
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

LoDA: Low-Dimensional Adaptation of Large Language
Models

Liu, Jing; Koike-Akino, Toshiaki; Wang, Pu; Brand, Matthew; Parsons, Kieran; Wang, Ye

TR2025-130 September 03, 2025

Abstract
Parameter-Efficient Fine-Tuning (PEFT) has recently garnered significant attention, due to
the enormous size of Large Language Models (LLMs). Among various PEFT methods, Low-
Rank Adaptation (LoRA) demonstrates comparable performance to full fine-tuning, despite
having significantly fewer trainable parameters. In this work, we first generalize LoRA from
a low-rank linear adaptation/mapping to low-dimensional, non-linear adaptation/mapping,
which we have named Low- Dimensional Adaptation (LoDA). We also propose LoDA+, which
further improves the expressiveness of the non-linear adaptation, while still using nearly the
same number of tunable parameters as LoRA. Both LoDA and LoDA+ include LoRA as
a special case. To improve computational efficiency at inference, we further propose R-
LoDA(+) and S-LoDA(+), by replacing the pre-trained weight matrix with its low-rank or
sparse approximation, which is frozen during fine-tuning. Empirical evaluations on Natural
Language Generation tasks demonstrate that variants of LoDA outperform LoRA and other
baselines.

Springer Book 2025

This is a post-peer-review, pre-copyedit version of an article published in Springer Book 2025. The final authenticated
version is available online at: http://dx.doi.org/.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

LoDA: Low-Dimensional Adaptation of Large
Language Models

Jing Liu, Toshiaki Koike-Akino, Pu (Perry) Wang, Matthew Brand, Kieran Parsons,
and Ye Wang

Abstract Parameter-Efficient Fine-Tuning (PEFT) has recently garnered significant
attention, due to the enormous size of Large Language Models (LLMs). Among
various PEFT methods, Low-Rank Adaptation (LoRA) demonstrates comparable
performance to full fine-tuning, despite having significantly fewer trainable parameters.
In this work, we first generalize LoRA from a low-rank linear adaptation/mapping
to low-dimensional, non-linear adaptation/mapping, which we have named Low-
Dimensional Adaptation (LoDA). We also propose LoDA+, which further improves
the expressiveness of the non-linear adaptation, while still using nearly the same
number of tunable parameters as LoRA. Both LoDA and LoDA+ include LoRA as a
special case. To improve computational efficiency at inference, we further propose
R-LoDA(+) and S-LoDA(+), by replacing the pre-trained weight matrix with its
low-rank or sparse approximation, which is frozen during fine-tuning. Empirical
evaluations on Natural Language Generation tasks demonstrate that variants of LoDA
outperform LoRA and other baselines.

1 Introduction

Large language models (LLMs), such as ChatGPT [1], Gemini [2], Claude 3 [3],
and LLaMA2 [4], have shown great promise in generating human-like text and
have sparked excitement about their potential applications across various industries.
The sizes of large language models (LLMs) have grown at an unprecedented rate,
with current models boasting parameter counts in the hundreds of billions or even
trillions, necessitating massive amounts of computational resources for training
and inference. Recent studies show that the performance of a Pre-trained Language
Model (PLM) can be significantly improved by further fine-tuning on domain-specific
data [5]. Therefore, fine-tuning PLMs for domain-specific tasks has become the de

Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139, USA
e-mail: {jiliu,koike,pwang,brand,parsons,yewang}@merl.com

1

{jiliu, koike, pwang, brand, parsons, yewang} @ merl.com

2 Jing Liu et al.

facto procedure. However, full fine-tuning of such LLMs is still very expensive. For
instance, fine-tuning a 65 billion-parameter model requires more than 780 GB of
memory [6]. Parameter-Efficient Fine-Tuning (PEFT) fine-tunes only a small set of
parameters, which may be a subset of the existing model parameters or a set of newly
added parameters, thereby greatly reducing the computational and memory costs.
Another advantage of PEFT is that, in addition to the pre-trained model, only a small
number of (extra) model parameters need to be stored for each fine-tuned task. While
for multiple downstream tasks, PEFT greatly saves the storage, while full fine-tuning
needs to generate a new large model for each downstream task.1. Besides parameter
savings, PEFT makes it possible to quickly adapt to new tasks without catastrophic
forgetting [7], which has often been observed during the full fine-tuning of LLMs.
PEFT approaches have also been shown to be better than full fine-tuning in low-data
regimes [8, 5]

Therefore, many PEFT methods have been proposed. For example, prefix tuning [8]
and prompt tuning [9] prepend some tunable prefix tokens to the input or hidden
layers, and only train these soft prompts during fine-tuning. Several adapter tuning
methods [10, 11, 7, 12] insert (and tune) small neural modules called adapters to some
layers of the PLM. More recently, [5] propose to use low-rank decomposition matrices
to approximate the parameter update of the weight matrix of a dense layer. In particular,
they propose to update the Query and Value projection matrices in the Transformer
architecture, which shows promising performance and has become a popular PEFT
tool for LLMs in modern libraries, e.g., Hugging Face PEFT library [13]. For a
comprehensive review and comparison, we refer the interested readers to recent
surveys [14, 15, 16, 17].

LoRA is motivated by the hypothesis that the change in the model (to adapt to a
related downstream task) is intrinsically low-dimensional [18]. LoRA constrains the
change in weights during model adaptation to be low-rank, leading to the Low-Rank
Adaptation (LoRA) approach [5]. For a dense layer of the PLM, its original weight
parameters, e.g., 𝑊 ∈ R𝑑×𝑑 (blue part of Figure 1a) is frozen. During fine-tuning,
LoRA uses low-rank decomposition matrices 𝐴 ∈ R𝑑×𝑟 and 𝐵 ∈ R𝑟×𝑑 to constrain
the weight update Δ𝑊 = 𝐴𝐵 (orange part of Figure 1a). As the rank 𝑟 is typically set
to be very small, the number of parameters in 𝐴 and 𝐵 are significantly less than the
original 𝑊 .

We view the neural network as a function, and the change in the neural network
during the task adaptation can be more generally viewed as the change in the functional
mapping. Let the input to the dense layer be denoted by 𝑥, and the output of the
pre-trained dense layer denoted by ℎ0 = 𝑥𝑊 . After LoRA fine-tuning of that dense
layer, the new output ℎ′LoRA = ℎ0+ΔℎLoRA, whereΔℎLoRA = 𝑥𝐴𝐵. Thus, the mapping
from input 𝑥 to the update ΔℎLoRA = 𝑥𝐴𝐵 by LoRA is a low-rank (i.e., 𝑟-dimensional)
linear mapping.

1 For example, in [5], a GPT-3 175B model, of size 350GB, is fine-tuned with a rank-4 LoRA
adapter that requires only 35MB for each downstream task. Storing 100 adapted models requires
only 350GB + 35MB × 100 ≈ 354GB as opposed to 350GB × 100 ≈ 35TB for full fine-tuning over
100 tasks.

LoDA: Low-Dimensional Adaptation of Large Language Models 3

(a) LoRA (b) LoDA

(c) S-LoDA (d) R-LoDA

(e) LoDA+

Fig. 1: Overview of (a) LoRA; (b) LoDA; (c) S-LoDA; (d) R-LoDA; (e) LoDA+.
The blue part is frozen during fine-tuning, and only the orange part is trained. In
LoDA+, there is essentially only one matrix 𝐵, but the non-linear part has additional
non-linear operations after 𝐵 (e.g., LeakyReLU).

4 Jing Liu et al.

Although the update of the mapping 𝑥 → Δℎ likely has an intrinsic low dimension
for task adaptation, the linear low-rank constraint imposed by LoRA might be too
restrictive, and therefore we aim to relax it to a more general low-dimensional,
non-linear constraint. [19] also argue that the linear adaptation may limit the learning
capacity of LoRA. Consequently, we propose to extend LoRA to a more general
Low-Dimensional Adaptation (LoDA), which will be detailed in the next section.

Notation We follow conventional terminologies for the Transformer architecture,
where 𝑑model denotes the input/output dimension of a Transformer block. We use
𝑊q, 𝑊k, and 𝑊v to respectively refer to the query, key, and value projection matrices
of a self-attention module.

2 Proposed Methods

One key question is how to design and realize a more general low-dimensional, non-
linear constraint than the linear low-rank constraint of LoRA, while keeping LoRA as
a special case. We propose a deep neural network architecture for LoDA as illustrated
in Figure 1b. The low-dimensional non-linear constraint is realized by a multi-layer
neural network within the bottleneck structure (to maintain parameter efficiency) and
a residual connection between matrices 𝐴 and 𝐵. It can be considered as a non-linear
version of LoRA with the non-linear mapping 𝑥 → ΔℎLoDA � 𝑓LoDA (𝑥).

Mathematically, with our proposed residual connection architecture of LoDA in
Figure 1b, we have

ΔℎLoDA = 𝑓LoDA (𝑥) = 𝑥𝐴𝐵 + 𝑓1 (𝑥𝐴)𝐵, (1)

where 𝑓1 (·) is a non-linear function between matrix 𝐴 and matrix 𝐵, which consists
of a series of linear layers and non-linear operations (e.g., LeakyReLU activation,
layer-normalization). Note that Figure 1b is merely an example of a LoDA structure.
For instance, the non-linear part between matrix 𝐴 and matrix 𝐵 could have more
layers than illustrated, and may use non-square matrices. LoRA is a special case of
LoDA if 𝑓1 (𝑥𝐴)𝐵 is zero (e.g., a hidden layer’s weights in LoDA are zero) or if 𝑓1 (·)
is linear, for example.

2.1 Extension to LoDA+

Although LoDA generalizes LoRA from a low-rank linear mapping/adaptation to
a low-dimensional, non-linear mapping/adaptation, and keeps LoRA as a special
case, the image of such a non-linear mapping still lies in a low-dimensional linear
subspace (i.e., the range of matrix 𝐵). Is it possible to further generalize that to a
low-dimensional (non-linear) manifold, while keeping LoRA as a special case, and
using almost the same number of tunable parameters as LoRA?

LoDA: Low-Dimensional Adaptation of Large Language Models 5

We further propose the following mapping for LoDA+, illustrated in Figure 1e,
that affirms the possibility:

ΔℎLoDA+ = 𝑓LoDA+ (𝑥) = 𝑥𝐴𝐵 + 𝑓2 (𝑓1 (𝑥𝐴)𝐵) (2)

Note that the key difference between LoDA and LoDA+ is the additional non-
linear function 𝑓2 (·), e.g., non-linear activation and/or layer-normalization. With
this additional non-linear function, the image of the mapping 𝑓LoDA+ becomes the
combination of a linear subspace (the first term in Eq. 2) and a non-linear manifold
(the second term in Eq. 2). For convenience, we will use LoDA(+) to represent both
‘LoDA and LoDA+’.
Viewing LoDA(+) as Deep Parallel Adapters: [20] viewed LoRA as a parallel
adapter. Similarly, the proposed LoDA can be viewed as a deep parallel adapter.
Recent work [20, 21] propose to use the traditional shallow adapter in a parallel
fashion instead of the usual sequential fashion. The shallow adapter there only has a
down-projection layer, followed by a non-linear activation function (typically ReLU),
then an up-projection layer, and the adapter attaches to the input and output of the
Attention module or the Feed-Forward Network module of a Transformer block in an
LLM. We refer the interested readers to [22, Figure 1] and [20, Table 1] for more
details. In contrast, the proposed LoDA, which aims at learning a low-dimensional,
non-linear mapping, has a deep structure to capture the underlying nonlinearity.
Further, in LLMs, LoDA and LoRA are attached to𝑊q and𝑊v, but not attached to the
whole Attention module nor to the Feed-Forward Network module of the Transformer
block. Also, it is interesting to note that LoDA has a Residual Connection inside, that
is between the output of matrix 𝐴 and the input of matrix 𝐵 (see Figure 1b), which is
different from the existing adapters. More interestingly, LoDA+ can be viewed as a
deep+shallow dual parallel adapter, where the shallow and deep parts correspond to
the first and second terms in Eq. 2 respectively.

2.2 S-LoDA(+) and R-LoDA(+)

As the dimension of the non-linear layers in LoDA(+) is restricted to a very small
value 𝑟, the additional computational cost during the inference is very small (see
Section 3.2 for more details). Further, as LoDA(+) runs in parallel with the pre-trained
weight matrix 𝑊 , it will not introduce apparent delay in the overall inference with
parallelization, unlike the sequential adapters in the literature. With LoDA(+), the
main computational bottleneck is still 𝑊 of the PLM. Is it possible to further improve
the computational efficiency of a LoDA(+) fine-tuned model, and even significantly
better than the pre-trained model?

We observe that the combined projection matrix 𝑊proj = [𝑊q,𝑊k,𝑊v], inside
the Attention module of GPT2-medium (with size 1024 × 3072), can be well-
approximated by a relatively low-rank matrix or a relatively sparse matrix. More
specifically, Figure 2a shows the percentage of total energy (i.e.,

∑𝑅
𝑖=1 𝜎

2
𝑖
/∑1024

𝑖=1 𝜎2
𝑖
)

6 Jing Liu et al.

with respect to the number of top singular values 𝑅 of 𝑊proj in the first Transformer
block of GPT2-medium. We see that using only the top 300 singular value components
of 𝑊proj preserves over 93% of its total energy. Figure 2b shows the percentage of
total energy w.r.t. the percentage of nonzero entries of 𝑊proj (by zeroing out smaller
magnitude weights). We see that keeping 40% of the larger magnitude entries of
𝑊proj can preserve over 96% of its total energy.

(a) (b)

Fig. 2: (a) Percentage of total energy w.r.t. the number of top singular values of 𝑊proj.
(b) Percentage of total energy w.r.t. the percentage of nonzero entries of 𝑊proj (by
zeroing out smaller magnitude weights).

The aforementioned questions and observations motivate us to further propose
R-LoDA(+) and S-LoDA(+), which are LoDA(+) combined with the low-Rank or
Sparsified approximations of 𝑊 , which are frozen during fine-tuning, while the
adapter is trained/fine-tuned for this approximate 𝑊 . See Figure 1c and Figure 1d
for illustrations2. Our empirical investigation shows that even when the pre-trained
projection matrix 𝑊proj is low-rank approximated or sparsified, combining with
LoDA(+) can still achieve competitive performance. More importantly, the total
inference cost of the R-LoDA(+) or S-LoDA(+) fine-tuned model can be significantly
lower than the pre-trained model. The analysis of the computational costs can be
found in Section 3.2, and Table 2 in Section 4 also demonstrates the significant
computational savings for the GPT2-medium model.

2 If applying R-LoDA (or S-LoDA) on 𝑊q and 𝑊v, one could approximate 𝑊q and 𝑊v separately,
but we directly approximate the whole 𝑊proj = [𝑊q, 𝑊k, 𝑊v] to make the model inference more
efficient.

LoDA: Low-Dimensional Adaptation of Large Language Models 7

3 Discussion

3.1 Number of Fine-Tuning Parameters

The number of trainable parameters of LoRA and the proposed methods are determined
by the bottleneck dimension 𝑟 and the shape of the original weights. More specifically,
in Figure 1, the matrices 𝐴 and 𝐵 across all methods have dimensions 𝑑 times
𝑟. The proposed methods have two additional 𝑟 by 𝑟 bottleneck matrices. Their
non-linear activation function is LeakyReLU with a fixed slope of 0.8, and their
layer-normalization is not trainable. So, the total number of trainable parameters
for LoRA is 2𝑟𝑑𝐿, and for all proposed methods is 2(𝑟𝑑 + 𝑟2)𝐿, where 𝐿 is the
number of weight matrices that we apply LoRA/LoDA(+)/S-LoDA(+)/R-LoDA(+)
to. Note that they are almost the same when 𝑟 ≪ 𝑑. For example, in GPT2-medium,
𝑑 = 𝑑model = 1024 and 𝑟 = 4 are used for all methods by default, 𝑟2 is negligible
compared to 𝑟𝑑. As in LoRA, we only apply the proposed methods to 𝑊q and 𝑊v (of
shape 𝑑model × 𝑑model) in the self-attention module.

3.2 Computational Efficiency During Inference

In Figure 1, let the input embeddings be 𝑋 ∈ R𝑛×𝑑 , where 𝑛 is sequence length. For
the LoDA(+) part, recall that 𝐴 ∈ R𝑑×𝑟 , 𝐵 ∈ R𝑟×𝑑 , and the two bottleneck matrices
in Figure 1b-Figure 1e are 𝑟 by 𝑟 square matrices, and there are some non-linear
activations and/or layer-normalization layers. The computational complexity of a
LoDA(+) adapter during the inference is 𝑂 (𝑟𝑑𝑛 + 𝑑𝑛 + 𝑟2𝑛 + 𝑟𝑛), where the dominant
part is 𝑂 (𝑟𝑑𝑛), which is much lower than computing 𝑋𝑊q (or 𝑋𝑊v), which costs
𝑂 (𝑑2𝑛), since 𝑟 ≪ 𝑑 (recall that in GPT2-medium, 𝑑 = 𝑑model = 1024 and 𝑟 = 4 are
used for all methods by default).

For R-LoDA and S-LoDA, as mentioned earlier, if applying them on𝑊q and𝑊v, one
could low-rank approximate (or sparsify) 𝑊q and 𝑊v separately. To make the model
inference more efficient, we directly approximate the whole 𝑊proj = [𝑊q,𝑊k,𝑊v]
instead. More specifically, for 𝑊proj ∈ R𝑑×3𝑑 , we approximate it using the product of
matrix 𝑊𝐴 ∈ R𝑑×𝑅 and matrix 𝑊𝐵 ∈ R𝑅×3𝑑 , i.e., 𝑊𝐴𝑊𝐵. The computational cost for
𝑋𝑊proj is 3𝑑2𝑛 MACs (Multiply-Accumulate Operations), while the computational
cost for the low-rank version (𝑋𝑊𝐴)𝑊𝐵 is 𝑛𝑑𝑅 + 𝑛𝑅3𝑑 = 4𝑅𝑑𝑛 MACs, which is
lower than the former as long as 𝑅 < 3𝑑/4 (e.g., in GPT2-medium, 𝑑 = 1024, so
we only need 𝑅 < 768). One can calculate that the R-LoDA(+) fine-tuned model is
computationally more efficient than the pre-trained model during inference, even
setting 𝑅 as high as 700 in our experimental settings.

Similarly, for S-LoDA(+), the computational cost for the sparsified version 𝑋𝑊Sparse
is 𝑠 × 3𝑑2𝑛 MACs, where 𝑠 is the fraction of nonzero entries in 𝑊proj. While the
added computational cost of the LoDA+ adapters on𝑊q and𝑊v is 2(2𝑟𝑑 + 2𝑟2 + 4𝑟)𝑛
MACs, which is relatively negligible since 𝑟 ≪ 𝑑, and the total computational saving

8 Jing Liu et al.

Method Approx # Trainable E2E NLG Challenge
𝑊proj Parameters BLEU NIST MET ROUGE-L CIDEr

FT* No 354.92M 68.2 8.62 46.2 71.0 2.47
AdapterL* No 0.37M 66.3 8.41 45.0 69.8 2.40
AdapterL* No 11.09M 68.9 8.71 46.1 71.3 2.47
AdapterH* No 11.09M 67.3±.6 8.50±.07 46.0±.2 70.7±.2 2.44±.01
PreLayer* No 0.35M 69.7 8.81 46.1 71.4 2.49
FTTop2* No 25.19M 68.1 8.59 46.0 70.8 2.41
FT𝑊q ,𝑊v No 48.00M 69.4±.1 8.74±.02 46.0±.0 71.0±.1 2.48±.01
One-shot No - 14.6 2.86 27.5 40.3 0.82
LoRA No 0.38M 69.0±.7 8.69±.07 46.5±.2 71.3±.4 2.51±.00
LoDA No 0.38M 70.2±.3 8.83±.03 46.6±.1 71.6±.1 2.53±.01
S-LoDA Keep 40% 0.38M 70.2±.3 8.83±.03 46.6±.1 71.6±.1 2.53±.01
R-LoDA Rank300 0.38M 69.7±.2 8.79±.03 46.7±.0 71.5±.3 2.52±.00
LoDA+ No 0.38M 69.9±.3 8.81±.04 46.5±.0 71.4±.0 2.52±.00
S-LoDA+ Keep 40% 0.38M 69.6±.5 8.77±.06 46.7±.1 71.6±.2 2.50±.01
R-LoDA+ Rank300 0.38M 70.1±.4 8.81±.05 46.4±.1 71.6±.3 2.52±.01

Table 1: GPT2-medium with different adaptation methods on E2E NLG Challenge.
For all metrics, higher is better. * indicates numbers published in prior works, as
compiled by [5].

is then approximately (1− 𝑠) × 3𝑑2𝑛 MACs. Reducing the computational complexity
with R-LoDA(+) and S-LoDA(+) can directly decrease total power consumption in
inference.

4 Empirical Studies

We focus on Natural Language Generation (NLG) tasks, and we follow the setup
of [5, 8] on GPT2-medium [23] for a direct comparison. We compare the downstream
task performance of our proposed methods with LoRA, adapter tuning methods
by [10] (AdapterH) and [24] (AdapterL), prefix-layer tuning (PreLayer), full fine-
tuning (FT), and fine-tuning the top-2 layers (FTTop2), similar to [5]. We also compare
direct fine-tuning of the projection matrices 𝑊q and 𝑊v (denoted as FT𝑊q ,𝑊v). As
a reference, we also tested the one-shot in-context learning performance of the
pre-trained GPT2-medium model, by providing the task description and one example
in the prompt.

For LoDA(+), we simply set the hyper-parameters (e.g., bottleneck dimension
𝑟 = 4, learning rate, etc.) to the same as that used by LoRA (indicated in Table 11

LoDA: Low-Dimensional Adaptation of Large Language Models 9

of [5]3) without tuning, which may favor LoRA. For R-LoDA(+) and S-LoDA(+),
since the pre-trained 𝑊proj is approximated, training a few more epochs may be
needed to recover some details that are potentially lost during approximation. Thus,
we train R-LoDA(+) and S-LoDA(+) up to 10 epochs and choose the best result from
epoch 5 and epoch 10. The experiments were run on an NVIDIA A40 GPU with 48
GB memory, and the implementations will be available on GitHub.

We first evaluated on the E2E NLG Challenge [25] dataset, which is a dataset for
training end-to-end NLG systems and is commonly used for data-to-text evaluation.
The dataset consists of approximately 42K training, 4.6K validation, and 4.6K testing
examples from the restaurant domain. It is released under the Creative Commons
BY-NC-SA 4.0 license. Table 1 compares performance of different methods on this
dataset. One-shot in-context learning4 performs much worse than other methods which
fine-tune the model. LoDA, LoDA+, and S-LoDA outperform the baselines (including
Fine-Tuning methods) on all 5 evaluation metrics. Other variants R-LoDA(+) and
S-LoDA+ perform better than or at least on-par with LoRA and other baselines.

We also perform experiments on the DART dataset [26] following the setup
of [5, 8]. This open-domain data-to-text dataset has a total of 82K examples. DART
presents a significantly larger and more complex data-to-text task compared to the
E2E NLG Challenge dataset [25]. This dataset is released under the MIT license.
We evaluate with the BLEU [27], METEOR [28], and TER [29] metrics, similar to
[5], but with slightly higher precision. The evaluation code is based on the source
code of LoRA [5], which is available on GitHub.5 The results are shown in Table 2,
which also include the number of MACs per token for computing Query/Key/Value
during inference in the fine-tuned model. Note that LoRA fine-tuned model has the
same computational cost as the pre-trained model if the adapter is merged into the
pre-trained weight, otherwise its computational cost is almost the same as LoDA.
Also note that the number of trainable parameters in FT𝑊q ,𝑊v accounts for nearly 1/7
of the total model parameters, and is 126 times more than that of LoRA and proposed
methods. LoDA and especially LoDA+ again outperform LoRA and FT𝑊q ,𝑊v , and
their computational cost during inference is only slightly higher than the pre-trained
model.

We notice that higher rank and less sparseness to approximate 𝑊proj, respectively,
in R-LoDA(+) and S-LoDA(+), are needed for DART, as it is a more complex task than
the E2E NLG Challenge. Nevertheless, even with pruning 40% of the entries in 𝑊proj,
S-LoDA(+) can outperform LoRA and FT𝑊q ,𝑊v . For R-LoDA(+), approximating
𝑊proj with the 300 top singular value components seems insufficient on DART,

3 We do not know the random seeds used in [5]. So we run LoDA(+) and LoRA with the same
random seeds for fair comparisons. On DART, we cannot reproduce the results of LoRA using the
default of 5 epochs, and we run 10 epochs instead to obtain results similar to that reported in [5].
4 The task description and one example that we provided in the prompt are as follows: "Generate a
restaurant description from the table. Here is an example: name : The Eagle | Type : coffee shop |
food : Japanese | price : less than £20 | customer rating : low | area : riverside | family friendly : yes |
near : Burger King. The generated description is like: The Eagle is a low rated coffee shop near
Burger King and the riverside that is family friendly and is less than £20 for Japanese food. Now
generate description for this table: ".
5 https://github.com/microsoft/LoRA

https://github.com/microsoft/LoRA

10 Jing Liu et al.

while it is sufficient on E2E NLG Challenge in Table 1 (as R-LoDA and R-LoDA+
outperform baselines on E2E NLG Challenge with Rank = 300). This is likely because
the E2E NLG Challenge is a relatively easier downstream task, so a rough low-rank
approximation of the pre-trained weights combined with LoDA(+) fine-tuning is
sufficient. R-LoDA+ with Rank = 500 shows reasonable performance. We observe a
trade-off between efficiency and accuracy in R-LoDA(+) and S-LoDA(+). This may
shed light on how to choose the Rank and Sparsity in R-LoDA(+) and S-LoDA(+),
which depends on the downstream task as well as its relation to the pre-trained tasks.
Such (downstream) task-dependent auto-configuration of Rank and Sparsity is a topic
for our future work.

Most notably, the number of MACs per token for computing Query/Key/Value
during inference, in both the S-LoDA(+) and R-LoDA(+) fine-tuned models, is
significantly lower than the pre-trained model. For example, S-LoDA+ that prunes
40% of the entries in 𝑊proj can significantly reduce the number of MACs, while
having slightly better performance than LoRA and FT𝑊q ,𝑊v .

4.1 Why LoDA(+) can Outperform FT𝑾q ,𝑾v?

From Table 1 and Table 2, one can see that LoDA and LoDA+ consistently outperform
FT𝑊q ,𝑊v on all evaluation metrics. Recall that LoDA(+) are applied to projection
matrices 𝑊q and 𝑊v, while FT𝑊q ,𝑊v directly fine tunes the whole matrices 𝑊q and
𝑊v. Naturally, one may question why LoDA(+) does better.

It is important to note that directly fine tuning the weight matrix 𝑊 of a dense
layer still retains a linear mapping. Let the input to that dense layer be denoted
by 𝑥, and the output of the pre-trained dense layer be denoted by ℎ0 = 𝑥𝑊 . After
directly fine-tuning that dense layer, we have 𝑊 ′ = 𝑊 + Δ𝑊 , and the new output
ℎ′

FT𝑊 = 𝑥𝑊 ′ = 𝑥𝑊 + 𝑥Δ𝑊 = ℎ0 + ΔℎFT𝑊 , where ΔℎFT𝑊 = 𝑥Δ𝑊 . So the mapping
from input 𝑥 to the update ΔℎFT𝑊 is still a linear mapping, though this mapping is
generally not low-rank.6

In contrast, the mappings of LoDA and LoDA+ in Eq. 1 and Eq. 2 are non-linear,
and cannot be expressed in the form of Δℎ = 𝑥Δ𝑊 . This is in line with the observation
in Eq. 5 of [19], when the authors discuss the limited learning capacity of LoRA. From
that perspective, our proposed LoDA(+) can be viewed as expanding the learning
capacity of LoRA, which further explains why LoDA(+) performs better.

4.2 Effect of the Bottleneck Dimension

We further study the effect of the bottleneck dimension 𝑟 of LoDA(+) adapters in
GPT2-medium using the E2E NLG Challenge dataset, and also include LoRA (under

6 The definition of the rank of a linear mapping can be found at https://en.wikipedia.org/
wiki/Linear_map

https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Linear_map

LoDA: Low-Dimensional Adaptation of Large Language Models 11

Method Approx MACs/token of # Trainable DART
𝑊proj compute Q/K/V Parameters BLEU↑ MET↑ TER↓

FT𝑊q ,𝑊v No 75.5M 48.00M 47.1±.1 36.0±.0 0.480±.000
LoRA No 75.5/75.9M 0.38M 47.2±.1 36.0±.0 0.480±.000
LoDA No 75.9M 0.38M 47.3±.1 36.0±.0 0.480±.000
S-LoDA Keep 60% 45.7M 0.38M 47.3±.2 36.0±.0 0.477±.006
S-LoDA Keep 50% 38.1M 0.38M 47.1±.2 36.0±.0 0.480±.000
R-LoDA Rank500 49.5M 0.38M 46.8±.7 35.9±.1 0.483±.006
R-LoDA Rank400 39.7M 0.38M 46.6±.2 35.9±.1 0.483±.006
R-LoDA Rank300 29.9M 0.38M 46.5±.2 35.5±.4 0.487±.006
LoDA+ No 76.1M 0.38M 47.3±.2 36.0±.0 0.477±.006
S-LoDA+ Keep 60% 45.9M 0.38M 47.3±.1 36.0±.0 0.473±.006
S-LoDA+ Keep 50% 38.3M 0.38M 47.1±.2 36.0±.0 0.480±.000
R-LoDA+ Rank500 49.7M 0.38M 47.1±.5 35.9±.1 0.480±.000
R-LoDA+ Rank400 39.9M 0.38M 46.7±.2 35.9±.1 0.483±.006
R-LoDA+ Rank300 30.1M 0.38M 46.3±.6 35.6±.5 0.483±.006

Table 2: GPT2-medium with different adaptation methods on DART. For TER metric,
lower is better. The number of MACs per token of computing Query/Key/Value
during inference in LoRA fine-tuned model is 75.5 million if the LoRA adapter is
merged into the pre-trained weight 𝑊 , otherwise it is 75.9 million.

the same random seeds) as a baseline. The hyper-parameters (e.g., learning rate) of
LoDA(+) are set to be the same as that used by LoRA (indicated in Table 11 of [5])
without tuning, which may favor LoRA, but the main purpose here is to study the
effect of the bottleneck dimension in LoDA(+). Table 3 shows the performances
of each adapter under different bottleneck dimension 𝑟. LoDA+ and LoRA achieve
their best performance roughly around 𝑟 = 128, while further increasing 𝑟 does not
show apparent improvement. Interestingly, LoDA achieves favorable performance at
bottleneck dimensions of both 𝑟 = 4 and 𝑟 = 256.

5 Conclusion and Future Work

We have generalized LoRA to the framework of LoDA(+), where LoRA is a special
case, and have demonstrated their very promising performance. We also extended
LoDA(+) to R-LoDA(+) and S-LoDA(+), by applying low-rank and sparse approxima-
tion, which achieves similar performance, while drastically improving computational
efficiency. One future direction is to approximate 𝑊 with other structured matrices,
e.g., block-sparse matrix, Monarch matrix [30], or with quantization of the pre-trained
model, such as in QLoRA [6].

12 Jing Liu et al.

Method Bottleneck E2E NLG Challenge
Dimension 𝑟 BLEU NIST MET ROUGE-L CIDEr

LoRA 2 69.4±.5 8.74±.07 46.5±.1 71.4±.3 2.49±.03
LoRA 4 69.0±.7 8.69±.07 46.5±.2 71.3±.4 2.51±.00
LoRA 8 69.4±.6 8.74±.06 46.6±.1 71.7±.3 2.52±.01
LoRA 16 68.6±.5 8.65±.06 46.4±.2 71.4±.3 2.50±.01
LoRA 32 69.4±.8 8.74±.10 46.6±.2 71.6±.1 2.51±.01
LoRA 64 69.7±.1 8.77±.02 46.5±.1 71.8±.1 2.51±.01
LoRA 128 69.8±.4 8.77±.03 46.6±.1 71.8±.2 2.51±.01
LoRA 256 69.0±.4 8.68±.04 46.6±.2 71.7±.2 2.50±.01
LoRA 512 69.4±.5 8.72±.05 46.6±.1 71.6±.1 2.51±.01
LoRA 1024 69.4±.4 8.72±.04 46.6±.1 71.6±.1 2.51±.01

LoDA 2 67.7±1.0 8.62±.14 44.9±.5 69.5±.7 2.32±.04
LoDA 4 70.2±.3 8.83±.03 46.6±.1 71.6±.1 2.53±.01
LoDA 8 69.4±.2 8.74±.04 46.5±.2 71.1±.2 2.52±.01
LoDA 16 69.6±.4 8.77±.05 46.6±.1 71.4±.2 2.51±.01
LoDA 32 68.3±1.0 8.63±.12 46.3 ±.2 71.0±.3 2.49±.03
LoDA 64 68.2±.7 8.62 ±.09 46.2±.2 70.8±.4 2.49±.02
LoDA 128 69.9±.0 8.81 ±.02 46.6±.1 71.6±.2 2.53±.01
LoDA 256 70.2±.8 8.82±.09 46.8±.1 71.8±.3 2.53±.02
LoDA 512 68.9±.8 8.69±.08 46.4±.4 71.5±.5 2.50±.02
LoDA 1024 68.9±.3 8.70±.04 46.5±.2 71.5±.2 2.51±.01

LoDA+ 2 66.9±.9 8.52±.16 44.7 ±.1 69.3±.1 2.35±.06
LoDA+ 4 69.9±.3 8.81±.04 46.5±.0 71.4±.0 2.52±.00
LoDA+ 8 70.0±.6 8.82±.06 46.6 ±.1 71.4±.3 2.54±.02
LoDA+ 16 69.6±.3 8.77±.05 46.6±.1 71.4±.3 2.52±.01
LoDA+ 32 69.9±.3 8.79±.04 46.7±.1 71.7±.0 2.53±.01
LoDA+ 64 69.9±.6 8.81±.06 46.7 ±.1 71.6±.5 2.52±.02
LoDA+ 128 70.2±.6 8.83±.06 46.8±.1 71.9±.2 2.53±.01
LoDA+ 256 69.9±.4 8.79±.03 46.6±.1 71.7±.4 2.52±.01
LoDA+ 512 70.1±.5 8.81±.06 46.8±.1 72.0±.2 2.53±.02
LoDA+ 1024 69.6±.8 8.77±.11 46.7 ±.1 71.7±.2 2.52±.03

Table 3: GPT2-medium with different adaptation methods and corresponding bottle-
neck dimensions 𝑟 , on E2E NLG Challenge. For all metrics, higher is better. For each
adapter, bold fonts indicate its best metric score among tested bottleneck dimensions.

LoDA: Low-Dimensional Adaptation of Large Language Models 13

References

[1] OpenAI. GPT-4 technical report, 2023.
[2] Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,

Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a
family of highly capable multimodal models. arXiv preprint arXiv:2312.11805,
2023.

[3] Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude
3 technical report, 2024. URL https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.
pdf.

[4] Hugo Touvron, Louis Martin, and Kevin Stone et al. Llama 2: Open foundation
and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.
09288.

[5] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large
language models. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

[6] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora:
Efficient finetuning of quantized llms. Advances in Neural Information Process-
ing Systems, 36, 2023.

[7] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and
Iryna Gurevych. Adapterfusion: Non-destructive task composition for transfer
learning, 2021.

[8] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts
for generation. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli,
editors, Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.acl-long.353. URL https://aclanthology.org/2021.acl-long.353.

[9] Brian Lester, Rami Al-Rfou, and Noah Constant. The Power of Scale for
Parameter-Efficient Prompt Tuning. arXiv:2104.08691 [cs], April 2021. URL
http://arxiv.org/abs/2104.08691. arXiv: 2104.08691.

[10] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly.
Parameter-efficient transfer learning for nlp. In International conference on
machine learning, pages 2790–2799. PMLR, 2019.

[11] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple
visual domains with residual adapters. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, page 506–516,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

[12] Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer,
Nils Reimers, and Iryna Gurevych. Adapterdrop: On the efficiency of adapters
in transformers, 2020.

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2021.acl-long.353
http://arxiv.org/abs/2104.08691

14 Jing Liu et al.

[13] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, and
Sayak Paul. PEFT: state-of-the-art parameter-efficient fine-tuning methods.
https://github.com/huggingface/peft, 2022.

[14] Jonas Pfeiffer, Sebastian Ruder, Ivan Vulić, and Edoardo Maria Ponti. Modular
deep learning. arXiv preprint arXiv:2302.11529, 2023.

[15] Vladislav Lialin, Vĳeta Deshpande, and Anna Rumshisky. Scaling down to scale
up: A guide to parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647,
2023.

[16] Mohammed Sabry and Anya Belz. Peft-ref: A modular reference architecture
and typology for parameter-efficient finetuning techniques. arXiv preprint
arXiv:2304.12410, 2023.

[17] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng
Su, Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. Parameter-
efficient fine-tuning of large-scale pre-trained language models. Nature Machine
Intelligence, 5(3):220–235, 2023.

[18] Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimension-
ality explains the effectiveness of language model fine-tuning. In Chengqing
Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 7319–7328, Online, August 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.568. URL
https://aclanthology.org/2021.acl-long.568.

[19] Baohao Liao, Yan Meng, and Christof Monz. Parameter-efficient fine-
tuning without introducing new latency. In Proceedings of the 61st An-
nual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 4242–4260, Toronto, Canada, July 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.233. URL
https://aclanthology.org/2023.acl-long.233.

[20] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham
Neubig. Towards a unified view of parameter-efficient transfer learning. In
International Conference on Learning Representations, 2022.

[21] Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingxuan Wang, and Lei Li.
Serial or parallel? plug-able adapter for multilingual machine translation. arXiv
preprint arXiv:2104.08154, 6(3), 2021.

[22] Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing,
Xing Xu, Soujanya Poria, and Roy Lee. LLM-adapters: An adapter family for
parameter-efficient fine-tuning of large language models. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pages 5254–5276,
Singapore, December 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.319. URL https://aclanthology.org/2023.
emnlp-main.319.

https://github.com/huggingface/peft
https://aclanthology.org/2021.acl-long.568
https://aclanthology.org/2023.acl-long.233
https://aclanthology.org/2023.emnlp-main.319
https://aclanthology.org/2023.emnlp-main.319

LoDA: Low-Dimensional Adaptation of Large Language Models 15

[23] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners. OpenAI
blog, 1(8):9, 2019.

[24] Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile gen-
erative language model via parameter-efficient transfer learning. In Findings
of the Association for Computational Linguistics: EMNLP 2020, pages 441–
459, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.findings-emnlp.41. URL https://aclanthology.org/
2020.findings-emnlp.41.

[25] Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The E2E dataset: New
challenges for end-to-end generation. In Kristiina Jokinen, Manfred Stede,
David DeVault, and Annie Louis, editors, Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, pages 201–206, Saarbrücken,
Germany, August 2017. Association for Computational Linguistics. doi: 10.
18653/v1/W17-5525. URL https://aclanthology.org/W17-5525.

[26] Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad,
Chiachun Hsieh, Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna,
Yangxiaokang Liu, Nadia Irwanto, Jessica Pan, Faiaz Rahman, Ahmad Zaidi,
Mutethia Mutuma, Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern Tan,
Xi Victoria Lin, Caiming Xiong, Richard Socher, and Nazneen Fatema Ra-
jani. DART: Open-domain structured data record to text generation. In
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-
Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and
Yichao Zhou, editors, Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 432–447, Online, June 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.37. URL
https://aclanthology.org/2021.naacl-main.37.

[27] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics,
pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for
Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//aclanthology.org/P02-1040.

[28] Alon Lavie and Abhaya Agarwal. METEOR: An automatic metric for MT
evaluation with high levels of correlation with human judgments. In Proceedings
of the Second Workshop on Statistical Machine Translation, pages 228–231,
Prague, Czech Republic, June 2007. Association for Computational Linguistics.
URL https://aclanthology.org/W07-0734.

[29] Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea Micciulla, and John
Makhoul. A study of translation edit rate with targeted human annotation. In Pro-
ceedings of the 7th Conference of the Association for Machine Translation in the
Americas: Technical Papers, pages 223–231, Cambridge, Massachusetts, USA,
August 8-12 2006. URL https://aclanthology.org/2006.amta-papers.
25.

https://aclanthology.org/2020.findings-emnlp.41
https://aclanthology.org/2020.findings-emnlp.41
https://aclanthology.org/W17-5525
https://aclanthology.org/2021.naacl-main.37
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://aclanthology.org/W07-0734
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25

16 Jing Liu et al.

[30] Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan,
Alexander Liu, Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Ex-
pressive structured matrices for efficient and accurate training. In International
Conference on Machine Learning, pages 4690–4721. PMLR, 2022.

	Title Page
	page 2

	
	LoDA: Low-Dimensional Adaptation of Large Language Models
	Jing Liu, Toshiaki Koike-Akino, Pu (Perry) Wang, Matthew Brand, Kieran Parsons, and Ye Wang
	Introduction
	Proposed Methods
	Extension to LoDA+
	S-LoDA(+) and R-LoDA(+)

	Discussion
	Number of Fine-Tuning Parameters
	Computational Efficiency During Inference

	Empirical Studies
	Why LoDA(+) can Outperform FTWq,Wv?
	Effect of the Bottleneck Dimension

	Conclusion and Future Work
	References

