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Energy-constrained multi-robot exploration for autonomous map building

Sambhu H. Karumanchi, Bhagawan Rokaha, Alexander Schperberg, and Abraham P. Vinod∗

Abstract— We consider the problem of building the map of
an unknown environment using multiple mobile robots that
have physical limitations arising from dynamics and a limited
onboard battery. We consider the setting where the unknown
environment has a set of charging stations that the robots must
discover and visit often to recharge their battery during the
map building process. We propose an iterative approach to
solve the resulting energy-constrained multi-robot exploration
problem. Our approach uses a combination of frontier-based
exploration, graph-based path planning, and multi-robot task
assignment. We show that our algorithm admits a computation-
ally inexpensive implementation that enables rapid replanning,
and propose sufficient conditions for recursive feasibility and
finite-time termination. We validate our approach in several
Gazebo-based realistic simulations.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a criti-
cal component in several applications, including autonomous
navigation [1], infrastructure monitoring [2], and disaster
management [3]. Existing SLAM literature has considered
the problem of map building using multiple autonomous
robots [1], [4]. In this work, we tackle a specific chal-
lenge in autonomous map building — building the map
using multiple mapping robots quickly, while respecting the
physical constraints on the mapping robots, e.g., dynamics
and limited battery. The physical limitations on the map-
ping robots may become particularly severe when using
drones for autonomous map building [1]. We propose an
iterative algorithm to solve the energy-constrained, multi-
robot exploration problem. We show that our approach has a
computationally-inexpensive implementation enabling rapid
replanning for efficient exploration, and enjoys guarantees
of recursive feasibility and finite termination.

Autonomous map building using SLAM has been an area
of active research, where frontier-based exploration provides
an effective strategy [4]–[9]. These exploration algorithms
are iterative in nature, and repeatedly assign robots to visit
frontiers and update the occupancy grid until no frontier
remains [5] (see Figure 1 for terminology). For the purposes
of coordinating multiple mapping robots using frontier-based
exploration algorithms, approaches based on multi-robot task
assignment [4], [6] and map segmentation [7] have been pro-
posed. Recently, frontier-based exploration algorithms have

∗Corresponding author.
S. H. Karumanchi is with The University of Illinois Urbana-Champaign,

Urbana, IL 61801, USA. Email: shk9@illinois.edu.
B. Rokaha is with Mitsubishi Electric Corp., Japan. Email:

Rokaha.Bhagawan@df.MitsubishiElectric.co.jp.
A. Schperberg and A. P. Vinod are with Mitsubishi Electric

Research Laboratories (MERL), Cambridge, MA 02139, USA. Email:
{schperberg@merl.com, abraham.p.vinod@ieee.org}.
This work was completed during Mr. Karumanchi’s internship at MERL.

also been extended to consider communication constraints
in [8]. The authors in [9] impose the energy constraints
on the mapping robots as soft constraints by minimizing
the collective energy used by the team. However, these
approaches may not be able to ensure that an energy-limited
mapping robot will not get stranded during mapping, as
these approaches do not explicitly account for the energy
limitations of the robots as hard constraints.

A closely related problem to the considered energy-
constrained multi-robot exploration problem is that of rout-
ing and persistent monitoring using multiple robots under
constraints [10]–[14]. In these works, multiple robots with
physical limitations coordinate their motion to persistently
achieve certain goals. For example, [10] considers the prob-
lem of routing a single drone through multiple static charging
stations under energy constraints using insights from the trav-
eling salesman problem literature. Alternatively, [14] tackles
the problem considered in this work using insights from
vehicle routing literature. However, [14] requires solving
a mixed-integer linear program (MILP) to design feasible
exploration paths for the mapping robots. Since solving
an MILP typically requires significant computational effort,
such approaches may not be amenable to replanning and con-
sequently may not adapt quickly to dynamic maps typically
encountered in autonomous map building problems.

We use a combination of frontier-based exploration and
multi-robot task assignment to solve the energy-constrained,
multi-robot exploration problem of interest. Instead of di-
rectly assigning frontier centers to the mapping robot as
done in [4], [6], [7], our approach considers two stages of
path assignment for the robot in order to satisfy physical
constraints on the mapping robot. The first path assignment
identifies energy-feasible paths for each robot to a charging
station, where energy-feasible paths are paths that satisfy the
dynamics and energy constraints on the robots. The second
path assignment identifies deviations from these paths such
that the resulting path remains energy-feasible and allows
the mapping team to visit the most informative parts of
the unexplored environment. We cast both path assignment
problems as linear assignment problems for which well-
known polynomial-time algorithms exist [15]. When used
in conjunction with graph-based planning algorithms like
A⋆ or Dijkstra [16], our approach admits a computationally-
inexpensive implementation that allows for rapid replanning
and adaptation to dynamic maps using only polynomial-
time algorithms. Additionally, we provide sufficient condi-
tions under which our approach has guarantees of recursive
feasibility and finite-time termination.



The main contributions of our work are 1) an iterative
solution to the energy-constrained, multi-robot exploration
problem, 2) a computationally-inexpensive implementation
that allows for rapid replanning, and 3) sufficient conditions
to guarantee finite-time termination and recursive feasibility.

II. PRELIMINARIES & PROBLEM STATEMENT

Notation: For a finite set S, we denote its cardinality
by |S|. We use N[a,b] to denote the set of natural numbers
between (and including) a, b ∈ N with a ≤ b.

A. Linear assignment problem

Given finite sets of workers W and tasks T , and a cost
function C : W × T → R, the linear assignment problem
solves the following optimization problem,

minimize
f∈A (W,T )

∑
w∈W

C(w, f(w)). (1)

Here, A (W, T ) is the set of assignment functions f :
W → T that assigns a task in T to each worker in W ,
where each task gets assigned at most one worker and each
worker gets assigned at most one task [17]. The optimal
solution of (1) minimizes the cumulative assignment cost.
Note that (1) is a special class of integer linear program
that admits polynomial time solutions and is mathematically
identical to the weighted bipartite matching problem in graph
theory [15]. Existing literature has used linear assignment
problems like (1) in multi-agent motion planning and task
assignment problems [4], [6], [12]. A popular approach to
solve (1) is the Hungarian algorithm [15].

B. Problem statement

We consider the problem of deploying multiple energy-
constrained mobile robots to autonomously build a map
of an unknown environment. The designed motion plans
must enable rapid, collaborative mapping of the environment,
while respecting the physical constraints on the robots such
as the dynamics and energy limitations. We assume that the
environment has a finite set of static charging stations that
are dispersed spatially. Throughout the mapping task, each
robot must rendezvous with a station before running out of
their battery. We assume that the locations of the stations are
unknown a priori, and the robots “discover” these stations as
they map the environment. Such settings are commonplace
in post-disaster situations where robot teams must map an
environment with spatially dispersed charging stations, and
it is unclear a priori if feasible paths exist between a robot
and a charging station. Additionally, the stations can recharge
only a single robot at a time, and the team must coordinate to
account for the charging capacity constraint at the stations.

C. Modeling

Robot team: We assume that the mapping team consists
of NT homogeneous mobile robots, each equipped with
necessary sensors (e.g., LiDAR or camera) for mapping.

Motion constraints from occupancy grid: We consider
an occupancy grid, which approximates the environment
being mapped as a grid environment. Occupancy grids are a

Fig. 1. Screenshot of a typical occupancy grid obtained from gmapping
package annotated with the various terms used in the paper.

popular output of SLAM algorithms, where the algorithms
update the probability of a grid cell being occupied based
on the collected sensed data [5], [18]. Figure 1 annotates an
instance of the occupancy grid with some key terminology
used in the paper.

We assume that each robot in the mapping team can travel
on a graph Gt = (V, Et) defined over the occupancy grid at
any time t ∈ N during the mapping process, with vertex
set V and edge set Et. Each cell in the occupancy grid
is a vertex in V . At any time t ∈ N during the mapping
process, V = Ct ∪ Ot ∪ Ut may be partitioned into three
sets — 1) Ct is the set of cells that is known to be clear
of any obstacles, 2) Ot is the set of occupied cells, and 3)
Ut is the set of cells whose occupancy status is unknown.
The objective of the map building problem is to identify the
partition C∞, O∞, and U∞, where C∞, O∞, and U∞ are
the true sets of clear, occupied, and unknown cells. Note
that U∞ is not necessarily empty, but must have a boundary
comprised solely of occupied cells.

The edge set Et enforces the physical constraints on the
robot arising from its dynamics. Specifically, every vertex
of the graph Gt is connected to cells in Ct that are also its
neighbors in any one of the cardinal or diagonal directions
(like the king piece in chess).

Finally, we define Ft ⊆ Ct as the set of frontier cells,
vertices with at least one unknown cell as its neighbor [5].

Sensing set: We define S(v) ⊂ V as the set of cells that a
robot at vertex v ∈ V can sense and use to perform SLAM.
For LiDAR sensors with a fixed sensing radius r > 0, S(v)
is a ball of radius r centered at v.

Robot path: We define a path P as a walk over the graph
Gt limited to Ct, i.e., a sequence of vertices in Ct where each
adjacent vertices in the sequence P are connected by an edge
in Et. Given Gt and vertices vS , vG ∈ Ct, we can find a path
P that starts in vS and ends in vG using well-known graph-
based path planning algorithms like A∗ or Dijkstra [16].

Energy management: Let S denote the set of static sta-
tions, whose locations and count are a priori unknown. At
any time t, the team is aware of the stations at Rt = S ∩Ct,
the set of station locations that have been declared clear at



Algorithm 1 Map building using energy-constrained robots
Input: Graph G0 = (V, E0) associated with the initial

occupancy grid, initial station locations R0 with number
of robots NT ≤ |R0|, weight parameter α ≥ 0, path
length upper bound B ∈ N, collision avoidance budget
η ∈ N, η < B, sensing set S

Output: Partition of V = C∞ ∪ O∞ ∪ U∞
1: Initialize t← 0.
2: Find the set of frontier cluster centers Ft.
3: while Ft is not empty do
4: Optional: Perform any necessary redistribution of

robots that are already at the station. ▷ See Fig. 2.
5: Obtain Mi for each i ∈ N[1,NT ], the number of

moves (excluding collision avoidance) made by robot
i since last rendezvous with a station.

6: Solve (1) with cost (2) to assign a unique station
s∗i ∈ Rt to each robot i ∈ N[1,NT ].

7: Solve (1) with cost (4) to assign a unique frontier
cluster c∗t ∈ Ft that robot i ∈ N[1,NT ] must visit on its
way to s∗i , when possible.

8: while robots are yet to reach their assigned goal do
9: Execute paths and update map.

10: end while
11: Increment t← t+ 1.
12: end while

time t. Additionally, we assume that all robots start at stations
in R0 ⊂ S, where |R0| ≥ NT .

We model the energy limitations on the robot by restricting
the length of the paths executed by the robots between
recharging. Throughout the mapping process, we require the
algorithm to only select energy-feasible paths for the robots.

Definition 1. (ENERGY-FEASIBLE PATHS) For some user-
specified path length bound B ∈ N, a path P is an energy-
feasible path if P starts and terminates at (possibly different)
stations in Rt and |P| ≤ B.

Note that the robot paths may also be a concatenation of
energy-feasible paths. In Definition 1, the path length bound
B models the physical limitation on the mapping robots
due to their limited onboard battery. By definition, lower
B implies a more severe energy limitation on the robots.

III. METHOD

We summarize our approach for addressing the energy-
constrained, multi-robot exploration problem in Algorithm 1.
It combines standard frontier-based exploration with energy-
constrained task assignment and replanning. Similarly to ex-
isting frontier-based exploration algorithms [5], Algorithm 1
is iterative, and terminates only when the occupancy grid has
no frontier cells left to visit. At each iteration, it identifies a
goal for each robot, where the goal may be either a cell in Ct
or a station. The robots continue mapping the environment
while executing paths towards their respective goals, until
a replanning event occurs. In this work, a replanning event
occurs whenever a robot reaches its goal.

Fig. 2. Station-to-station transfers to improve robot reach despite energy
constraints. (Left) A frontier cluster c ∈ Ft may be inaccessible for a robot
at a far-away station. (Right) To mitigate this issue, robots first execute a
series of station-to-station transfers to reach a closer station (Step 4 of
Algorithm 1), and then visit c using an energy-feasible path.

Algorithm 1 identifies a goal for each robot using two
stages of linear assignment — the first stage identifies a
terminating station cell for each robot, and the second stage
identifies a deviation for each robot so that the robot can
explore the environment as it heads to a terminating station,
when possible. The two-staged approach is motivated by the
need for recursive feasibility, as shown later in Section IV.

In the first stage, we assign paths for the team from their
current location at time t to the set of known stations Rt.
We set up and solve a linear assignment problem (1), where
the assignment takes into account the robot dynamics, energy
constraints, as well as the limitation of the station to serve
only a single robot at a time. Here, the workers in the
assignment problem are the robot team. The task set Tstage-1
consists of (shortest) paths over the graph Gt computed for
each pair of robot i ∈ N[1,NT ] and station s ∈ Rt, where each
path starts at the current location of robot i and terminates
at s and |Tstage-1| = NT |Rt|. We define the cost function in
(1) of the first stage,

Cstage-1(i,Pstage-1)

=

{
|Pstage-1|, |Pstage-1| ≤ B −Mi − η,

∞, otherwise,
(2)

where η ∈ N, η < B is a user-specified budget of the
battery set aside for local inter-agent collision-avoidance and
tracking errors. In (2), Mi for each i ∈ N[1,NT ] denotes the
number of cells robot i has visited since its last rendezvous
with a station, excluding any additional cell visits for the
purposes of (local) collision avoidance. By construction, the
cost (2) eliminates paths that violate energy limitations. We
solve (1) with Cstage-1 to obtain P∗

stage-1, where each robot
i ∈ N[1,NT ] is assigned with a unique station s∗i ∈ Rt and
a dynamically-feasible P∗

stage-1(i) that starts at the current
location of robot i and terminates at s∗i with |P∗

stage-1(i)| ≤
B −Mi − η.

The second stage computes deviations for each path
in P∗

stage-1 to visit frontiers. These deviations are de-



signed to facilitate rapid exploration of the unknown en-
vironment and autonomous map building. Motivated by
existing frontier-based algorithms [5], we also use the
so-called information gain metric to enforce a preference
over frontiers, where the information gain It : V → N is,

It(v) = |Ut ∩ S(v)|. (3)

Here, S is the sensing set as defined in Section II-C. Infor-
mally, It(v) for a vertex v ∈ V is the number of cells within
S(v) whose status in the occupancy grid is unknown. To
simplify second-stage planning, we use standard clustering
techniques to group frontiers in Ft into NC clusters based
on their proximity, and use Ft ⊂ Ct to denote the set of the
resulting cluster centers.

In the second task, we set up another linear assignment
problem (1) with the task set Tstage-2 that consists of (shortest)
paths over the graph Gt computed for each pair of robot
i ∈ N[1,NT ] and frontier cluster center c ∈ Ft, where each
path starts at the current location of robot i, visits c, and
terminates at s∗i . Consequently, |Tstage-2| = NTNC . We use
the following cost function in (1) of the second stage,

Cstage-2(i,Pstage-2)

=

{
−It(c) + α|Pstage-2|, |Pstage-2| ≤ B −Mi − η,

∞, otherwise,
(4)

where α ≥ 0 is a parameter that trades off the information
gain associated with a path with its path length. Lower α
prefers more informative paths over shorter paths. Similarly
to (2), (4) eliminates paths that violate energy limitations
of the mapping robots. By solving (1) with Cstage-2, each
robot i is assigned with a unique frontier cluster center c∗i ∈
Ft and a dynamically feasible P∗

stage-2(i) that starts at the
current location of robot i, visits c∗i , and terminates at s∗i
with |P∗

stage-2(i)| ≤ B − Mi − η. When a robot i is not
assigned any path in Pstage-2 due to B, we assign the robot
to execute the path in P∗

stage-1(i) computed at the first stage.
Algorithm 1 inherently disperses the robots away from

each other in order to maximize collective information
gain, which reduces the possibility of inter-agent collisions.
However, one may enforce local multi-agent collision avoid-
ance among the mapping robots by suitably modifying the
low-level controller on the robots in Step 9. For exam-
ple, we could use optimal reciprocal collision avoidance
(ORCA) [19] to identify minimum norm corrections to the
velocity commands. Alternatively, we can generate collision-
free trajectories using other techniques like optimization-
based safety filtering [20] or task swapping [12].

Step 4 of Algorithm 1 aims to mitigate the inherent
greedy nature of the approach. Specifically, by relying on
(1), Algorithm 1 uses a greedy strategy to select the frontier
and stations to assign to the team of mapping robots.
Consequently, the following undesirable scenario may occur
during mapping — the set of frontier cluster centers is not
empty and are far-away from the current stations charging
the robots (see Figure 2). To avoid such a scenario, Step 4
redistributes the robots at far-away stations to stations closer

to the frontier cluster centers. Such transfers are possible
among any pair of stations connected by an energy-feasible
path.

IV. PERFORMANCE GUARANTEES

We now show that Algorithm 1 enjoys finite-time ter-
mination and recursive feasibility guarantees. To simplify
the analysis, we will assume that the localization error
of the robots during the mapping process is low. Prior
works [21], [22] show that revisiting previously explored
areas reduces localization and mapping errors. Since robots
visit charging stations often by design during exploration,
the stations can serve as landmarks to correct the occupancy
grid from SLAM, thereby improving localization and overall
navigation accuracy.

Proposition 1. (FINITE-TIME TERMINATION) Let the fol-
lowing assumptions hold:
1) (Reachability) For every cell v ∈ C∞, there exists two
stations s1, s2 ∈ S (not necessarily distinct) and a cell
c ∈ C∞ such that v ∈ S(c) and c is visited by an energy-
feasible path connecting s1, s2.
2) (Station-to-station transfer) For any pair of stations in S,
there exists an energy-feasible path (or their concatenation)
that can transfer a robot at one station to another.
3) (Representative clusters) The frontier set Ft at all it-
erations of the algorithm is adequately represented by the
frontier cluster centers Ft, i.e., Ft ⊆ ∪c∈Ft

S(c).
Then, Algorithm 1 terminates in at most |U0\U∞| iterations.

Proof. Observe that the reachability and station-to-station
transfer assumptions together imply that the robot team can
ensure that every v ∈ C∞ may be covered by S(c) for
some cell c. At each iteration t of Algorithm 1, the robot
to visit a frontier cluster center c∗i . Consequently, a visit to
c∗i removes at least one cell from the set of unknown cells Ut,
by the representative cluster assumption. Consequently, the
set sequence Ut is a monotonically decreasing sequence of
sets with Ut+1 ⊂ Ut for all t ∈ N. Recall that the boundary
of the unknown set Ut can either be frontier cells or occupied
cells. Since Algorithm 1 continues until no frontier cells are
left and U0 is a finite set, Algorithm 1 terminates in at most
|U0 \ U∞| iterations.

The reachability assumption in Proposition 1 is necessary
for the team to complete the map, i.e., identify the partition
of V . The station-to-station transfer assumption may be
restrictive in scenarios where the spatial distribution of the
stations is skewed to certain parts of the environment over
others. Existing literature in facility location problems [23]
can help in identifying station locations that satisfy the
station-to-station transfer assumption in Proposition 1. The
representative clustering requirement may require a large NC

at certain iterations of Algorithm 1 that can increase the
computation time. Empirically, we found that Algorithm 1
remained recursively feasible even when the clustering as-
sumption was relaxed. Specifically, Section V uses a constant
NC = 30 for all t.



Proposition 2. (RECURSIVE FEASIBILITY) Assume that the
local collision-avoidance budget η is never violated, i.e., the
local multi-agent collision-avoidance forces the robot to visit
at most η additional cells (apart from its assigned path)
between any consecutive visits to stations. Then, Algorithm 1
is recursively feasible, i.e., there always exists a feasible
assignment of paths for the robot team at each iteration t.

Proof. We provide the proof by induction. We first prove
that the base case holds, i.e., a feasible assignment exists at
t = 0. The proof follows from the observation that, since all
robots can stay at their respective stations, the feasible space
of the assignment problem (1) is non-empty.

Assume, for induction, that the robots have been assigned
energy-feasible paths at iteration t ∈ N, t > 0. We need to
show that there are energy-feasible paths to be assigned to
every robot at iteration t+ 1.

At time t, the robots at the station Rt have at least
one energy-feasible path, i.e., the robots stay at the station.
Consequently, to prove recursive feasibility at t+1, it suffices
to focus on the robots that are not at the station (M > 0).

Consider robot i ∈ N[1,NT ]. By design, the energy-feasible
paths P∗

stage-2 assigned to the robots at iteration t are such that
each path P∗

stage-2(i) starts at the current location vi(t) of the
robot i ∈ N[1,NT ], visits vi(t+1) next, terminates at a station
s∗i ∈ Rt, and |P∗

stage-2(i)| ≤ B −Mi − η, and Mi excludes
visits to cells for the purposes of collision avoidance. We
have also assumed that the collision avoidance leaves the
robot at vi(t+1) after the necessary avoidance maneuver and
at most η cells are visited between any two consecutive visits
to stations. Then, at iteration t+1, the path P∗

stage-2(i)\{vi(t)}
is a feasible trajectory that starts at vi(t+1) and terminates
at s∗i with path length |P∗

stage-2(i)| ≤ B−Mi− η, where Mi

is incremented to Mi + 1 in Step 5. Thus, a feasible path
assignment exists for every robot i that is not at the station
at t+ 1, which completes the proof.

Excluding any computation necessary for collision avoid-
ance, Algorithm 1 requires only polynomial-time compu-
tation at each iteration. Specifically, each iteration of Al-
gorithm 1 computes NT (|Ft| + |Rt|) paths, and solves
two linear assignment problems. Both of these operations
require polynomial time, and have efficient off-the-shelf
implementations [24], [25].

V. NUMERICAL VALIDATION

We validate our approach in several Gazebo-based re-
alistic simulations. We show that our approach scales to
moderately-sized mapping robot teams and can map envi-
ronments of moderate to large sizes in a reasonable time.
We also study the effect of the path length bound on
the mapping quality. As expected, increasing the battery
capacity typically improved the performance of the approach.
Finally, we compared our approach to a vanilla frontier-
based exploration algorithm, based on [5], to show that
our approach generates energy-feasible paths for robots and
achieves coverage despite physical limitations, with only a
moderate increase in computational cost compared to [5].

Fig. 3. ROS2 Gazebo simulation environments used in Section V. (Left)
Turtlebot world, (Middle) House, (Right) Bookstore.

We performed all simulations on a standard computer
(Intel i9 processor, 125 GB RAM) running Ubuntu 22.04.

A. Set up for the numerical validation

For our numerical experiments, we used three indoor
template worlds built on the ROS2 Gazebo simulator —
the TurtleBot world (≈ 50 m2), House (≈ 150 m2), and
bookstore world (≈ 250 m2). See Figure 3.

We considered robot teams with NT ∈ {2, 4, 6} Turtle-
bots [26], with each mapping robot equipped with a Li-
DAR scanner with a range of 6 m. We restricted the
robot’s maximum linear and angular speeds to 0.15 m/s
and π

4 rad/s, respectively. We used a ROS2 gmapping
package [27] for SLAM and occupancy grid generation,
m-explore-ros2 [28] for merging maps from the map-
ping robots, and pyastar2d [29] and NAV2 [30] for
planning and control of the mapping robots. In order to
facilitate map merging, we assumed that the global positions
of the initial stations R0 were known. We set α = 0 in (4) to
focus on most informative path plans. We considered various
path length bounds B ∈ {8, 16, 32} (in m). We computed
path length | · | by measuring the actual distance traveled by
the robot, and consequently, we measured B in meters. While
we did not implement any collision avoidance controller, we
chose a collision avoidance budget η = 2 (in m) to account
for tracking errors exhibited by the robots. We compute
the frontier cluster centers Ft similarly to [31]. Alternative
clustering methods like the pixel-connectivity method in [5]
or RRT-based exploring trees [32] may be considered as well.

All tables and plots report the median and the maximum
deviation from the median evaluated over three runs.

B. Different environments and team sizes

We evaluate the performance of Algorithm 1 by varying
NT and the environment. We set B and S appropriately to
satisfy Proposition 1. For the House environment with NT =
2, all three runs triggered the redistribution step (Step 4 of
Algorithm 1) to complete the mapping. No other problem
instance triggered Step 4 of Algorithm 1.

Table I reports various performance metrics for different
environments and team sizes. As expected, Algorithm 1 did
not violate the energy constraint in any of the 15 runs, and the
travel distance between charging is below the corresponding
path length bound B in all cases. Additionally, Algorithm 1
successfully explored the different environments with high



TABLE I
PERFORMANCE METRICS OF ALGORITHM 1 FOR DIFFERENT ENVIRONMENTS AND TEAM SIZES.

Environment type Turtlebot House Bookstore
Number of robots NT 2 2 4 6 6

Path length bound B [m] 8 8 8 8 16
Maximum distance between charging [m] 4.2± 2.7 6.1± 0.5 5.6± 2.1 5.3± 0.6 13.4± 2.5
Total distance traveled by the team [m] 8.2± 1.4 73.1± 7.5 31.9± 8.6 27.9± 10.5 81.6± 28.9

Number of charging instances 1.0± 1.0 5.0± 3.0 1.5± 1.5 1.0± 1.0 2.0± 1.0
Exploration percentage [%] 99.8± 0.1 99.2± 0.7 100.0± 0.0 100± 0.0 99.9± 0.1
Overall mapping time [s] 52.1± 13.8 530.1± 62.1 258.4± 105.3 156.4± 53.7 361.2± 203.1
Computation time/Iter [s] 0.1± 0.0 0.2± 0.0 0.2± 0.2 0.9± 0.7 2.0± 0.5

Fig. 4. Paths traveled by robot teams with NT ∈ {2, 4, 6} while mapping
the House environment using Algorithm 1. Here, green squares show the
charging station locations, white region shows the clear spaces, black cells
show the occupied cells, and grey region shows the unknown cells.

exploration percentage in reasonable mapping times. Finally,
Algorithm 1 exhibited a moderate increase in computation
time for the House environment as the team size increased
from NT = 2 to NT = 6. Notably, the computation time
at each iteration of Algorithm 1 across all simulations was
below 3 seconds, despite using a (non-optimized) Python
implementation of Algorithm 1. Figure 4 shows the paths
traversed by the mapping robots for the House environment.

Figure 5 shows the trend in volumetric gain with varying
team size for the House environment. Recall that volumetric
gain refers to the area of clear space, which is proportional
to |C∞|, in the environment. For the House environment, the
volumetric gain is about 90 m2. Thus, Figure 5 shows the
effectiveness of Algorithm 1 in mapping the environment
using multiple robots despite the energy constraints.

Figure 6 shows the distance to collision between every
pair of the mapping robots for NT = 6 while mapping the
House environment. Here, the distance to collision between
any pair i, j ∈ N[1,NT ], i ̸= j positioned at pi(t) and pj(t) at
time t is defined as (with r = 0.3 m as the Turtlebot radius),

DistToCollision(pi(t), pj(t)) = ∥pi(t)− pj(t)∥ − 2r. (5)

From (5), two mapping robots collide when their correspond-
ing distance to collision is negative. Figure 6 shows that all
pairwise distances are positive, implying no collisions.

C. Effect of path length bound B and station locations S
We analyze the effect of B,S on overall performance.
Figure 7 illustrates the variations in total time, total

distance traveled, and the number of charging instances for

Fig. 5. Variation in the volumetric gain (area of the environment declared
as clear) for Algorithm 1 over the map building process in the House
environment for varying team sizes.

Fig. 6. Variation of DistToCollision (5) over the map building process
for House environment with NT = 6. For each of the resulting 15 robot
pairs, the distance to collision is positive, which implies no collision.

path length bounds B ∈ {8, 16, 32} and NT ∈ {2, 4, 6}
for the House environment. As anticipated, increasing path
length bound B (more onboard battery capacity) reduces
the number of recharges, leading to a decrease in the total
distance traveled and the total time required for exploration.

We also considered three distinct station configurations S
that satisfy the reachability condition of Proposition 1 for the
House environment, and repeated the mapping experiment
with Algorithm 1 for NT ∈ {2, 4, 6}. Table II shows that
the station locations do not appear to have an impact on
the efficiency of the exploration or the energy constraints.
Additionally, Table II reinforces the observations made in
Table I on scalability and performance of Algorithm 1.



Fig. 7. Variation in overall mapping time, total distance traveled by the team, and the number of charging instances required for different path length
bounds B (battery capacities) for the House environment.

TABLE II
PERFORMANCE METRICS FOR ALGORITHM 1 FOR DIFFERENT TEAM SIZES NT AND STATION CONFIGURATIONS IN THE HOUSE ENVIRONMENT.

(NT ,B)
Station Maximum distance Total distance traveled Number of Exploration Overall Computation

Configurations between charging [m] by the team [m] charging instances percentage [%] mapping time [s] time/Iter [s]

(2,16)
1 9.6± 1.8 57.6± 12.0 4.5± 1.5 98.1± 1.5 313.0± 102.4 0.2± 0.0

2 11.5± 1.4 46.6± 13.9 3.5± 2.5 100.0± 0.0 308.1± 132.8 0.2± 0.0

3 9.3± 0.5 34.7± 2.4 2.5± 0.5 99.9± 0.1 152.9± 34.0 0.2± 0.0

(4,16)
1 10.5± 0.8 44.3± 0.7 1.5± 0.5 99.7± 0.2 261.4± 19.6 0.6± 0.0

2 9.9± 0.0 42.7± 7.1 2.0± 1.0 99.8± 0.2 303.8± 72.3 0.5± 0.1

3 8.5± 0.1 37.5± 1.4 1.0± 1.0 100.0± 0.0 161.7± 10.2 0.5± 0.1

(6,16)
1 9.1± 3.9 35.0± 2.2 1.0± 1.0 99.8± 0.2 200.5± 13.6 1.2± 0.1

2 6.5± 6.5 25.5± 4.8 1.0± 1.0 99.6± 0.3 225.7± 82.3 1.4± 0.5

3 6.1± 2.4 28.2± 4.6 1.0± 1.0 99.7± 0.3 169.2± 62.3 1.1± 0.6

D. Comparison with greedy algorithm based on [5]

We evaluate the performance of our algorithm against
the greedy algorithm, based on [5]. The greedy algorithm
replaces Steps 6 and 7 with a round-robin assignment of
frontier cluster center from the set Ft that is closest to
the robot, while ensuring that no robot is assigned the
same frontier cluster center. Since the greedy approach does
not impose any energy constraints, it fails to complete the
exploration of the environment in all 9 runs for B = 16, as
expected.

Figure 8 shows that Algorithm 1 generates energy-feasible
paths that address the energy-constrained, multi-robot ex-
ploration problem while only incurring a modest increase
in computation time as compared to the greedy algorithm.
Algorithm 1 computes NT (|Ft| + |Rt|) paths and solves
two linear assignment problems, while the greedy algorithm
computes only NT |Ft| paths and performs a round-robin
assignment via NT linear searches for the shortest path.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the energy-constrained multi-
robot exploration problem with a focus on building maps of
unknown environments. Our approach uses a combination
of frontier-based exploration and multi-robot task assignment
to generate energy-feasible paths for the mapping robots. We
also proposed a computationally-inexpensive implementation
of the algorithm that enables the mapping robot to account
for changes in the evolving occupancy grid during the map
building process via replanning. Finally, we characterized

Fig. 8. Comparison of computation time per-iteration for Algorithm 1
with the greedy approach inspired from [5] for NT ∈ {2, 4, 6} in the
House environment.

sufficient conditions under which Algorithm 1 is guaranteed
to have recursive feasibility and terminate in finite iterations.

Our approach has some shortcomings, which we hope
to address in future work. First, our approach uses robot
redistribution to overcome the undesirable scenario of robots
terminating at stations far away from the remaining frontier
clusters (see Step 4 in Algorithm 1). Consequently, the
total distance traveled by the mapping robots may be much
higher than the optimal distance to be traveled. Second, our
approach can only accommodate static charging stations.
Third, we focussed on generating shortest paths at each stage
of Algorithm 1, which may result in suboptimal exploration
when B is moderately large (a setting ignored in this paper).
All these limitations arise from our focus on reducing the



computational burden of Algorithm 1. Our future work
will also focus on validating the proposed approach using
experiments with physical robots.
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