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Abstract
Numerical simulation of a thermofluid vapor compression cycle (VCC) model in Modelica,
for example, can exhibit a variation in the total fluid (refrigerant) mass. This paper pro-
vides a dynamic analysis of a commonly used VCC model, identifies and analyzes the root
cause of this variation, and proposes a number of remedies. The cause lies within the dy-
namic equations that result from application of the principle of mass conservation. In many
common formulations, these equations express the conservation of mass as one or more dif-
ferential equations that equate the time derivative of mass to zero. The resulting set of n
ordinary differential equations (and a number of auxiliary algebraic equations) include the
time derivative of a mass constraint function, but not the actual mass constraint function
itself. As a result, this modeling formulation has the following properties: (1) equilibrium so-
lutions of the system are neither isolated, nor exponentially stable; (2) a linearization about
any equilibrium solution has at least one eigenvalue equal to zero, making an equilibrium
solution stable, but not exponentially stable; (3) for a VCC model formulated using two fluid
states per control volume, a one-dimensional equilibrium manifold exists containing all of the
equilibrium solutions, and is parameterized by the total fluid mass; (4) an (n-1) dimensional,
stable, invariant manifold exists transverse to the equilibrium manifold, defined by the mass
constraint function, and on which analytic solutions to the model evolve and the total fluid
mass remains constant; and (5) numerical solutions may drift off of this manifold, resulting
in an observed drift of fluid mass. These properties have consequences for simulation, control
design, numerical model reduction, and state estimation. A number of methods to stabilize
the mass constraint are proposed and a number of examples that illustrate the behavior,
analysis and remedies are provided.
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Abstract
Numerical simulation of a thermofluid vapor compression
cycle (VCC) model in Modelica, for example, can exhibit
a variation in the total fluid (refrigerant) mass. This paper
provides a dynamic analysis of a commonly used VCC
model, identifies and analyzes the root cause of this vari-
ation, and proposes a number of remedies. The cause lies
within the dynamic equations that result from application
of the principle of mass conservation. In many common
formulations, these equations express the conservation of
mass as one or more differential equations that equate
the time derivative of mass to zero. The resulting set of
n ordinary differential equations (and a number of aux-
iliary algebraic equations) include the time derivative of
a mass constraint function, but not the actual mass con-
straint function itself. As a result, this modeling formu-
lation has the following properties: (1) equilibrium solu-
tions of the system are neither isolated, nor exponentially
stable; (2) a linearization about any equilibrium solution
has at least one eigenvalue equal to zero, making an equi-
librium solution stable, but not exponentially stable; (3)
for a VCC model formulated using two fluid states per
control volume, a one-dimensional equilibrium manifold
exists containing all of the equilibrium solutions, and is
parameterized by the total fluid mass; (4) an (n− 1) di-
mensional, stable, invariant manifold exists transverse to
the equilibrium manifold, defined by the mass constraint
function, and on which analytic solutions to the model
evolve and the total fluid mass remains constant; and (5)
numerical solutions may drift off of this manifold, result-
ing in an observed drift of fluid mass. These properties
have consequences for simulation, control design, numer-
ical model reduction, and state estimation. A number of
methods to stabilize the mass constraint are proposed and
a number of examples that illustrate the behavior, analysis
and remedies are provided.
Keywords: vapor compression cycle, mass conservation,
simulation, dynamic analysis

1 Introduction
Vapor compression cycles (VCCs) are the primary means
of moving heat in almost all modern air conditioning sys-
tems. Physically, VCCs consist of one or more hierarchi-
cally organized loops of modular components such as heat

exchangers, pipes, valves and compressors. The physics
of fluid mechanics, usually including phase change and
heat transfer is nonlinear and multi-scale in time and
space, resulting in models that consist of large sets of cou-
pled, nonlinear, numerically stiff but sparse differential
algebraic equations. As such, the Modelica modeling lan-
guage has proven to be well suited to this application, with
its object oriented structure for organization and tools that
support simulation of large sparse DAEs, and has gener-
ally found successful application in product development
throughout the industry, which is continuously under pres-
sures to innovate.

Often VCC model users need to run simulations over
relatively long time horizons. For example, it is important
to ascertain the annual performance of a building air con-
ditioner, requiring many simulations over a one year time
scale. Standard drive cycles in automotive applications are
also relatively long time scale simulations. Several authors
have reported that VCC models formulated under standard
assumptions (conservation equations) do not conserve re-
frigerant mass, and that this has adverse practical conse-
quences, especially for long time scale simulations. The
refrigerant mass, or charge, seems to drift over the course
of a simulation. Some choices of state can help alleviate
the problem (Laughman and Qiao, 2015, 2016), although
not entirely correct it. Practical methods of resetting states
(Anderson et al., 2023) can help to reduce the “refrigerant
mass drift,” but require model modification and possibly
manual intervention.

These results address the symptom of refrigerant mass
drift in numerical simulations, but not its root cause. In
this paper, we analyze a common model formulation of a
VCC, identify mathematically the root cause of refriger-
ant mass drift, and describe two methods that can remedy
the situation. The dynamic analysis results in an improved
understanding of the structure and behavior of the result-
ing system of DAEs, with some perhaps surprising con-
sequences and implications. For example, we show that
equilibrium solutions to the systems of DAEs are stable,
but not exponentially stable, which is often assumed to
the the case. In fact, there is an equilibrium manifold of
stable solutions to the set of DAEs. The equilibrium man-
ifold is parameterized by the total refrigerant mass, and
unavoidable numerical errors incurred during a numeri-
cal simulation will result in mass drift along the manifold.



This has implications for simulation, model-based control
system design, and state estimation.

Fortunately, the structure suggests several remedies,
which may be implemented as modifications to stan-
dard modeling constructs and result in exponentially sta-
ble models that do not exhibit refrigerant mass variation.
This paper is organized as follows. We begin Section 2
with a VCC dynamic model resulting from application of
standard mass, energy and momentum conservation as-
sumptions. We analyze this model geometrically, prov-
ing existence of an integral submanifold of dimension one
less than the state dimension, and existence of a one-
dimensional equilibrium manifold. We show how this
structure implies drift specifically in the refrigerant mass
in a numerical simulation, illustrated by a simple VCC ex-
ample. We then present two remedies in Section 3, with
simulation examples. In Section 4 we also show how
this behavior can manifest in a mechanical system model,
which aids in understanding the situation, and shows that
the results are general in nature and not restricted to only
thermofluid cycles. We close in Section 5 by summarizing
the results and stating a conjecture regarding more com-
plex VCCs.

2 VCC Dynamics
A dynamic model of the thermofluid physics of a VCC
generally begins from mathematical statements of dis-
tributed, one-dimensional mass, energy and momentum
balance, such as

∂ (ρA)
∂ t

+
∂ (ρAv)

∂x
= 0 (1a)

∂ (ρvA)
∂ t

+
∂ (ρv2A)

∂x
=−A

∂P
∂x
−Ff (1b)

∂ (ρuA)
∂ t

+
∂ (ρvhA)

∂x
= vA

∂P
∂x

+ vFf +
∂Q
∂x

, (1c)

where P is a pressure, v is a velocity, u is a specific internal
energy, ρ is a density, Q is a heat transfer rate, A is a cross-
sectional area, V is a volume, Ff is a frictional pressure
drop, x is a scalar spatial coordinate and t is time. These
may be discretized in the spatial coordinate x resulting in
a set of ordinary differential equations (ODEs)

d(ρ jVj)

dt
= ṁk− ṁk+1 (2a)

d(ṁil)
dt

= ρ jv2
jA j−ρ j+1v2

j+1A j+1

+
A j +A j+1

2
(
Pj+1−Pj

)
+Ff ,i (2b)

d(ρ ju jA j)

dt
= Ḣk− Ḣk+1

+ v j jA j(Pj+1−Pj)+ vFf ,i + Q̇ j, (2c)

where the indices j and k correspond to gridding methods,
and ṁk denotes the mass flow rate at the boundaries of a
finite control volume. See (Pat, 1980; Tummescheit, 2002;

Laughman and Qiao, 2015, 2016) for details of modeling
procedures and Modelica realizations.

State selection is dependent on the particulars of an ap-
plication, but generally two states are selected for each
control volume: A mixture variable, and another vari-
able. Herein we choose pressure P and specific en-
thalpy h, which are common choices for VCC applica-
tions. However, the main results are not dependent on
this specific choice. For compactness, define the full state
x = [P1,h1,P2,h2, . . . ,Pm,hm] ∈ Rn where m is the number
of control volumes and n = 2m, and express (2) as

ẋ = f (x,u), (3)

where u ∈ Rp is a vector of control inputs, such as a com-
pressor speed or an expansion valve opening. For sim-
plicity, this formulation ignores states resulting from con-
sideration of heat transfer to metal. These would have no
bearing on the main results. Note that a Modelica model
may not explicitly compute f , but rather it may express the
dynamics in an implicit form. However, f exists mathe-
matically and will make use of this fact.

In (2) the total refrigerant mass M is an explicit function
of state:

M = g(x) :=
m

∑
i=1

= ρi(x2i,x2i+1)Vi. (4)

Note that neither g nor M appear in (2). However, (2a) is a
statement that ġ = 0. In typical use, g is used to set the ini-
tial condition x(t0) = x0 to correspond to a total refrigerant
mass M0 using

M0 = g(x0). (5)

2.1 Main Results
Since ġ = 0, we have

ġ =
∂g
∂x
· ẋ = ∂g

∂x
· f = 0. (6)

Therefore, at any equilibrium solution xe satisfying
f (xe,ue) = 0, we have

∂g
∂x
| x=xe

u=ue
· f (xe,ue) = 0. (7)

Expanding f into a Taylor’s series about (xe,ue), we have

∂g
∂x
| x=xe

u=ue
·A = 0, (8)

where A is the Jacobian of f with respect to x, i.e., A =
∂ f
∂x | x=xe

u=ue
. Therefore

U0 :=
∂g
∂x
| x=xe

u=ue
(9)

is the left eigenvector corresponding to a zero eigenvalue
of A. Define V0 to be the right eigenvector of A corre-
sponding to the zero eigenvalue of A. Since A has one



Figure 1. Integral manifold M0, equilibrium manifold Ge, and
a solution trajectory (green) for initial condition x0 ∈M0, con-
verging to the stable equilibrium xe ∈M0∩Ge.

zero eigenvalue (and the remaining n− 1 eigenvalues are
assumed to lie in the open left half plane), the equilibrium
solution xe is stable, but not exponentially stable. Further,
xe is not isolated, since x̃e = xe± ε ·V0 is also an equilib-
rium for any ε > 0, by definition of the eigenvalue and
eigenvector. Therefore, the linearized system

δ ẋ = Aδx+Bδu

has an equilibrium subspace defined by the span of V0, and
therefore the nonlinear system (2) has a one-dimensional
equilibrium manifold Ge, which is tangent to V0 at xe, de-
fined by those states xe satisfying

0 = f (xe,ue) (10a)
0 = g(xe)−Me (10b)

which is parameterized by the refrigerant mass Me (and
also ue). Finally, as as consequence, the nonlinear system
has an n− 1 dimensional integral manifold M0, implied
by the fact that f lies within the tangent space of the n−1
dimensional submanifold defined by dg = 0, where d is
the gradient operator. (An integral manifold M0 is invari-
ant to the dynamics, meaning x0 ∈M0 → x(t) ∈M0 for
all t ≥ t0.)

The situation is diagrammed in Figure 1, where an ini-
tial condition x0 is defined to satisfy (10), the analytic so-
lution x(t) evolves on the n−1 dimensional integral mani-
fold M0, which contains x0, converging to the equilibrium
solution xe which lies in the intersection of M0 and Ge.
The equilibrium xe is not exponentially stable because the
eigenvector V0 corresponding to the the zero eigenvalue
is tangent to Ge. As such, there is a family of n− 1 di-
mensional integral manifolds Mk, all transverse to Ge, de-
fined by the initial condition x0. (These foliations are not
shown in Figure 1 for clarity.) All of these results follow
from the fact that A has one eigenvalue equal to zero, basic
linear algebra and elementary nonlinear differential equa-
tion theory found in reference texts such as (Vidyasagar,
1993), (Khalil, 2002) and (Isidori, 1989).

2.2 Some Implications

This geometric structure has implications for numerical
simulation, control design, model reduction and state esti-
mation applications. Analytically, a solution x(t) evolves
on the n− 1 dimensional integral manifold M0, and the
effective dimension of the state vector is n− 1, given an
initial condition x0, which determines the refrigerant mass
M0. However, a numerical simulation evolves in the full
n-dimensional state space. Inevitable numerical errors at
each discrete time step of any solver algorithm will result
in an approximate solution that is not invariant to M0, i.e.,
the solution will drift off M0, onto some other Mk. This
drift is in exactly the direction of varying the refrigerant
mass. Further, since the dynamics in the Ge direction are
not exponentially stable, these errors are not corrected step
to step. In effect, the drift is like a one dimensional ran-
dom walk. The constraint 0 = g(x)−M0 is not stabilized.

In fact, there is a hidden state in the dynamics, corre-
sponding to the direction of dg and locally associated to
the eigenvector V0. In a spectrally decomposed coordi-
nate system this state is an open loop integrator driven by
“noise” generated by numerical simulation errors, step to
step. (The random walk analogy is very close, except the
VCC simulation is deterministic.) For some simulations,
this “noise” may be biased, which may be caused by sim-
ulation errors near the saturation curve, where the change
in density is extreme, and in this case, a numerical simu-
lation may seem to leak its entire charge of refrigerant.

It has been stated by some authors that the “mass is not
a state” in such models, but this is not entirely correct. It
is not an explicit element of x. However, the refrigerant
mass is a state of the system, appearing as an open loop
integrator in the spectrally decomposed coordinates. Since
the x coordinates are used for simulation, the mass state is
hidden, mixed among all the other states. This implies
that any time domain simulation will exhibit drift in the
refrigerant mass, regardless of the coordinates used, and
regardless of the integration algorithm used. Some choice
of coordinates (Laughman and Qiao, 2015, 2016) and also
measures taken to enforce the mass constraint (Anderson
et al., 2023) may result in a reduced magnitude of drift,
owing to improved error control, but do not cause the mass
constraint to be enforced.

For control, it is common to make use of model lin-
earizations. Care must be taken in reducing the order of
such models. Hankel norm methods which remove modes
that are both weakly controllable and weakly observable,
work only for exponentially stable systems. Matlab pro-
vides convenient tools for such purpose, but these will first
extract the unstable (and weakly stable) part of the system
by spectral decomposition, reduce the stable part, and then
put the unstable part back, assuming that is what the user
wants! Of course, for these applications, the user needs
to remove the mode corresponding to the zero eigenvector
first, because this mode is a modeling artifact. The true
state dimension is n−1 = 2m−1.



Figure 2. Two-volume vapor compression cycle.

2.3 An Example
Consider the simple two-volume VCC diagrammed in
Figure 2, consisting of two control volumes labeled “con-
densing” and “evaporating” each with pressure-enthalpy
states (P1,h1) and (P2,h2), respectively, a compressor and
an expansion valve. The latter are modeled as algebraic
functions relating the inlet and outlet states. Here the
control input u = [u1,u2] with the compressor speed u1
and expansion valve count u2. The state vector is x =
[P1,h1,P2,h2], and the dynamics are

ẋ = f (x,u), x(t0) = x0 (11a)
M = g(x) = ρ1(P1,h1)V1 +ρ2(P2,h2)V2 . (11b)

Linearizing the dynamics about an equilibrium solution
confirms that 3 eigenvalues are in the open left half plane,
and one is at the origin, with its left eigenvector U0 aligned
with the gradient of g. A simulation result with initial
condition P1 = 2.6MPa, h1 = 420kJ/kg, P2 = 1MPa and
h2 = 230kJ/kg, constant values of the compressor speed
(30Hz) and expansion valve (100 counts), and constant
boundary conditions results in the transient response plot-
ted in Figure 3. The refrigerant mass drifts for the 15s,
coming to rest after the transient has transpired. Depend-
ing on the application, this amount of drift may or may
not be acceptable. Importantly, it is entirely driven by nu-
merical solver error, more or less the result of integrating
a random signal.

2.4 VCC Models in (P,h,ρ) Coordinates
Formulating the VCC dynamics in (P,h,ρ) coordinates
has been suggested as an approach to mitigate mass drift
(Laughman and Qiao, 2015, 2016). These coordinates
were derived by first expressing the dynamics in (P,ρ)-
coordinates, and then adding a dynamic equation for h.
Following this approach, assume the change of coordi-
nates from (P,h) to (P,ρ) is well-defined in a region of
interest. In the (P,ρ)-coordinates, denote the state vector
as y = [P1, . . . ,Pm,ρ1, . . . , ρm]

T . All the results from Sec-
tion 2.1 also carry over to these coordinates. Next con-
sider a linearized model around any equilibrium solution
ȳ ∈ R2m, ignoring for simplicity the effect of any inputs,

δ ẏ = Aδy+Bδ z (12a)
δ z =Cδy, (12b)

Figure 3. Refrigerant mass drift during initial transient.

where δy = y− ȳ, and z ∈ Rm is the enthalpy vector h,
z̄ ∈ Rm is the equilibrium enthalpy vector, and δ z = z− z̄.
The linearized enthalpy term δ z is explicitly pulled out
and expressed as an output function because (P,h,ρ)-
coordinates use it as a third state in each control volume.
Note that the linearized dynamics in (P,ρ) coordinates are
δ ẏ = (A+BC)δy.

In this notation, the corresponding linearization in
(P,h,ρ) coordinates is

δ ẏ = Aδy+Bδ z (13a)
δ ż =Cδ ẏ =CAδy+CBδ z. (13b)

Note that the δ z in (13b) is used on the right hand side of
(13a), which means that in the original (P,h,ρ)-coordinate
formulation, the h states, computed as solutions to m
ODEs, are used in the 2m ODEs defining Ṗ and ρ̇ . Rewrit-
ing (13) in matrix form[

δ ẏ
δ ż

]
=

[
A B

CA CB

][
δy
δ z

]
, (14)

makes it clear that the system has m eigenvalues at zero,
since the last m rows are linearly dependent on the first 2m.
As such a system expressed in (P,h,ρ)-coordinates will
have a linearization with m+ 1 eigenvalues at the origin,



Figure 4. Two-volume vapor compression cycle.

and the nonlinear system will have an equilibrium mani-
fold of dimension m+ 1 parameterized by the mass, and
also the error between the m values of enthalpy h com-
puted by the additional m differential equations and the
algebraic constraint h = h(P,ρ) that was differentiated.
The improved accuracy in mass conservation reported in
(Laughman and Qiao, 2015, 2016) is likely due to better
solver error control in the density dynamics, but drift in
a higher-dimensional manifold resulting in non-physical
results is possible in long duration simulations.

3 Drifting Mass Remedies
We present two remedies. First, we can exponentially sta-
bilize the total amount of mass in a cycle using a virtual
feedback loop with integral action. Consider again the
simple two-volume VCC diagrammed in Figure 2, now
with a virtual mass feedback loop which acts to regulate
the total amount of mass to the constant M0, shown in Fig-
ure 4. This method requires minimal modification of the
original model to allow for an additional virtual control
input. The virtual input might be an added mass flow rate
signal at the discharge port of the compressor, as shown
in Figure 4, or alternatively it might be an added enthalpy
signal at the discharge port of the compressor.

The PI feedback exponentially stabilizes the total mass,
which can be understood by the Root Locus diagrammed
in Figure 5. The “plant” here is the system from the vir-
tual input to the measured mass output, which is m = g(x).
The plant includes a single pole at the origin, as discussed
in Section 2, and n− 1 poles in the open left half plane,
where n = 4 for this example. The feedback loop includ-
ing the PI compensator adds a second pole at the origin,
and a zero in the open left half plane, at s =−0.2 for this
example. Closing the feedback loop with positive gain
causes the double poles at the origin to break away and
move into the open left half plane, exponentially stabiliz-
ing the equilibrium. The action of feedback may change
the dynamics of (3) but only slightly, because the dynam-
ics on the integral manifold is invariant and the dynamics
on the integral manifold are relatively insensitive to the
virtual mass input. This is clear on Figure 5, where the 3
stable poles move very slightly from open to closed loop
(the closed loop location is plotted over the open loop in
the figure). The integral manifold M0 is not changed by
the PI feedback.

Figure 6 shows the result of a simulation in which the

Figure 5. Root locus for the 2-volume system with virtual mass
PI feedback (top), magnified to show poles and zeros near the
origin (bottom). The PI zero is placed at s = −0.2. The 3 sta-
ble plant poles are relatively insensitive to the feedback, without
visible displacement in the figure. The two unstable poles at the
origin are moved to complex conjugate locations by the action
of the virtual feedback loop.

virtual mass feedback is active, for the same initial condi-
tions as in Figure 3. The feedback actively stabilizes the
total mass and ensures that the equilibrium solution xe is
isolated and exponentially stable.

3.1 Stabilizing the constraint
Alternatively, following Gear (Gear, 1988; Brenan et al.,
1996), a second method to stabilize the mass constraint is
as follows. The modeled system (3) does not include the
refrigerant mass constraint 0= g(x)−M0. But Gear shows
that the augmented system

ẋ = f (x,u)+µ ·dg(x) (15a)
0 = g(x)−M0, (15b)

where

dg =
∂g
∂x

(16)

and µ is scalar Lagrange multiplier state, enforces the
mass constraint explicitly and has an identical analytic so-



Figure 6. Refrigerant mass under the action of virtual PI feed-
back control for same initial condition as Figure 3.

lution as (3) with µ = 0. Numerical solutions of (15) will
therefore not suffer from drift from M0. However, the
index of (15) is 2, so this system cannot be simulated di-
rectly using standard solvers.

The index can be reduced using the available methods
provided in Modelica tools such as Dymola, but this could
result in a complex and highly coupled model equations,
since the gradient term dg contains all of the states and as a
practical matter, most VCC models (3) are large in dimen-
sion to begin with. Alternatively, we may reduce the index
manually using Baumgarte’s method (Baumgarte, 1983).
This involves replacing the constraint equation (15b) with
a linear combination of g and ġ, so that the new constraint
equation is Hurwitz (roots in the open left half plane),

ẋ = f (x,u)+µ ·dg(x) (17a)
0 = ġ(x)+α0 · (g(x)−M0), (17b)

where the constant α0 > 0. System (17) is index 1 and may
be simulated directly using standard solver algorithms.
Note that ġ in (17b) is dg · ( f +µ ·dg) which not the same
as ġ in Section 2, because the definitions of x and ẋ, re-
spectively, have changed by the addition of the µ ·dg term
in (17a).

To implement this scheme, the original model (3) needs
modification by adding a single equation (17b) and adding

Figure 7. Cartesian pendulum.

the output injection terms µ ·dg to each of the state equa-
tions. This would require modification to the base classes
of the modeling package, since they were probably not
intended for this purpose, but the changes are relatively
minor. System (17) may be less computationally com-
plex compared to that obtained by reducing the index of
(15) from 2 to 1 using the standard method of substitu-
tion of variables (or “dummy derivatives”). The method
increases the dimension of the set of equations from n to
n+ 1. But as a result, the constraint is stabilized, and the
resulting equilibrium solution xe is unique, isolated and
exponentially stable. Numerical solutions will exhibit a
small amount of error in the refrigerant mass during a sim-
ulation (as do any of the other states), on the order of the
solver tolerance, but will not drift far from the initial con-
dition because of the stabilization.

Implementing this approach for VCC models requires
modifications to the base classes, which remains part of
future work. Nevertheless, we illustrate the method using
a simpler example in the following section.

4 Toy Pendulum Example
To show these results are not restricted to only VCC mod-
els, the dynamic analysis and remedies can be illustrated
using the the quintessential Modelica example: The Carte-
sian pendulum, diagrammed in Figure 7, modeled as

ẋ1 = v1 (18a)
ẋ2 = v2 (18b)
v̇1 =−λ · x1−b · v1 (18c)
v̇2 =−λ · x2−b · v2−gn (18d)

0 = g(x1, x2) = x2
1 + x2

2−L2, (18e)

where (x1,x2) is the Cartesian location of the bob, (v1,v2)
is its velocity, λ is the Lagrange multiplier, gn is the ac-
celeration due to gravity, b = 0.1 is a damping coefficient
introduced to stabilize the pendant position, and length
L = 1. Realizing this model in Modelica, compiling in
Dymola and simulating for x1(0) = 0.1 gives the results in
Figure 8, where Dymola reduces the index (from 3) and
dynamically selects two states, here x1 and v1. There is
of course no drift because the dimension of the dynamic
states equals the number of degrees of freedom.



Figure 8. State selection results and simulation trajectory x2(t)
of model (18).

Now consider the system with the constraint (18e) re-
placed with its derivative,

ẋ1 = v1 (19a)
ẋ2 = v2 (19b)
v̇1 =−λ · x1−b · v1 (19c)
v̇2 =−λ · x2−b · v2−gn (19d)
0 = ġ(x1, x2) = 2x1v1 +2x2v2. (19e)

This is analogous to VCC model with (19e) being simi-
lar to the mass flow rate constraint (2a). Realizing this
model in Modelica, compiling in Dymola and simulating
for x1(0) = 0.1 gives the results in Figure 9, where Dy-
mola reduces the index (from 2) and dynamically selects
three states, here x1, v1 and x2. Linearizing at the pen-
dant equilibrium solution and computing eigenvalues re-
sults in the two stable eigenvalues that we expect, and a
third eigenvalue at zero, associated with an eigenvector
in the x2-direction, precisely the direction of the missing
constraint g(x1,x2)= 0 at the pendant equilibrium (0,−1).
The numerical solution is observed to drift along the ver-
tical x2 direction in Figure 9, away from the point (0,−1).

Finally we augment (19) using Gear’s method (Gear,
1988). The position constraint 0 = g(x1,x2) is added to
the set, and the Lagrange multiplier µ multiplied by the
gradient of g is added to the right-hand side of the ODEs
(19a)-(19d), resulting in an index-2 DAE. Then we manu-
ally reduce the index from two to one using Baumgarte’s
method (Baumgarte, 1983), replacing the constraint equa-
tion g = 0 with ġ+α0 ·g = 0, where α0 > 0, (α0 = 1 for

Figure 9. State selection results and simulation trajectory of
x2(t) of model (19).

convenience) resulting in the index-1 DAE

ẋ1 = v1 +µ ·2x1 (20a)
ẋ2 = v2 +µ ·2x2 (20b)
v̇1 =−λ · x1−b · v1 (20c)
v̇2 =−λ · x2−b · v2−gn (20d)
0 = 2x1v1 +2x2v2 (20e)

0 = ġ+α0 · (x2
1 + x2

2−L2). (20f)

Again, there is a subtle but important point to consider:
The ġ in (20f) is not the same as the ġ in (19e), because
ẋ has changed from the second to the third example. Re-
alizing this in Modelica, compiling in Dymola and sim-
ulating for x1(0) = 0.1 gives the results shown in Figure
10. Interestingly, Dymola reduces the index to 0, and dy-
namically selects three states, here x1, v1 and x2, the same
states selected for the second case. Linearizing the sys-
tem at the equilibrium solution results in the two stable
eigenvalues associated with the pendulum that we expect,
and a third exponentially stable eigenvalue at−α0, associ-
ated with the stabilized constraint equation ġ+α0 ·g = 0.
The equilibrium solution is now exponentially stable. Al-
though a numerical simulation of this system will suffer
from a small amount of numerical error in the constraint
(g = 0 is not exactly enforced), caused by Baumgarte’s
method (Bortoff, 2019) this can be controlled through the
solver tolerance, and importantly the solution will not ex-
hibit constraint drift, as shown in Figure 10.

5 Conclusion
Numerical simulations of some dynamic models of vapor
compression cycles based on standard conservation equa-
tions may not conserve refrigerant mass, resulting in sim-



Figure 10. State selection results and simulation trajectory of
x2(t) of model (20).

ulation failures especially for relatively long simulation
times. This paper provides a dynamic analysis to ascer-
tain mathematically the root cause of so-called refrigerant
mass drift, resulting in an improved understanding of the
dynamic model structure and behavior. The key result is
that models derived using conventional assumptions and
using conventional coordinates (two fluid states per con-
trol volume) are not exponentially stable, as is often as-
sumed, and the n-dimensional state space may be decom-
posed into an n− 1 dimensional integral manifold, and a
transverse 1-dimensional equilibrium manifold. Numer-
ical solutions will inevitably drift in the direction of the
equilibrium manifold, manifesting as a varying refrigerant
mass. Models that make use of higher dimensions such
as (P,h,ρ) for each control volume, will exhibit higher
dimensional equilibrium manifolds that may result in nu-
merical drift in these spaces, leading to unphysical results.
Two methods to remedy are proposed and shown to be ef-
fective with a thermofluid VCC example and also a classic
pendulum example.
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