
be represented equivalently using power and heat loss of those components
according to the energy balance as revealed in Eq. (5), while intermediate
quantities in between heat exchangers are canceled out. As a consequence,
the total energy source obtained from heat exchanger models corresponds to
that for the entire system appearing in Eq. (11), which indicates that under
the current setup system energy conservation is respected at steady-state
conditions as heat exchanger models evolve to Ej 11 = Ej .

A similar argument can be made for system mass conservation. Of equal
importance to realize system energy balance is to ensure a consistent refriger-
ant charge prediction for the overall system. It can be easily understood that
predicting the refrigerant charge residing in a heat exchanger as a model out-
put leads to an inconsistent total charge prediction over time due to inevitable
prediction errors associated with each heat exchanger model. Therefore, the
refrigerant charge is considered as an input to a heat exchanger model and
is updated according to a discrete-time mass balance (Dong et al., 2024)

My 141 = My + (1ugin — 1k our) At (14)
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which reveals that the total refrigerant charge across the system remains con-
stant ZZ:1 My i41 = Ezzl M., once models are initialized, since interface
mass flow rates are canceled out at every time step.

As per the above discussion, the ultimate sets of input and output vari-
ables selected for heat exchanger model development in Eq. (10) are outlined

. . T
u = [Ta,in ¢a,in Mg Pamb  Myin h/r,in hr,out Pr.out M'I’ Er} € Rloa
(15)

. . T
y: [pr,i h'r,i pr,e hr,e Ta,e Qa,tot Qa,lat] €R7' (16>

It is essential to note that this setup is generally applicable to the devel-
opment of mass and energy conserving data-driven heat exchanger models,
invariant to time-series forecasting modeling techniques. This work exploits
capability and efficiency of recurrent neural networks (RNN) in identifying
the complicated thermo-fluid dynamics. Specifically, gated recurrent unit
(GRU) as a particular RNN architecture invented to mitigate the vanishing
gradient problem is considered (Rehmer and Kroll, 2019). GRU is special-
ized for learning long-term dependencies within sequential data among deep
learning models, and has gained growing interest in the identification of non-
linear dynamical systems (Bhattacharya et al., 2022; Jordan et al., 2021).
An encoder-decoder sequence-to-sequence GRU architecture is adopted in
the present work. As shown in Fig. 3, sequences of input features and out-
puts tracked with a look-back window of context length N are augmented
as an input context sequence xy_ n.7_1 to the multi-layer GRU network. An
encoder GRU block processes the input sequence and then a decoder GRU
block generates the predicted output sequence subject to a given length. In
terms of a HX model, the output sequence length is set to one since further
predictions can only be made until the cycle model is solved at the current
time step. Each of the encoder and decoder blocks consist of 2 GRU layers
in this work. For each layer, the GRU computes the hidden state h; given a
vector element @; of an input sequence by

ry =oc(Wx, + by + Wihy_ + by,) (17)
zi=0(Wyx+ b, + Wy hi_ 1 +by,) (18)

ny = tanh (W@ + bin + 170 © (Winhyo1 + byy)) (19)
hi=1-z)0n+2z0h_ (20)

where 7;, z;, n; are the reset, update and new gates, respectively. W denotes
weight matrices and b denotes bias vectors. o(-) is the element-wise sigmoid
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function and ® is the Hadamard product. h;_; is the hidden state at time
t — 1 or zero for the initial hidden state. The input element at a time a;
differs depending on the GRU layer and block. For instance, x; represents
each element of the input sequence x_ .71 for the first layer of the encoder
block, or the hidden state h; of the first layer for the second layer. The
computation proceeds to the prediction phase once the hidden state hy_; of
the last encoder layer is obtained, which is fed to the decoder as the initial
hidden state. Since the decoder GRU block is set to generate predictions
for a single time step 7' as mentioned above, the one-step input sequence
xr = [ul yi_] ¥ of the context sequence is fed as inputs to the first layer of
the decoder, where the final hidden state hp is subsequently passed through
a set of fully connected layers consisting of a linear layer, a rectified linear
unit (ReLU) layer followed by another linear layer that map the hidden state
to outputs y,, which concludes predictions at the current time step. This
procedure is then repeated by updating the context sequence with input
features for the next time step ur,; and the predicted outputs y;.

Time step T TimestepT + 1
| A
I 1 [ \
Context sequence Context sequence
__Xr-NT-1 _XT-NsLT
! Output !
| Fully connected sequ:nce ! \
| Encoder GRU block Decoder GRU block layers |
Featureq | Ur_g+11 | Y ! uT—N(-Z:"+1:
! ' e | i
9 ] |
. | = e ! o
| i L7 | o
output{ | Yr-A:T11 ! [ VTin41 Y1 |
I | (l 1!
: | i
] __ L N =gy, - !

—— 5
Context length N

Figure 3: An illustration of the GRU architecture for HX model with one-step prediction.

Training the aforementioned model involves first processing time-series
data of feature and output trajectories as context and output sequences. A
sliding window of length N+1 is applied to the raw transient data to truncate
it into shortened pieces spanning [T — N, T| where wr_yi1.7 and yp_ g
are augmented to form a context sequence and the training target y, is used
to compute the losses with model predictions. The entire dataset of transient
pieces is then split into training, validation and testing sets, respectively. The
mean squared error (MSE) is adopted to measure the training loss of each
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truncated piece, which then adds up to the total loss. The learning rate is
adjusted by a scheduler during training. After each training epoch, the loss
over the validation set is evaluated to adapt the learning rate by a reduction
factor when it stops decreasing for a certain number of consecutive epochs.

2.4. System solver

While each component model is characterized by a uniquely selected set
of input/output variables to ensure individual model performance, a system
solver is necessary for modular-based dynamic modeling to orderly integrate
component models and progress model predictions over time. As continuity
equations are formed when interconnecting component models, the refriger-
ant states at junctions remain unknown at every time step and involve nu-
merical iterations for solutions when connected components share the same
boundary conditions. Specifically, the refrigerant pressure is considered a
boundary condition/input at ports of mass-flow devices and the nominal
exit port of heat exchangers for data-driven models derived before, which
leads to a pressure iteration variable when connecting a heat exchanger exit
port to a mass-flow device. In general, a system solution scheme proceeds as
follows:

1. Identify iteration variables at component connections, i.e. intermediate
pressures, and form the minimum number of residual equations for
arbitrary system configurations before online simulations;

2. Solve residual equations at every time step during simulations to en-
force continuity;

3. Execute all component models and progress computations for a predic-
tion interval.

It can be easily seen that residual equations should be formed when a
heat exchanger outlet is connected to a mass-flow device inlet or when two
mass-flow devices are connected. Concerning multi-branch fluid loops where
some components serve as splitters or mergers, four configurations can be
recognized with a need to solve for unknown pressures due to continuity
constraints, as listed in Fig. 4.

When a system model is composed, the system layout and component
connections can be encoded as a directed graph and represented by a matrix
for further analysis where information about connections between a row com-
ponent and a column component can be extracted from the corresponding
entry. Although the coding rule is ambiguous, it is required to allow acausal
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Component category:

Outlet
Heat exchanger %
. Inlet Outlet
Mass-flow device AD—

Configurations:

O—{—TFP— O

Q——— @

Figure 4: Four configurations to form residual equations for solving intermediate pressures:
1. a heat exchanger connected to a mass-flow device; 2. a mass-flow device connected to a
mass-flow device; 3. a splitter component connected to branches of all mass-flow devices;
4. components connected to a mass-flow device merger.

connections and distinguish between connection patterns including outlet-
inlet, inlet-outlet, inlet-inlet, and outlet-outlet. For instance, the present
work employs a rule that an outlet-inlet connection is coded 1, an outlet-
outlet connection is coded 2, and an inlet-inlet connection is coded 3. Take
the system shown in Fig. 5 as an example for illustration, where component
models are loaded and then connected in an acausal way such that not all
connections are explicitly carried out as outlet-inlet. Following the coding
rule, a matrix is generated to reveal connection patterns

0 301 0 0]
301000
000200
002010 (21)
000001
1000 0 0

Recall that the ultimate goal is to automatically form residual equations
to solve iteration variables within the system. To realize that it is benefi-
cial to convert all component connections into outlet-inlet formats from the
information encoded in the above matrix. Given entries equal to 2 or 3 in
the matrix, a breadth-first search (BFS) is performed to locate the merger
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Figure 5: Component models connected in an acausal way to form a system.

or splitter that those connected components share. Then the entries are
converted to 1 if they follow an outlet-inlet pattern and 0 otherwise. As a
consequence, an adjacency matrix can be formed where entries of 1 indicate
that the outlet of the row component is connected to the inlet of the column
component

000100
001000
000010

A=loooo0 10 (22)
000001
11000 0

The adjacency matrix reveals abundant information on system layout and

component connections. Essentially, mergers and splitters can be identified
by

N N

component k is a merger: Zaj,k >1& ZakJ =1, (23)
j=1 j=1
N N

component k is a splitter: Z ap; > 1& Z ajr =1 (24)
J=1 J=1

assuming that a component cannot serve as a merger and splitter at the
same time. The task of generating residual equations is then equivalent to
comparing the connection pattern of each component to the four configura-
tions shown in Fig. 4 to seek matches. In terms of the illustrative case, a
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system of two residual equations is formed as depicted in Fig. 6 to solve for
two junction pressures and enforce mass balances, which are decoupled in
this specific case but may not be in general. During online simulations, the
residual equations system

F( { a:| ) = {77'_16(%) =i (pa) —1a(pa)| _ (25)

Do s (py) — m3(py) — 114(ps)

can be solved by multivariate root-finding algorithms such as Powell’s method
(Kochenderfer and Wheeler, 2019).
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Figure 6: System layout with connections converted to outlet-inlet format and residual
equations generated to solve for intermediate pressures.
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Once the system solver completes the configuration analysis and proceeds
to the prediction stage, the GRU heat exchanger models are executed to ob-
tain outputs at the time step based upon given inputs and past information.
Afterwards, the readily formulated residual equations are solved using pre-
dicted refrigerant states. Intermediate pressures solved by iterations are used
to evaluate mass-flow device models and update input variables for heat ex-
changers to make predictions for the next time step. Note that among those
inputs listed in Eq. (15), the refrigerant charge and heat exchanger inter-
nal energy are updated following the forward difference scheme stated in
Eq. (12) and (14). Consequently, the system model remains in the form
of a discrete-time dynamical system. Fig. (7) summarizes workflows of the
system solver.
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Figure 7: Workflows of the system solver.
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3. Case study: an air-source heat pump

This section presents a case study of the proposed data-driven dynamic
modeling framework for an air-source heat pump system. High-fidelity physics-
based component models are constructed and implemented using the Mod-
elica language and the Dymola environment. Each component model is sim-
ulated using randomly generated input profiles to capture model behaviors
corresponding to feasible input space. The simulated data is then utilized for
training data-driven models according to methodologies described in Section
2. Performance of the integrated data-driven system model is evaluated with
regard to simulation speed and prediction accuracy.

3.1. System description
A dual-compressor air-source heat pump system comprising two parallel
compressors, two parallel condensers, an electronic expansion valve (EXV)
and an evaporator is considered for demonstration. Physics-based compo-
nent models are built upon conservation laws incorporated with empirical
correlations and performance maps. The compressor and EXV models are
similar to those described in Section 2 except for the fact that efficiency maps
are fitted with high-order polynomials. Dynamic heat exchanger modeling is
carried out using a finite volume method where a staggered grid is exploited
to discretize governing equations of mass, momentum and energy for the
refrigerant flow while the refrigerant pressure and enthalpy are selected as
state variables. Coil metal structures including tubes and fins are modeled as
lumped capacitances with one-dimensional heat conduction, while the air side
employs quasi-steady-state analysis assuming uniform surface temperatures.
Refer to Qiao et al. (2015a) for a comprehensive description of the model
development. It is important to note that static momentum balances which
relate pressure differences to frictional pressure drops by algebraic equations
are adopted. The frictional pressure drop is correlated using a power law,
which leads to the static momentum balance
Ap = KApy(+-)" (26)
mo
for each control volume where Apy denotes the pressure drop at a nominal
condition corresponding to a mass flow rate mg, K and « are fitted coeffi-
cients to account for various operating conditions. When a heat exchanger
model is coupled to mass-flow device models, the exit mass flow rate is cal-
culated from the pressure difference given a heat exchanger back pressure
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according to Eq. (26). Therefore, the back pressure should be iterated to
satisfy the continuity constraint as illustrated in Eq. (25) at each time step.
Moreover, the heat exchanger model is formulated to capture spatial varia-
tions along coil circuitry by dividing each tube into several control volumes
and connecting them based on the actual multi-row coil circuitry configura-
tions. As a result, a high-dimensional differential algebraic equation system
is formed for a heat exchanger model. Fig. 8 reveals the Modelica model
that describes the ASHP system of interest. In the present study, compressor
speeds and EXV opening are actuated to drive system transients in heating
operations, while fan speeds and ambient conditions including inlet air tem-
perature and humidity for each heat exchanger are fixed. The condenser inlet
air temperature, relative humidity, and volume flow rate are 20°C, 60%, and

0.4m3s™!, respectively, while the evaporator air-side inputs are 7°C, 87%,
and 0.72m3s 1.
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Figure 8: Modelica model of the dual-compressor ASHP system.

3.2. Generating data-driven models

The primary goal of this study is to generate fast and robust surrogate
models to the high-fidelity physics-based models for VCS that can expedite
design and control development. Since the data-driven model setup involves
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physical quantities that are readily available from physics-based model pre-
dictions but may not be easily accessible through measurements, the dis-
cussion of model training is focused on utilizing simulation data instead of
experimental data. Despite the fact that simulating the entire system can be
prohibitively slow due to the high-dimensional differential equation system
and closure relations of component coupling, executing a component model
driven by boundary conditions for data generation is practical for training
purposes.

Physics-based heat exchanger models are excited by boundary condition
profiles to collect trajectories of model predictions. In order to capture model
behaviors both under steady-state and transient conditions, an input profile
is constructed with consecutive step perturbations where the step length is
selected so that the model can reach steady-state before boundary conditions
are perturbed again. Concerning those on the refrigerant side, profiles of the
inlet mass flow rate and enthalpy, outlet enthalpy and pressure are generated
by performing random walks to extensively explore the input space, aiming
to improve the generalization capability of trained models. Based on the
operating envelope of the system, upper and lower bounds are set for each
input variable as U4, = [mm,mm Ninmaz  Nout,maz pout’m,w}T and Wi, =

[mm,mm Rinmin  Pout.min pout,mm]T. The magnitude of inputs at each step
is determined by random walks along the input space

ulk + 1] = ulk] + ZN(0,1,) (27)

where NV(0, I,) is a vector of standard Gaussian random numbers, and the
diagonal matrix Z with elements of the vector (Umaz — Umin)/l on its diag-
onal controls magnitudes of each step change for input variables where the
constant factor [ scales variable ranges. The generated path of each input
is then converted to a profile of step changes and bounded to feasible val-
ues. 500 steps of random walk are carried out and input profiles with a step
length of 30s are generated to simulate condenser and evaporator models.
Fig. 9 illustrates the workflow of generating training data for heat exchanger
models using input profiles. The time-series model predictions are obtained
with a sampling interval of 1 second. Trajectories of the predicted refrigerant
charge and coil internal energy are augmented with input profiles to obtain
the training input data as specified in Eq. (15), along with predicted output
variables specified in Eq. (16) to complete the training dataset.

When implementing the proposed GRU heat exchanger model, apparently
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Figure 9: Workflow of generating training data for heat exchanger models.

the input sequence context length plays a crucial role in model performance
as a trade-off between predictive capability and computational efficiency is
involved, since longer time period dependencies residing in input sequences
generally improve prediction accuracy, at a cost of computation time. Fur-
thermore, a long context length increases complexities for model initializa-
tion. A context length of 2 is selected in the present study through a trial
and error procedure. That means model outputs tracked back 2 seconds,
features of the previous step along with those of the current step are fed into
the GRU model as a context sequence to predict current output variables.
The hidden size of each GRU layer is set to 256, and an initial learning rate
of 2 x 107* is applied. Each heat exchanger model is trained for 50 epochs
with a batch size of 64.

Collecting training data for static models of mass-flow devices is ap-
proached in a straightforward way by randomly generating samples in the
input space without a need for random walk, since outputs of these models
do not embrace time dependency. A feedforward neural network of 2 hidden
layers and 10 neurons per layer is adopted for the compressor model with
the sigmoid activation function. The network is trained using 10* samples
for 1000 epochs with a batch size of 128. The performance of the trained
model is evaluated by the root mean squared error (RMSE), which yield
7x 107 %kg/s, 1.6 W, and 167 J /kg for outputs of mass flow rate, power, and
discharge enthalpy, respectively. Training of the EXV model follows the same
process where a network of 2 hidden layers and 5 nodes per layer is found
appropriate for valve mass flow rate prediction. An RMSE of 3 x 10~°kg/s
is revealed when testing the trained model.

All of the models are implemented using PyTorch with a CPU, and
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trained using an Adam optimizer. Before training, each dataset is normal-
ized by linearly scaling every feature to the range [0 1]. All computations
were carried out on a typical desktop computer.
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Figure 10: Compressor and valve actuation for system transients.

3.8. Simulation results

Component models described above are integrated into a system model
to capture load-change transients of the ASHP system. Since the system
configuration can be represented as shown in Fig. 6, two residual equations
are formed by the system solver to obtain junction pressures at a merger
and a splitter with regard to the layout. Fig. 10 depicts the actuation of
compressor speeds and EXV opening, where the valve opening is controlled
by a step motor with a range of 500 steps. Two compressors are actuated with
pulse signals of different magnitudes. A pulse signal staggered with those of
compressors is applied to the valve opening, driving the system dynamics
between different operating conditions.

To examine the performance of the proposed models, simulation results
are compared with physics-based models in Dymola in terms of accuracy and
simulation speed. Fig. 11 reveals predicted heat exchanger inlet pressures.
The system is initialized at a steady state with low compressor speeds and
a small valve opening. When both compressors are operated at high speeds,
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the evaporating pressure becomes lower and condenser pressures slightly in-
crease. As the EXV opens more when compressor speeds are at low values,
the evaporating pressure rises which leads to increases in condenser pressures
as well. Shortly after this valve actuation, compressor speeds return to a high
level and drive the system to another operating condition. As a result, the
pressure ratio increases. When the valve opening is switched to the initial
position, the evaporating pressure and condenser pressures all decrease ac-
cordingly, after which the system behaviors are repeated as actuation signals
go through the same combinations. It can be seen from the figure that the
integrated system model based on neural network component models (de-
noted NN in the figure) reproduces system responses as the physics-based
model with good agreement.

20 Refrigerant pressures
18 E i ¥ m\ﬂ—m
16
—14 —— condenserl (NN)
s condenserl (Dymola)
0 12 —— condenser2 (NN)
§10 ---- condenser2 (Dymola)
o —— evaporator (NN)
o 8 ---- evaporator (Dymola)
6
P oy [ o, P
29 500 1000 1500 2000

Time [s]

Figure 11: Comparisons of refrigerant pressures.

Fig. 12 reports the evolution of refrigerant mass flow rates. The liquid
mass flow rate increases corresponding to increases of compressor speeds or
the valve opening. However, the vapor mass flow rates on the compressor
side exhibit different trends. Despite the increase of total vapor mass flow
rate at high compressor speeds, the ratio of two flow paths changes when the
system converges to steady-state conditions. As compressor speeds are equal,
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the refrigerant flow redistribution from the evaporator results in a decrease
in flow rate for compressor 2, while a significant increase for compressor 1.
Similarly, when the total mass flow rate decreases, the compressor with a
relatively higher speed yields a larger ratio and thus exhibits an increase in
the flow rate. It is revealed that the data-driven model captures dominant
dynamics and agrees well with the Modelica model, though steady-state error
is observed, potentially due to prediction errors associated with mass-flow
device models.
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Figure 12: Comparisons of refrigerant mass flow rates.

Fig. 13 reveals the refrigerant charge migration of each heat exchanger.
Generally, the refrigerant migrates to the evaporator when the EXV is widely
opened, while more refrigerant resides in condensers at high compressor
speeds. Similar to the results of mass flow rates, redistribution of the re-
frigerant charge among two condensers can be observed. When compressor
speeds increase to the same level, though refrigerant migrates from the evap-
orator, the amount of refrigerant residing in condenser 1 becomes smaller
as the refrigerant is equally distributed at the steady state when two con-
densers operate under identical conditions. The evaporator charge prediction
responds well with that of the Modelica model, while discrepancies for con-
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densers can be attributed to prediction errors in mass flow rates and the
forward difference update scheme utilizing a fixed time step. However, of
equal importance to the prediction accuracy is physical conservation proper-
ties of the system model. To verify mass conservation, the sum of refrigerant
charge in three heat exchangers is shown in the figure as well. It reveals
that the total refrigerant charge is completely determined at model initial-
ization, and remains constant thereafter, aligning with the model setup for
mass conservation. It should be noted that the data-driven model and the
Modelica model reveal the same total charge prediction since identical initial
conditions were applied in both simulations.
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Figure 13: Comparisons of refrigerant charge.

Heat exchanger air-side capacity and the total compressor power are
shown in Fig. 14. It can be seen that the compressor power generally follows
the actuation of compressor speeds, and heat exchanger capacities embrace
impacts of the refrigerant pressures and mass flow rates. The maximum heat-
ing capacity is obtained at a condition of high compressor speed and large
valve opening that leads to a large mass flow rate. Simulation results indicate
that behaviors of power consumption and capacities are well captured by the
system model following an excellent agreement with the Modelica counter-
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part. On top of that, energy flows in and out of the system are tracked and
depicted in the figure to verify energy balances at steady-state conditions.
The cycle inflow energy consists of compressor power consumptions as well
as heat transfer from the ambient to the evaporator

Ein — Rfot + Qa,evap (28>

where P,,; denotes total power consumption of two compressors, and Qayevap
denotes the evaporator air-side capacity. Likewise, the cycle outflow energy
includes heat delivery by condensers and the compressor heat loss

Eout = Qa,cond + Qloss‘ (29>

Note that the energy flow quantities are not equal during transients due
to system energy storage. However, they must be balanced at a steady state
with respect to the energy conservation law. As shown in the figure, the
cycle inflow and outflow energy yield good agreement at all steady-state
conditions, strongly supporting the energy conserving characteristic of the
proposed modeling framework. In addition, results of heat exchanger air exit
temperatures reveal similar trends as capacities, which are shown in Fig. 15.

The prediction accuracy of data-driven models is compared with physics-
based models and quantified using the mean absolute percentage error (MAPE),
which measures discrepancies between two time-series data sets as

) L Y —
MAPE(yI:nJ yl:n) = H Z t yt :
t=1

x 100% (30)

where y,.,, represents data-driven model predictions and ¥, .,, represents those
of the Modelica model in this case. MAPE of the refrigerant pressures, air-
side capacities, air exit temperatures, and total compressor power consump-
tion are reported in Fig. 16. Relatively large values are observed in the
evaporating pressure and coil capacities. However, results of all quantities
lie below 2%, indicating that the data-driven models can achieve a similar
level of accuracy as high-fidelity models.

To simulate the system load-change operation spanning 2150 seconds con-
sidered in this study, the data-driven system model completes in 40.4 seconds,
while 146.8 seconds for the Modelica model, yielding a 3.6 times speedup by
the developed model.
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Figure 14: Comparisons of heat exchanger capacity and compressor power.

4. Conclusions

Despite a wealth of powerful data-driven modeling techniques, particu-
larly in the rapidly evolving field of deep learning, there remains a notice-
able absence of guidance for their application to vapor compression systems,
or thermo-fluid systems generally, in an efficient and physically meaningful
manner. This paper aims to bridge the gap by proposing a general-purpose
deep learning framework for capturing the complicated two-phase flow dy-
namics of such systems. A modular implementation of component models is
adopted to provide the flexibility of model reuses for accommodating arbi-
trary system configurations. Dynamic heat exchanger models based on the
gated recurrent unit and feedforward neural network models for mass-flow
devices are developed using simulation data of high-fidelity physics-based
models and integrated into a system model. Then a system solver is imple-
mented to analyze arbitrary layouts of component connections and progress
transient simulations. A common challenge shared by data-driven models
is the potential violation of physical conservation laws in predictions with
a lack of physical constraints to enforce those principles. To tackle it, this
work proposes mass and energy conserving heat exchanger models that en-
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Figure 15: Comparisons of air exit temperatures.

sure a consistent system charge throughout transients and energy balances
at steady-state conditions.

Data-driven component models are constructed for a dual-compressor
heat pump system to capture system behaviors under load-change transients.
Performance of the integrated system model is evaluated and compared with
the physics-based counterpart in Modelica. Simulation results reveal good
agreements between the two models and a 3.6 times speedup of the data-
driven system model in terms of computational speed. The proposed ap-
proach can be attractive to the development and assessment of controls,
fault detection and diagnostics for a variety of thermo-fluid systems.

5. Discussions

The overall performance of data-driven dynamic models meets the re-
quirement of fast and accurate predictions in capturing dominant system
behaviors. This section intends to spark discussions on further improvement
of model development towards model-based control and FDD applications.

e Though this study employs recurrent neural networks for dynamic heat
exchanger modeling, it is important to note that the model setup and
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interfaces are generally applicable, invariant to a specific data-driven
modeling technique and can be extended to model other dynamic ther-
mal system components such as accumulators. With the selection of
input/output variables and the update scheme for respecting conserva-
tion laws, other time-series foresting methods are worth investigating
to capture heat exchanger dynamics. Similarly, nonlinear mapping ap-
proaches or different neural network architectures can be investigated to
model mass-flow devices. Moreover, since the accuracy of mass flow rate
predictions imposes a significant impact on overall system behaviors, in
some scenarios physics-based compressor and expansion valve models
are interchangeable with data-driven models when they are easy to im-
plement and computationally affordable. In other words, the proposed
dynamic modeling framework enables hybrid modeling that utilizes a
mix of data-driven and physics-based component models.

The GRU heat exchanger model proposed in this work follows a discrete-
time dynamical system form with a fixed time step. This is because
training data is obtained by sampling simulated system trajectories
with a fixed time interval, though the physics-based model for gener-
ating the data is solved in a variable-step scheme using solvers imple-
mented in Modelica. By realizing that, the computational speed of
GRU models can potentially be further improved for transient simula-
tions if the model adopts a variable-step integration scheme. Therefore,
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a way to modify the current model is that the integration time steps
taken by Modelica solvers according to system stiffness can be collected
in training data and predicted as an output variable. Correspondingly,
features and output variables specified in Eq. (15) and (16) are col-
lected at time instances where the solver evaluates system dynamics
and determines integration time steps. That means, a training data
set can be generated as

'U,tl th Ce ’U;tn
Yo, Yy - Yy, (31>
At, Aty ... At

where At;, is the integration time step at time ¢; as one of the model
outputs. After a heat exchanger model is trained, the refrigerant charge
and coil internal energy can be updated following the same scheme as
before, however, with a predicted time step during simulations.

e As stated before concerning simulation speed, the data-driven model
is able to run 3.6 times faster than the physics-based model in the
case study. However, its speedup potential becomes even more ap-
parent when taking the programming environment into consideration.
Since data-driven models are implemented and simulated in Python,
comparing the simulation speed with Modelica which compiles mod-
els to low-level code and then executes that together with numerical
solvers, might not be entirely equitable. Therefore, it can be argued
that conducting simulations of data-driven models using an intermedi-
ate or low level programming language is anticipated to yield further
speedup compared to Modelica. In addition, more computational sav-
ings can be expected when employing the proposed modeling approach
to large-scale complicated system configurations, especially for appli-
cations with complex heat exchanger networks such as VRF systems.
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