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Abstract
Light Detection and Ranging (LiDAR) sensors generate accurate 3D representations of real-
world environments, which are essential for applications of 3D scene understanding. However,
the substantial volume of LiDAR data poses significant challenges for efficient compression
and transmission. Implicit neural representation (INR) has gained attention for its compact
data representation, but its capacity to accurately represent high-frequency details is insuffi-
cient when using small models. In this paper, we propose a novel joint source-channel coding
(JSCC) scheme that integrates INR with analog residual transmission for high-quality and
efficient point cloud transmission. This scheme is designed to compensate for the limited
high-frequency representation of INRs by transmitting the unmodeled details as residuals via
pseudo-analog modulation. This integrated approach enables continuous reconstruction qual-
ity adaptation to varying wireless channel conditions and effectively mitigates the stair-case ef-
fect inherent in conventional digital schemes. Evaluations on the KITTI dataset demonstrate
that the proposed scheme outperforms conventional and INR-based compression methods in
terms of R-D performance and detection quality at low bitrates.
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ABSTRACT

Light Detection and Ranging (LiDAR) sensors generate accurate 3D representations of real-world

environments, which are essential for applications of 3D scene understanding. However, the substantial

volume of LiDAR data poses significant challenges for efficient compression and transmission. Implicit

neural representation (INR) has gained attention for its compact data representation, but its capacity to

accurately represent high-frequency details is insufficient when using small models. In this paper, we

propose a novel joint source-channel coding (JSCC) scheme that integrates INR with analog residual

transmission for high-quality and efficient point cloud transmission. This scheme is designed to compensate

for the limited high-frequency representation of INRs by transmitting the unmodeled details as residuals via

pseudo-analog modulation. This integrated approach enables continuous reconstruction quality adaptation to

varying wireless channel conditions and effectively mitigates the stair-case effect inherent in conventional

digital schemes. Evaluations on the KITTI dataset demonstrate that the proposed scheme outperforms

conventional and INR-based compression methods in terms of R-D performance and detection quality at

low bitrates.

INDEX TERMS

LiDAR, point clouds, joint source-channel coding, pseudo-analog transmission,

implicit neural representation.

I. INTRODUCTION

L IGHT Detection and Ranging (LiDAR) sensors enable

accurate three-dimensional (3D) mapping of the sur-

rounding environment by emitting laser pulses and measur-

ing reflected signals. The resulting 3D point cloud data play

a critical role in various applications, such as digital archiv-

ing, remote spatial sharing, and the development of digital

twins [1], [2] [3], [4]. However, with the advancement of

LiDAR sensor resolution, the amount of data generated per

scan has grown significantly, making efficient compression

and transmission essential for practical deployment [5].

Conventional compression methods for LiDAR point

clouds can be broadly categorized into geometry-based ap-

proaches, which voxelize or partition the 3D space hierar-

chically and assign bits to voxelized space [6], [7], [8], and

projection-based approaches, which convert 3D point clouds

into two-dimensional (2D) range image (RI) for image-

based processing [9], [10]. The RI-based methods have

gained attention as an effective way to reduce the structural

complexity of 3D point clouds, thereby facilitating efficient

compression and representation.

In view of compression, implicit neural representation

(INR)-based compression [11] has emerged as a promising

technology for compactly representing continuous spatial

signals. INR [12], [13], [14], [15] represents a signal as a

coordinate-to-value mapping using a small neural network,

achieving high compression ratios with a limited number

of parameters. Recent studies [16], [17] have used INR

for LiDAR point cloud compression and have shown that

it can reduce transmission traffic while achieving higher

reconstruction accuracy than conventional geometry-based

and RI-based methods. While INR-based methods require
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significant encoding time, they are efficient at the decoding

stage. Fig. 1 shows the trade-off between decoding latency

and rate-distortion (R-D) performance (BD-CD [18]). It

suggests that INR-based approaches realize consistently low

decoding latency despite variations in R-D performance.

However, one of the key issues in INR-based compression

is its limited capacity to represent high-frequency compo-

nents under a small model. This limitation often leads to

a loss of fine structural details and degrades the perfor-

mance of downstream tasks such as 3D object detection.

Prior studies [13], [19] have proposed enhanced encoding

schemes to mitigate this issue, but the expressive capacity

of compact networks remains insufficient for capturing fine-

grained detail.

To address this limitation without significantly increasing

model complexity, we aim to integrate a power of communi-

cation with INR-based compression to compensate the high-

frequency components that INR fails to model. Specifically,

we introduce residual-aided transmission which is inspired

by model-based compression [9], [20], [21]. These residuals

represent high-frequency components not modeled by the

INR, and are typically quantized, converted to binary, chan-

nel encoded, and modulated for wireless transmission to im-

prove reconstruction fidelity. However, such digital schemes

generally rely on fixed quantization levels and modulation

formats, which do not adapt to time-varying wireless channel

conditions. As a result, reconstruction quality improves only

in discrete steps as channel conditions change, leading to the

stair-case [22].

To solve the limitation of high-frequency components in

a small INR and quality limitation of digital-based residual-

aided transmission in time-varying wireless channels, we

propose a novel scheme for efficient representation of Li-

DAR point clouds. It combines an INR-based digital LiDAR

representation, RIC [17], with pseudo-analog residual trans-

mission inspired by joint source–channel coding (JSCC).

Specifically, the pseudo-analog modulation directly maps the

residuals onto transmission symbols, so that the resulting

reconstruction error scales smoothly with the instantaneous

channel quality, i.e., gradual quality improvement under

channel quality variation. In addition, the proposed scheme

can control the ratio of digital and pseudo-analog symbols

to maximize the R–D performance under the available band-

width.

Evaluations on the KITTI dataset demonstrate that the pro-

posed scheme enables gradual improvement in reconstruc-

tion quality under varying channel conditions, effectively

mitigating the stair-case effect and preserving downstream

task performance.

The major contributions of our study are three-fold:

• To the best of our knowledge, this is the first study to in-

troduce a JSCC framework that incorporates INR-based

representations for LiDAR point clouds, effectively ad-

dressing the fundamental limitation of modeling high-

frequency components with compact networks.

FIGURE 1: Rate-distortion performance (BD-CD) vs. de-

coding latency on KITTI dataset.

• We design a residual communication scheme that en-

ables smooth quality adaptation under varying channel

conditions, mitigating the stair-case effect inherent in

conventional digital approaches.

• We conduct extensive experiments on the KITTI

dataset, covering both R-D performance and 3D object

detection accuracy, to comprehensively evaluate the

effectiveness of the proposed scheme.

II. RELATED WORK

A. POINT CLOUD COMPRESSION

LiDAR sensors capture 3D point clouds, where each point

is defined by 3D coordinates, i.e., (X,Y, Z). Compression

methods for point clouds are categorized into 3D geometry-

based approaches and 2D projection-based approaches using

RIs.

Geometry-based compression approaches are typically di-

vided into two types, known as graph-based and tree-based

methods. The graph-based methods model point clouds as

graph signals and apply the graph Fourier transform (GFT)

to reduce redundancy in the spectral domain [23], [24], [25].

In addition, several studies have addressed graph signal

reconstruction to reduce storage and transmission costs [26],

[27]. In contrast, the tree-based compression methods struc-

ture point clouds by recursively subdividing the 3D space.

A typical approach employs octree-based representations,

such as point cloud library (PCL) and geometry-based point

cloud compression (G-PCC) [6], [28]. Some recent studies

have combined hierarchical tree structures with deep neural

network (DNN) to further improve the efficiency of geometry

compression [7], [29].

Projecting LiDAR measurements onto 2D RIs is a widely

used technique to compactly represent spatial distance in-

formation. The RIs are typically generated either from raw

LiDAR packets [30] or from 3D point clouds [9], [20],
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[21]. The obtained RIs are then compressed using intra-

frame coding to reduce spatial redundancy [9], or inter-frame

coding to exploit temporal coherence across frames [20],

[21]. For example, R-PCC [9] applies lossless compression,

such as LZ4 and Deflate, to floating-point values.

Our study introduces INR-based compression for RIs to

reduce storage and transmission costs for 3D point clouds.

However, INRs often struggle to accurately represent fine-

grained details when learning RIs. To address this problem,

we define the residuals between the RI and the INR-based

reconstruction. These residuals are then transmitted using

pseudo-analog modulation, enabling the capture of high-

fidelity details at low transmission costs.

B. IMPLICIT NEURAL COMPRESSION

INR is a technique that represents multi-dimensional signals,

such as images and 3D point clouds, as continuous mappings

from coordinates to signal values by overfitting them to a

small neural network. A key limitation of INR is its insuffi-

cient accuracy in reconstructing high-frequency components.

To address this issue, several methods have been proposed,

including the use of sinusoidal activations in SIREN [13],

positional encoding in NeRF [15], and its extension within

the Neural Tangent Kernel framework [19]. Based on the

results of the INR work, its application has been extended to

image compression. In RI compression, a typical approach

is to directly encode the entire RI using INR [11], [31],

[32]. In contrast, RIC [17] improves coding efficiency by

decomposing each RI into structurally distinct components

and encoding them separately using dedicated INR networks.

However, these methods suffer from insufficient representa-

tional capacity for high-frequency components. Furthermore,

they remain susceptible to the stair-case effect caused by bit

errors and irrecoverable quantization noise.

Our paper addresses these challenges by calculating resid-

uals to compensate for high-frequency components. In addi-

tion, by directly mapping power-assigned residuals to trans-

mission signals, we eliminate source and channel coding. As

a result, the RI is reconstructed with high fidelity, adapting

to instantaneous wireless channel conditions, and avoiding

the stair-case effect.

C. JOINT SOURCE-CHANNEL CODING

Several JSCC schemes have been proposed to mitigate the

stair-case effect caused by bit errors and to gradually improve

the reconstruction quality of transmitted content according

to the instantaneous wireless channel condition [22], [33],

[34], [35]. These schemes eliminate quantization and entropy

coding at the transmitter, and instead integrate decorrelation

techniques, such as discrete cosine transform (DCT) [33] and

discrete wavelet transform (DWT) [34], with pseudo-analog

modulation to enable flexible adaptation to channel quality.

The signal processing-based and deep learning-based

methods have been proposed to further improve the

adaptability and compression efficiency of JSCC. Signal

processing-based extensions include alternative decorrelation

techniques using fixed or adaptive block divisions [36], [37],

as well as error protection strategies tailored to channel

conditions and downstream tasks [35], [38], [39]. In contrast,

recent studies have introduced DNN-based architectures,

leading to the development of deep JSCC [40], [41], [42],

[43], [44], [45]. These approaches employ convolutional neu-

ral networks (CNNs) [41], transformer networks [42], [43],

and graph neural networks (GNNs) [44], [45] to compress

image and video signals into feature vectors, which are then

directly mapped to pseudo-analog modulation formats for

transmission.

However, image signals generally exhibit a wide dynamic

range in pixel values, which causes a low reconstruction

quality through pseudo-analog modulation in each channel

condition. To address this issue, we compute and transmit

the residuals using a pseudo-analog modulation format.

Since the residual has a significantly smaller dynamic range

compared to the RI, the proposed scheme can provide higher

reconstruction quality and greater stability than conventional

JSCC methods, even under the same channel conditions.

III. PROPOSED SCHEME

A. OVERVIEW

Fig. 2 shows an overview of the proposed scheme. Fig. 2 (a)

specifically illustrates the end-to-end architecture of the

proposed scheme. We consider that the LiDAR measurement

to be compressed is a 3D point cloud consisting of N
points, denoted as P = {pi = [xi, yi, zi] | i = 1, · · · , N},

where xi, yi, zi ∈ R represent the Cartesian coordinates

of the i-th point. The proposed scheme first projects the

input point cloud onto a 2D image plane via spherical

coordinate transformation, resulting in a RI I ∈ R
W×H .

The RI is then decomposed into a binary mask image

IM ∈ {0, 1}W×H , which indicates the presence or absence

of valid measurements at each pixel, and a depth image

ID ∈ R
W×H that stores the corresponding distance values.

The depth image is further divided into rectangular patches.

Fig. 2 (b) shows the transceiver for the depth and mask

images and the RI synthesizer on the receiver side. At the

transmitter, the proposed scheme overfits two separate INR

models, Φ(·;ψ) and Ψ(·;ω), to represent the mapping from

coordinates to pixel values for the mask and depth images,

respectively. The resulting parameters ψ and ω are transmit-

ted via digital modulation after channel coding. To capture

the high-frequency components not modeled by the INRs,

the proposed scheme computes residuals as the difference

between the original images and the INR predictions. These

residuals are scaled under a power constraint and transmitted

using analog modulation. At the receiver, the INRs are

reconstructed from the received parameters ψ̂ and ω̂. The

received residuals are then added to recover the mask and

depth images, ÎM and ÎD, which are combined to synthesize

the final RI Î .
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FIGURE 2: Overview of the proposed scheme.

Finally, the LiDAR point cloud P̂ is reconstructed from

the synthesized RI Î by back-projecting it from the 2D

image plane to 3D Cartesian coordinates via the spherical

coordinate system.

B. 3D-TO-2D PROJECTION

To reduce the computational complexity of point cloud com-

pression, the proposed scheme first transforms all 3D points

in the point cloud P into a 2D RI I via coordinate mapping.

Specifically, the 3D-to-2D projection method consists of two

steps: 1) mapping the 3D point cloud in their original 3D

Cartesian coordinate system x-y-z to the spherical coordinate

ρ-ϕ-θ, and 2) projecting these spherical coordinates onto an

image coordinate system u-v.

Each point p ∈ P in the 3D point cloud is initially

represented in the Cartesian coordinate system as (x, y, z).
This Cartesian point is then converted into its corresponding

spherical coordinate p′ = (ρ, ϕ, θ), where ρ denotes the

length, ϕ the pitch, and θ the yaw of the coordinate system,

as defined below:

ρ =
√

x2 + y2 + z2, ϕ = arcsin

(
z

ρ

)
, θ = arctan

(y
x

)
.

(1)

Subsequently, the spherical point is projected onto the 2D

image coordinate (u, v) to generate the RI I using the

following transformation:

u =

⌊
W

2
×

(
θ

π
+ 1

)⌋
,

v =

⌊
H ×

(
1−

φ+ |φdown|

φup + |φdown|

)⌋
. (2)

Here, ϕup and ϕdown denote the upper and lower bounds of

the elevation angle ϕ observed in the dataset, | · | denotes the

absolute value, and ⌊·⌋ denotes the floor function. Each pixel

value I(u, v) in the RI corresponds to the measured distance

ρ computed in Eq.(1), expressed in an arbitrary physical unit.

The parameters H and W in Eq.(2) represent the vertical

and horizontal resolution of the RI, respectively, which are

determined by the angular resolution of the LiDAR sensor

in the elevation and azimuth directions. In our work, we set

H = 64 and W = 1024.

Due to the sparsity of LiDAR measurements, not all

pixels in the RI are necessarily assigned to a 3D point.

Therefore, if a pixel (u′, v′) remains unassigned after the

3D-to-2D mapping of all points, we assign I(u′, v′) = ρnull,
where ρnull is an arbitrary value indicating that no 3D point

corresponds to that pixel. In practice, ρnull is typically chosen

to be greater than the maximum ρ value in the LiDAR data,

or a negative number.

C. RANGE IMAGE DECOMPOSITION

Following the 3D-to-2D mapping, the RI is decomposed into

a binary mask image IM ∈ {0, 1}W×H and a depth image

ID ∈ R
W×H .

The mask image IM indicates whether a 3D point is

assigned to each pixel in the RI, and is defined as follows:

IM (u, v) =

{
1 if I(u, v) = ρnull,

0 otherwise.
(3)

Based on the mask image, we construct a training dataset

DM for the mask INR Φ(·;ψ), consisting of pixel coordi-

nates and their corresponding binary values.:

DM = {((u, v), IM (u, v)) | u ∈ {1, . . . ,W}, v ∈ {1, . . . , H}}. (4)
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FIGURE 3: The encoder and decoder architectures for the mask and depth INRs.

The depth image ID is derived from the RI by masking

out pixels with no assigned 3D point, which are treated as

invalid and excluded from training:

ID(u, v) =

{
∅ if I(u, v) = ρnull,

I(u, v) otherwise.
(5)

To improve decoding performance and the quality of the

reconstructed depth image, we divide the depth image into

small rectangular patches, following [46]. Specifically, the RI

is uniformly partitioned into N2
p patches I ′D(i) ∈ R

W
Np

× H
Np ,

where Np is a scaling factor and i = 1, . . . , N2
p . Each pixel

in the patched RI is indexed as I ′D(i, iu, iv), where i is the

patch index and (iu, iv) are the in-patch coordinates with

the origin at the top-left. Similar to the mask image, we

construct a training dataset DD for the depth INR Ψ(·;ω),
consisting of tuples of patch index, in-patch coordinates, and

the corresponding depth value, excluding pixels with ∅:

DD = {((i, iu, iv), ID(i, iu, iv)) | i ∈ {1, . . . , N2
p},

iu ∈ {1, . . . ,W/Np},

iv ∈ {1, . . . , H/Np},

ID(i, iu, iv) ̸= ∅}. (6)

D. TRANSMITTER

1) DIGITAL TRANSMITTER

The digital transmitter consists of the mask and depth INRs,

a channel encoder, and a digital modulator. It encodes the

mask and depth images into compact representations by

training the INRs, and then applying channel coding and

digital modulation for wireless transmission. Fig. 3 shows

the encoder and decoder architectures for the mask and depth

INRs.

For the mask INR, we define a target function ΦM : R2 →
{0, 1} that maps each pixel coordinate to a binary value in-

dicating whether it is occupied by a projected LiDAR point.

To approximate this target function, we train Φ(·;ψ) using

the dataset DM , by minimizing the binary cross-entropy

(BCE) loss between the ground-truth values IM (u, v) and

the predicted values Φ((u, v);ψ) as follows:

LBCE(ψ) = −
1

HW

H∑

u

W∑

v

[IM (u, v) log (Φ((u, v);ψ))

+(1− IM (u, v)) log (1− Φ((u, v);ψ))] . (7)

Similar to the mask INR, we define a target function

ΨD : R3 → R for the depth INR, which maps each input

(i, iu, iv) to its corresponding depth value. To approximate

this function, the depth INR Ψ(·;ω) is trained using the

dataset DD, by minimizing the mean squared error (MSE)

between the ground-truth values ID(i, iu, iv) and the pre-

dicted values Ψ((i, iu, iv);ω), defined as:

LMSE(ω) =
1

HW

N2

p∑

i

W/Np∑

iu

H/Np∑

iv

∥Ψ((i, iu, iv);ω)− ID(i, iu, iv)∥
2 .

(8)

After training both mask and depth INRs, their parameters,

ψ and ω, become effective compressed representations of the

depth and mask images. We then introduce model compres-

sion to these parameters to further reduce transmission and

storage costs. As an initial step in our model compression

procedure, the parameters are uniformly quantized to a bit

depth of Nb. This quantization is layer-wise, meaning that

given a parameter set corresponding to each layer in the

depth and mask INRs as µ ∈ ω, a quantized parameter set

µq is obtained as follows:

µq = round

(
µ− µmin

2Nb

)
s+ µmin, s =

µmax − µmin

2Nb
,

(9)

where round(·) is a rounding function to the nearest inte-

ger and µmax and µmin are the maximum and minimum

values in µ. To further minimize the bitrate, we then apply

Huffman coding to the quantized tensor µq . This lossless

entropy coding assigns variable-length codes based on the

frequency of each parameter value, resulting in a more
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compact bitstream. The bitstream is processed by a channel

encoder to provide robustness against transmission errors.

We adopt a convolutional coding scheme with a rate of 1/2,

and the encoded bits are mapped to transmission symbols

using digital modulation formats such as binary phase shift

keying (BPSK), quadrature phase shift keying (QPSK), and

quadrature amplitude modulation (QAM). In the case of

BPSK, the k-th transmission symbol, denoted s
⟨d⟩
k , is defined

as:

s
⟨d⟩
k = bk, bk ∈ X = {±1} . (10)

2) ANALOG TRANSMITTER

The analog transmitter consists of an analog residual en-

coder, a power scaler, and an analog modulator. This module

improves the reconstruction quality by transmitting residuals

that capture the high-frequency components not modeled by

the INRs.

Specifically, the residuals for the mask and depth images

are defined as the differences between the original images

and the INR predictions at each pixel. For a pixel coordinate

(u, v) in the mask image, the residual is

dM (u, v) = IM (u, v)− Φ((u, v);ψ), (11)

and for a patch index i and in-patch coordinate (iu, iv) in

the depth image, the residual is

dD(i, iu, iv) = ID(i, iu, iv)−Ψ((i, iu, iv);ω), (12)

where IM (u, v) and ID(i, iu, iv) are the ground-truth values,

and Φ(·;ψ) and Ψ(·;ω) are the predictions from the mask

and depth INRs, respectively.

After calculating all residuals from the mask and depth

images, they are jointly flattened into a single residual se-

quence {dk}, where each dk represents a residual value from

either the mask image or the depth image. This sequence is

then fed into the analog encoder for transmission.

In contrast, analog transmitters directly map residuals to

transmission symbols, enabling the reconstruction quality

to improve progressively as the wireless channel condition

becomes better. To reduce the impact of channel noise, a

scaling operation is applied prior to analog modulation. This

operation, known as power allocation, aims to minimize

the mean squared error (MSE) between the original and

reconstructed residuals under a given transmission power

constraint.

Let dk denote the residual value at index k, and let gk
be the corresponding scaling factor. The analog-modulated

transmission symbol s
⟨a⟩
k is generated by scaling the residual

as follows:

s
⟨a⟩
k = gkdk. (13)

The goal is to determine the optimal set of scaling factors

{gk} that minimize the mean squared error (MSE) between

the original and reconstructed residuals, subject to an average

transmission power constraint. This leads to the following

optimization problem:

min
{gk}

MSE =
1

N

N∑

k=1

σ2λk

g2kλk + σ2
, (14)

s.t.
1

N

N∑

k=1

g2kλk = P, (15)

where λk = |dk|
2 is the power of the k-th residual, σ2

is the noise power of the wireless channel, and P is the

transmission power budget.

The optimal scaling factor for each residual is obtained

by solving the above problem, and is given by:

gk = mλ
−1/4
k , m =

√
P

∑N
k=1 λ

1/2
k

. (16)

The proposed scheme utilizes the scaling factor irrespective

of the channel model, e.g., sub-optimal power allocation in

Rayleigh fading channels.

Finally, for wireless transmission, every two scaled resid-

uals s
⟨a⟩
k and s

⟨a⟩
k+1 are jointly mapped onto the in-phase

(I) and quadrature (Q) components of a complex-valued

transmission symbol as follows:

xk = s
⟨a⟩
k + ȷs

⟨a⟩
k+1. (17)

When the available bandwidth is B, i.e., the avail-

able number of transmission symbols/second, the proposed

scheme can select and send up to 2B residuals/second,

whose absolute value is large, because the proposed scheme

assigns every two scaled residuals to the I and Q components

of a complex-valued transmission symbol. This selection

can reduce quality degradation even when the available

bandwidth is insufficient to send all the residuals.

E. RECEIVER

1) DIGITAL RECEIVER

The digital receiver consists of the digital demodulator, the

channel decoder, and the reconstructed mask and depth

INRs. The receiver demodulates the digitally modulated

symbols and decodes the channel-coded bitstreams to re-

cover the parameter sets ψ̂ and ω̂, which correspond to

the mask and depth INRs, respectively. Using the recovered

parameters, the receiver reconstructs the mask INR Φ(·; ψ̂)
and the depth INR Ψ(·; ω̂).

2) ANALOG RECEIVER

The analog receiver consists of the analog demodulator,

a denoising filter, and a decoder. The received symbols

represent the analog-modulated residual values transmitted

over the wireless channel. Specifically, each received symbol

yk can be modeled as:

yk = hkxk + nk, (18)

where xk is the transmitted analog symbol corresponding to

the scaled residuals dk and dk+1, hk is the channel gain, and
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nk is additive noise with variance σ2 accounting for channel

distortion.

The goal of the receiver is to estimate the original residual

dk from the received symbol yk. To this end, the transmitter

provides the power of each residual component, defined

as λk = |dk|
2, as metadata. This enables the receiver to

reconstruct the corresponding scaling factor gk and apply the

minimum mean squared error (MMSE) filter [33] as follows:

x̂k =
h∗
kE[|xk|

2]

|hk|2E[|xk|2] + σ2
· yk, (19)

where E[|xk|
2] = g2kλk + g2k+1λk+1. The estimates of the

individual residuals d̂k and d̂k+1 can be obtained by taking

the real and imaginary parts of x̂k and scaling them back as

follows:

d̂k =
Re[x̂k]

gk
, d̂k+1 =

Im[x̂k]

gk+1

. (20)

F. RANGE IMAGE SYNTHESIZER

The image synthesizer reconstructs the RI by applying the

estimated residuals to the outputs of the mask and depth

INRs. Specifically, the residuals are split into mask and depth

components, which are added to the outputs of the mask and

depth INRs, respectively. The reconstructed depth values are

then selectively assigned to valid pixels as indicated by the

mask image.

The mask image is reconstructed by feeding the coordinate

set {(u, v) | u ∈ {1, . . . ,W}, v ∈ {1, . . . , H}} to the

mask INR Φ(·; ψ̂), and adding the residuals d̂M (u, v) to the

outputs. Formally, the binary mask is defined as:

ÎM (u, v) =

{
1 if Φ((u, v); ψ̂) + d̂M (u, v) ≥ 0.5,

0 otherwise.
(21)

The depth image is reconstructed in a two-stage manner.

First, each patch is reconstructed by feeding the set of tuples

{(i, iu, iv) | i ∈ {1, . . . , N2
p}, iu ∈ {1, . . . ,W}, iv ∈

{1, . . . , H}} to the depth INR Ψ(·; ω̂), and adding the cor-

responding residuals d̂D(i, iu, iv). The reconstructed depth

values are defined as:

ÎD(i, iu, iv) = Ψ((i, iu, iv); ω̂) + d̂D(i, iu, iv). (22)

The reconstructed patches are subsequently assembled to

form the complete depth image ÎD.

The final RI Î(u, v) is constructed by selectively assigning

the reconstructed depth values to valid pixels based on the

mask image. Let π(u, v) = (i, iu, iv) denote the mapping

from a pixel coordinate (u, v) to the corresponding patch

index and in-patch coordinate in the depth domain. For each

pixel (u, v), if the mask value ÎM (u, v) is 0, the correspond-

ing depth value ÎD(π(u, v)) is assigned. Otherwise, a null

token ρnull is used. Formally, the RI is defined as:

Î(u, v) =

{
ÎD(π(u, v)) if ÎM (u, v) = 0,

ρnull otherwise.
(23)

G. 2D-TO-3D PROJECTION

The final stage of the decoding process reconstructs a 3D

point cloud via a 2D-to-3D projection based on the RI Î .

If Î(u, v) ̸= ρnull, the corresponding spherical coordinate

p̂′ = (ρ̂, ϕ̂, θ̂) is computed as:

ρ̂ = Î(u, v),

ϕ̂ =
(
1−

v

H

)
(ϕup + |ϕdown|)− |ϕdown|,

θ̂ = −
(
2
u

W
− 1

)
π. (24)

Finally, the spherical coordinate is converted to the Cartesian

coordinate p̂ = (x̂, ŷ, ẑ) as follows:

x̂ = ρ̂ cos ϕ̂ cos θ̂, ŷ = ρ̂ cos ϕ̂ sin θ̂ , ẑ = ρ̂ sin ϕ̂. (25)

IV. EVALUATION

A. SETTINGS

Metric: We evaluate the decoded 3D point clouds using the

Chamfer Distance (CD), a standard metric in the community:

CD =
1

2

{
1

|P|

∑

p∈P

min
p̂∈P̂

∥p− p̂∥2 +
1

|P̂|

∑

p̂∈P̂

min
p∈P

∥p− p̂∥2

}
, (26)

where P and P̂ denote the original and decoded point

sets, respectively. For the R-D performance assessment, we

use the Bjøntegaard delta chamfer distance (BD-CD) [18]

for calculating average chamfer distance (CD) improvement

between R-D curves for the same bitrate. A higher BD-

CD value indicates better reconstruction performance, with

positive values representing improvements compared to the

baselines.

Dataset: We use the KITTI dataset [47] as the source of 3D

point cloud data. For R-D performance evaluation, we select

five frames with frame indices 00, 25, 50, 75, and 100 from

each sequence ranging from 00 to 06 in the KITTI Odometry

dataset. To assess the effect of compression on downstream

tasks, we perform 3D object detection using frame 000002

from the KITTI 3D Object Detection dataset.

Baselines: We evaluate the proposed scheme by comparing it

with existing baselines in geometric 3D point cloud compres-

sion, 2D image compression, and INR-based compression.

1) As a baseline for 3D point cloud compression, we

select G-PCC [6], a geometry-based method within

the point cloud compression (PCC) family. We use the

MPEG reference software TMC13-v14.0 for octree-

based geometry compression. The compression level

is adjusted by varying the positionQuantizationScale

parameter from 0.05 to 0.95.

2) We also include Draco [8] as a baseline method for 3D

point cloud compression within the PCC family. We

use the official implementation of the Draco encoder,

which applies KD-tree-based geometry compression

[48]. The quantization parameter qp is varied from

5 to 13 to control the trade-off between bitrate and

reconstruction quality.
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TABLE 1: The list of average BD-CD ↑ across the different LiDAR sequences for each SNR.

SNR JPEG2000 HEIF AVIF R-PCC(Deflate) R-PCC(LZ4) G-PCC Draco Octattention COIN RIC

5 dB 0.591 0.366 0.232 0.033 0.139 0.062 0.086 -0.006 1.057 0.083

10 dB 0.812 0.502 0.270 0.065 0.183 0.110 0.145 0.026 1.157 0.115

15 dB 0.890 0.618 0.310 0.086 0.210 0.151 0.195 0.053 1.199 0.137

Average 0.764 0.495 0.271 0.061 0.177 0.108 0.142 0.024 1.138 0.112

3) In addition, we evaluate OctAttention [7], an octree-

based autoencoder within the PCC family. This method

improves the conventional octree structure by incorpo-

rating attention mechanisms for better context mod-

eling. To evaluate its performance across different

compression levels, we set the octree depth to values

from 8 to 13.

4) As conventional image compression baselines, we

select Joint Photographic Experts Group 2000

(JPEG2000), High-Efficiency Image File Format

(HEIF), and AV1 Image File Format (AVIF). To ap-

ply these codecs, we first convert the floating-point RI

representations into 8-bit images. JPEG and JPEG2000

results are obtained using Pillow 8.4.0, while HEIF and

AVIF results are obtained using pillow-heif 0.11.1 and

pillow-avif-plugin 1.3.1, respectively.

5) R-PCC [9] is an RI based LiDAR compression base-

line. It maps LiDAR point clouds to RIs and per-

forms intra-coding using floating-point lossless coding

methods. We adopt a uniform quantization framework

and vary the accuracy parameter from 0 to 1 to

control the degree of compression. For segmentation

and modeling, we use Farthest Point Sampling (FPS)

combined with plane fitting, setting the number of

clusters to 100. Additionally, we employ Deflate and

LZ4 compressors due to their better trade-off between

compression efficiency and decompression speed.

6) COmpression with Implicit Neural representations

(COIN) [11] is an INR–based image compression

baseline. Its network is trained to directly map pixel

coordinates to the corresponding pixel values of the

RI. Since COIN does not apply depth/mask separation

or JSCC scheme, we consider it a suitable reference

for evaluating the effectiveness of both strategies in

the proposed scheme.

7) We also include RIC [17] as a baseline method

for an INR–based image compression. RIC enhances

compression performance by decomposing the RI into

separate depth and mask images and training individ-

ual INR models for each component. It further em-

ploys patch-wise learning for depth images and applies

model compression techniques to reduce storage over-

head. Since RIC does not incorporate JSCC, it provides

a useful reference for evaluating the contribution of

JSCC in the proposed scheme.

Network Architecture Details: The mask and depth INRs

are implemented as multi-layer perceptrons (MLPs) with

a fixed depth of L = 6 hidden layers and V nodes

per layer, where sine activation functions are applied in

all hidden layers. The mask INR takes a 2D coordinate

(u, v) as input and outputs a scalar value with a sigmoid

activation. To examine the effect of network complexity

on compression performance, the number of nodes V is

varied in {10, 20, 24, 28, 31, 34}. The depth INR takes a 3D

input (i, iu, iv), where i is the patch index in a 16 × 16
grid and (iu, iv) are in-patch coordinates. It outputs a scalar

value with an identity activation. To investigate the impact

of model capacity on reconstruction quality, V is varied in

{10, 20, 28, 31, 34, 37, 40, 42, 45}.

Hyperparameter Details: We use separate hyperparameter

settings for mask and depth INRs. The general settings for

both INRs include the Adam optimizer, an initial learning

rate of 1×10−3, 3,000 training epochs, and a batch size of 1.

For depth INR, we adopt the cosine annealing scheduler with

a warmup phase. The initial learning rate for the warmup

phase is set to 1 × 10−4, and the warmup period lasts for

300 epochs. During this period, the learning rate increases

linearly to 1 × 10−3. The learning rate then decreases

according to a cosine curve for the remaining 2,700 epochs

up to the minimum learning rate of 1× 10−12.

Wireless Channel Settings: The transmitted digital and

analog symbols are impaired by the AWGN channels, which

are modeled with a channel gain of hk = 1, and the Rayleigh

fading channels, where hk follows a complex Gaussian

distribution hk ∼ CN (0, 1). The wireless channel simulation

is conducted using scikit-commpy 0.8.0. We adopt digital

modulation schemes including BPSK, QPSK, and 16-QAM,

all combined with a 1/2-rate convolutional code with a

constraint length of 8.

Implementation Detail: All the evaluations exhibited in this

paper are performed with CPUs of Intel Core i9-10850K

and i9-13900KF and with GPUs of NVIDIA GeForce RTX

3080 and 4070. neural networks (NNs) for COIN and the

proposed scheme are implemented, trained, and evaluated

using PyTorch 2.2.0 with Python 3.10.

B. COMPARISON WITH BASELINES

1) RATE DISTORTION PERFORMANCE

We evaluate the R-D performance of the proposed scheme

under three wireless channel conditions with SNR levels
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(a) Seq:00-00 (b) JPEG2000
traffic:74.6 K
CD:0.817

(c) HEIF
traffic:80.2 K
CD:0.395

(d) AVIF
traffic:72.5 K
CD:0.324

(e) COIN
traffic:87.3 K
CD:0.686

(f) Draco
traffic:56.3 K
CD:0.226

(g) G-PCC
traffic:65.2 K
CD:0.174

(h) Octattention
traffic:69.6 K
CD:0.070

(i) R-PCC(Deflate)
traffic:77.8 K
CD:0.147

(j) R-PCC(LZ4)
traffic:145.6 K
CD:0.229

(k) RIC
traffic:65.4 K
CD:0.164

(l) Proposed
traffic:67.8 K
CD:0.045

(m) Seq:01-00 (n) JPEG2000
traffic:105.0 K
CD:0.623

(o) HEIF
traffic:107.7 K
CD:0.397

(p) AVIF
traffic:86.5 K
CD:0.359

(q) COIN
traffic:87.2 K
CD:1.280

(r) Draco
traffic:88.5 K
CD:0.249

(s) G-PCC
traffic:106.4 K
CD:0.161

(t) Octattention
traffic:105.1 K
CD:0.071

(u) R-PCC(Deflate)
traffic:99.1 K
CD:0.133

(v) R-PCC(LZ4)
traffic:169.3 K
CD:0.229

(w) RIC
traffic:104.3 K
CD:0.183

(x) Proposed
traffic:99.1 K
CD:0.041

FIGURE 4: Snapshots of the reconstructed LiDAR point clouds obtained by the proposed and baseline methods under

QPSK modulation and a 1/2-rate convolutional code, with a wireless channel SNR of 10 dB. The results in (a)–(l) and

(m)–(x) correspond to sequences 00-00 and 01-00, respectively.

of 5 dB, 10 dB, and 15 dB. Table 1 lists the average

BD-CD performance across the different LiDAR sequences

for each SNR to evaluate the 3D reconstruction quality at

certain SNRs, as well as the average BD-CD performance

across SNRs. The results are averaged over 30 frames of

sequences ranging from 00 to 06 in the KITTI Odometry

dataset. At a low SNR of 5 dB, the proposed scheme

outperforms AVIF (+0.232 BD-CD) and RIC (+0.083 BD-

CD). It also achieves comparable performance compared

to R-PCC (Deflate) (+0.033 BD-CD) and Octattention (-

0.006 BD-CD). At a high SNR of 15 dB, the proposed

scheme consistently surpasses all baseline methods, includ-

ing Octattention (+0.053 BD-CD). This result highlights its

superior reconstruction performance under favorable channel

conditions.

Figs. 4 (a)–(x) show snapshots of the original and recon-

structed LiDAR point clouds produced by each method at

an SNR of 10 dB. Specifically, Figs. 4 (a)–(l) and (m)–(x)

correspond to sequences 00-00 and 01-00, respectively. Im-

age compression-based methods suffer from noise-induced

structural degradation, which leads to visually noticeable

distortions in the reconstructed point clouds. R-PCC meth-

ods exhibit persistent circular noise patterns. PCC methods

such as G-PCC and Draco tend to produce sparse recon-

structions with low point density, resulting in fragmented

and incomplete geometric representations. The point clouds

reconstructed by RIC accurately preserve the coarse object

structure but exhibit low precision in reconstructing fine-

grained geometric details. In contrast, the proposed scheme

preserves both structural fidelity and point density, while

reducing compression-induced distortions, thereby achieving

structurally faithful point cloud reconstructions.

2) DOWNSTREAM TASK

This section evaluates the impact of point cloud compression

methods on downstream task performance, using 3D object

detection as a representative example. The downstream task

performance of the proposed scheme is assessed under a

wireless channel SNR of 10dB. We use PointPillar [49] as

the 3D object detector. The input point clouds are com-

pressed using AVIF, R-PCC (Deflate), G-PCC, Octattention,

RIC, and the proposed scheme. The reflectance values of

all point clouds are set to zero, and the reconstructed point

clouds are used as input to PointPillar for inference. Each

method is evaluated under three model sizes determined by

the number of transmission symbols: approximately 50K

(Low), 100K (Middle), and 150K (High). Table 2 shows

the detection accuracy in terms of 2D IoU, Bird’s Eye

View (BEV) IoU, and 3D IoU for the object class ”Car.”

The detection accuracy without compression (i.e., using the

original point cloud) is 0.879 for 2D IoU, 0.866 for BEV

IoU, and 0.780 for 3D IoU.
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TABLE 2: 3D object detection accuracy ↑ for different model sizes. The best and the second best results are

denoted by pink and yellow.

Type Model

Size

AVIF R-PCC

(Deflate)

G-PCC Oct-

attention

RIC Proposed No

compression

2D IoU

Low 0.190 0.662 0.727 0.761 0.477 0.835

0.879Mid 0.411 0.710 0.737 0.782 0.771 0.837

High 0.723 0.722 0.751 0.775 0.848 0.847

BEV IoU

Low – 0.602 0.747 0.753 0.183 0.846

0.866Mid 0.246 0.778 0.763 0.801 0.765 0.851

High 0.801 0.807 0.806 0.805 0.854 0.840

3D IoU

Low – 0.446 0.615 0.646 0.173 0.739

0.780Mid 0.221 0.610 0.633 0.680 0.653 0.736

High 0.659 0.637 0.664 0.681 0.742 0.735

(a) AWGN channel. (b) Rayleigh fading channel.

FIGURE 5: Reconstruction quality as a function of wireless channel quality.

In the Low and Middle settings, the proposed scheme

outperforms all baseline methods across all IoU metrics.

In particular, under the Low setting, it demonstrates clear

superiority even over high-performance approaches such as

Octattention and RIC, showing that it can reliably preserve

detection accuracy even under severe bitrate constraints.

In the High setting, RIC achieves the highest detection

accuracy.

3) EFFECT OF CHANNEL QUALITY FLUCTUATION

This section evaluates how the reconstruction quality of

each method varies with wireless channel conditions, which

often fluctuate due to environmental noise. Figs. 5 (a) and

(b) show the reconstruction quality of the proposed and

baseline schemes as a function of wireless channel quality

under AWGN and Rayleigh fading channels, respectively. In

TABLE 3: SNR thresholds (in dB) required for success-

ful point cloud reconstruction under various modulation

schemes and wireless channel models, for the proposed

scheme and baseline methods.

Method
AWGN Rayleigh fading

BPSK QPSK 16QAM BPSK QPSK 16QAM

HEIF 5 9 16 9 20 30

G-PCC 7 12 18 13 23 35

Octattention 5 9 14 10 19 33

R-PCC (Deflate) 5 8 15 10 20 30

RIC 5 10 15 10 20 31

Proposed 5 10 15 10 20 31

both figures, the number of transmitted symbols is adjusted

between 60K and 80K. All methods are considered adaptive
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TABLE 4: Average encoding latency ↓

Method Latency per sequence

JPEG2000 10 ms

HEIF 55 ms

AVIF 94 ms

R-PCC (Deflate) 20 ms

R-PCC (LZ4) 60 ms

G-PCC 65 ms

Draco 10 ms

Octattention 130 ms

COIN 30 min

RIC 180 min

Proposed 90 min

modulation, where the optimal modulation scheme (BPSK,

QPSK, or 16QAM) is selected according to the SNR and

combined with a 1/2-rate convolutional code of constraint

length 8. Table 3 lists the SNR thresholds used to switch

between modulation schemes.

In the baselines, the reconstruction quality exhibits the

stair-case effect, with improvements occurring only at spe-

cific SNR thresholds. In contrast, the proposed scheme

achieves smooth and continuous changes in reconstruction

quality with respect to SNR, even under a fixed bitrate, and

demonstrates graceful degradation as the SNR decreases.

Moreover, it consistently outperforms the baselines across

a wide SNR range even though the power allocation is

suboptimal for Rayleigh fading channels, enabling robust

and high-fidelity reconstruction under fluctuating channel

conditions.

4) ENCODING LATENCY

Table 4 shows the average encoding latency of the proposed

and baseline methods for LiDAR sequence 00-00. Here,

the encoding latency for the RI-based schemes contains the

conversion time from the point cloud to the RI.

It shows that the INR-based compression, including the

proposed scheme, requires a significant encoding latency

compared with the 3D point cloud compression and 2D

image compression schemes. We note that the INR-based

compression achieves extremely low decoding latency as

shown in Fig. 1. It means the INR-based compression is

effective for on-demand and quality-sensitive applications.

C. ABLATION STUDY

1) EFFECT OF JSCC ALLOCATION TO DEPTH AND MASK

IMAGES

This section evaluates the impact of selectively applying

JSCC to the depth and mask images of the RI, in order to

clarify the individual contribution of JSCC to reconstruction

quality. We compare four configurations: (i) JSCC is not

TABLE 5: The list of BD-CD for KITTI dataset under

different JSCC allocations to the depth and mask images

of the RI. ✓ indicates that the corresponding component

is transmitted with JSCC. Higher values indicate better

reconstruction performance for the proposed scheme.

Depth Mask 5dB 10dB 15dB Average

0.078 0.102 0.119 0.100

✓ 0.060 0.084 0.101 0.082

✓ 0.066 0.032 0.020 0.039

applied to either image (i.e., RIC), (ii) JSCC is applied only

to the mask image, (iii) JSCC is applied only to the depth

image, and (iv) JSCC is applied to both images (i.e., the

proposed scheme).

Table 5 shows the BD-CD for the KITTI dataset under

each configuration. Larger values indicate that the compared

configurations exhibit inferior performance compared to the

proposed scheme. Among the tested configurations, the pro-

posed scheme consistently achieves the best reconstruction

performance across all SNR levels. Notably, applying JSCC

only to the depth image yields an average BD-CD of 0.039,

whereas applying it only to the mask image results in a

higher BD-CD of 0.082. The configuration without JSCC

applied to either image exhibits the worst performance, with

an average BD-CD of 0.100. These results indicate that the

depth image contributes more significantly to reconstruction

quality when JSCC is applied to it, while the mask image

also provides a moderate benefit.

2) EFFECT OF DIGITAL-TO-ANALOG SYMBOL RATIO ON

RECONSTRUCTION PERFORMANCE

Each of the depth and mask images is transmitted using both

digitally encoded INR parameters and residuals transmitted

in analog form. This section investigates how the ratio

between digital and analog symbols affects reconstruction

performance, by independently varying the ratio for the depth

and mask images under a fixed total number of transmission

symbols. We define a parameter rd ∈ [0, 1], which represents

the ratio of transmission symbols allocated to digital symbols

for INR. When rd = 1.0, only the INR parameters are

transmitted, and no residuals are sent. In contrast, rd = 0.0
corresponds to a pure JSCC scheme, where the entire RI is

transmitted using pseudo-analog modulation without relying

on INR-based encoding.

Fig. 6 shows how the reconstruction quality varies as the

ratio rd is changed, while keeping the total number of trans-

mission symbols fixed for either the depth or mask image.

Fig. 6 (a) shows the reconstruction quality as a function of

SNR when varying the ratio rd for the depth image under an

available bandwidth of 32 Ksymbols. To evaluate the effect

of rd on the depth image alone, the mask image is kept
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(a) Depth image: Chamfer Distance as a function of SNR with varying rd and an
available bandwidth of 32 Ksymbols.

(b) Mask image: Chamfer Distance as a function of rd under a fixed SNR of
10 dB and an available bandwidth of 5 Ksymbols.

FIGURE 6: Reconstruction quality across digital-to-analog

symbol ratio rd in the depth and mask images.

identical across all configurations. The best reconstruction

quality is achieved when digital INR parameters and analog

residuals are transmitted in combination. In particular, the

configuration with rd = 0.33, which corresponds to an

digital-to-analog ratio of 1:2, consistently yields the lowest

chamfer distance across all SNR levels. In contrast, the pure

JSCC scheme (rd = 0.0) shows limited improvement with

increasing SNR and results in overall inferior reconstruction

quality. Fig. 6 (b) shows the reconstruction quality as a

function of rd for the mask image under a wireless channel

SNR of 10 dB and an available bandwidth of 5 Ksymbols.

To evaluate the effect of rd on the mask image alone, the

depth image is kept unchanged across all configurations.

The proposed hybrid scheme yields better 3D reconstruction

quality compared with the pure digital and analog schemes

under the limited bandwidth conditions.

TABLE 6: The list of BD-CD results for the KITTI dataset

when using different image compression schemes for RI re-

construction in the residual transmission framework. Higher

values indicate better reconstruction performance for the

proposed scheme.

Method 5dB 10dB 15dB Average

JPEG2000 0.273 0.211 0.161 0.215

HEIF 0.211 0.177 0.150 0.179

AVIF 0.067 0.066 0.066 0.066

COIN 0.893 0.721 0.601 0.739

3) EFFECT OF INTEGRATED COMPRESSION METHODS

ON RESIDUAL TRANSMISSION

This section evaluates how different image compression

methods affect reconstruction quality when integrated into

the residual transmission framework. Specifically, we replace

the RI compression module in the pipeline with JPEG2000,

HEIF, AVIF, and COIN, respectively. In all configurations,

the residual is computed from the reconstructed RI and

transmitted using the same JSCC settings. Table 6 shows the

BD-CD for the KITTI dataset when using different image

compression schemes for RI reconstruction in the resid-

ual transmission framework. These results demonstrate that

the proposed method outperforms all alternative approaches

across all SNR conditions.

4) EFFECT OF NETWORK ARCHITECTURE

This section discusses the effect of the configurations for the

depth INR architecture, specifically the patch size Np and

layer size L, on the quality of the reconstructed LiDAR point

cloud. Here, a small patch size increases the complexity of

intra-patch learning, while a large patch size increases the

complexity of inter-patch learning.

Fig. 7 shows the 3D reconstruction quality of the pro-

posed scheme under the different patch division sizes Np.

The evaluation results demonstrated that the patch size of

Np = 16 yields the best CD performance. However, either

larger or smaller patch sizes degrade the 3D reconstruction

quality under the same bitrate.

Similarly, Fig. 8 shows the 3D reconstruction quality of

the proposed scheme for different layer sizes L. The results

indicate that a layer size of L = 6 is the most effective for

CD performance.

5) EFFECT OF RESIDUAL SELECTION STRATEGY

This section evaluates the effect of the residual prioritization

and available bandwidth on the 3D reconstruction quality.

To discuss the effectiveness of residual transmission in the

proposed scheme, we prepare two alternative strategies for

sending residuals in band-limited conditions: (i) random
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FIGURE 7: Chamfer distance under the different patch

sizes.

FIGURE 8: Chamfer distance under the different layer

sizes.

selection and (ii) sequential selection. The random selection

randomly chooses the transmission residuals, and the sequen-

tial selection sequentially chooses residuals from the top-left

to the bottom-right of the RI to fit the available bandwidth.

Here, we consider a retention ratio R, whose range is [0, 1].

For example, a retention ratio of 1 indicates that the available

bandwidth is sufficient for sending all the residuals, whereas

a retention ratio of 0.7 means that 30% of the residuals

cannot be transmitted due to bandwidth limitations.

Fig. 9 shows the 3D reconstruction quality as a function

of the retention ratio R of the residuals for three methods

at the wireless channel SNR of 15 dB. It shows that the

absolute value-based residual transmission in the proposed

scheme outperforms both random and sequential selection

for any retention ratio. This result confirms that the absolute

value-based strategy is an intuitive but highly effective and

practical method for maintaining 3D reconstruction quality

under the same available bandwidth. It also shows that

FIGURE 9: Reconstruction quality as a function of the

retention ratio R of the residuals at the wireless channel

SNR of 15 dB.

degradation of 3D reconstruction quality in the proposed

scheme is slight at a retention ratio of approximately 0.6 and

becomes more significant at 0.5. It means that, to preserve

3D reconstruction quality, more than 60% of the residuals

with larger absolute values should be transmitted using the

proposed scheme. We note that a similar trend was observed

for different LiDAR sequences and various SNR regimes.

V. CONCLUSION

We proposed a novel scheme for LiDAR point cloud repre-

sentation that combines an INR-based digital representation

with pseudo-analog residual transmission. The proposed

scheme is designed to efficiently represent high-frequency

components in a small INR via residual transmission and

to improve reconstruction quality under time-varying wire-

less channels by incorporating JSCC. Experiments on the

KITTI dataset show that the proposed scheme outperforms

existing methods for point cloud, image, RI, and INR-based

compression in terms of R-D performance, achieving a BD-

CD improvement of up to 1.199. In addition, it preserves

3D object detection accuracy even under severe bitrate

constraints, demonstrating its effectiveness for downstream

perception tasks.

In future work, we will develop a quantitative metric to

measure the smoothness of quality adaptation across SNR

regimes, i.e., gracefulness, of the baselines.

APPENDIX

This appendix provides further details for Table 1. Tables 7,

8, and 9 show the detailed BD-CD performance across the

different LiDAR sequences for each SNR, respectively.
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TABLE 7: The list of BD-CD ↑ for KITTI dataset at the wireless channel SNR of 5 dB.

Seq.
JPEG

2000
HEIF AVIF

RPCC

(Deflate)

RPCC

(LZ4)
G-PCC Draco

Oct-

attention
COIN RIC

00-00 0.486 0.330 0.235 0.051 0.130 0.064 0.081 -0.003 1.020 0.057

00-25 0.564 0.342 0.216 0.056 0.174 0.055 0.080 -0.006 0.990 0.067

00-50 0.674 0.372 0.232 0.061 0.153 0.053 0.058 -0.007 1.146 0.063

00-75 0.744 0.402 0.237 0.015 0.099 0.050 0.055 -0.006 0.989 0.058

00-100 0.500 0.325 0.219 0.015 0.107 0.061 0.075 -0.005 1.139 0.064

01-00 0.568 0.369 0.238 0.042 0.174 0.091 0.140 0.000 1.142 0.109

01-25 0.510 0.368 0.286 0.055 0.150 0.097 0.167 0.022 1.117 0.097

01-50 0.537 0.362 0.264 0.060 0.161 0.089 0.136 0.018 1.136 0.087

01-75 0.601 0.369 0.235 0.044 0.146 0.081 0.089 0.012 0.990 0.071

01-100 0.653 0.397 0.241 0.060 0.186 0.072 0.095 0.009 1.130 0.073

02-00 0.591 0.368 0.223 0.033 0.189 0.056 0.091 -0.020 1.026 0.098

02-25 0.476 0.329 0.239 0.052 0.139 0.069 0.119 0.003 1.024 0.085

02-50 0.493 0.337 0.250 0.045 0.129 0.085 0.126 0.001 1.048 0.091

02-75 0.506 0.345 0.248 0.030 0.128 0.067 0.117 0.002 0.999 0.077

02-100 0.470 0.315 0.235 0.036 0.131 0.074 0.099 0.008 1.150 0.061

03-00 0.602 0.342 0.210 0.057 0.168 0.049 0.060 -0.007 1.026 0.062

03-25 0.741 0.428 0.228 0.022 0.119 0.040 0.044 -0.016 0.968 0.080

03-50 0.583 0.363 0.231 0.011 0.115 0.054 0.069 -0.017 1.120 0.093

03-75 0.468 0.325 0.217 0.003 0.098 0.065 0.087 -0.013 0.964 0.095

03-100 0.472 0.329 0.224 0.009 0.112 0.068 0.105 -0.007 1.139 0.088

04-00 0.508 0.350 0.235 0.061 0.183 0.075 0.109 -0.010 1.125 0.104

04-25 0.661 0.396 0.230 0.022 0.130 0.060 0.081 -0.015 1.076 0.106

04-50 0.647 0.380 0.234 0.038 0.146 0.059 0.077 -0.001 1.116 0.071

04-75 0.577 0.348 0.225 0.021 0.133 0.051 0.064 -0.011 0.971 0.082

04-100 0.502 0.328 0.239 0.034 0.123 0.067 0.080 0.009 1.148 0.059

05-00 0.507 0.324 0.235 0.067 0.186 0.062 0.087 -0.008 1.049 0.076

05-25 0.520 0.327 0.228 0.016 0.105 0.064 0.080 -0.002 1.030 0.060

05-50 0.767 0.427 0.233 0.012 0.105 0.043 0.055 -0.017 1.021 0.077

05-75 0.813 0.466 0.240 0.011 0.114 0.041 0.048 -0.022 0.960 0.091

05-100 0.642 0.383 0.242 0.018 0.110 0.050 0.063 -0.009 1.132 0.068

06-00 0.575 0.351 0.209 0.046 0.184 0.054 0.077 -0.026 1.002 0.105

06-25 0.690 0.385 0.210 0.014 0.151 0.046 0.070 -0.022 1.008 0.109

06-50 0.672 0.391 0.211 0.012 0.133 0.047 0.065 -0.022 1.011 0.112

06-75 0.814 0.477 0.217 0.018 0.134 0.039 0.056 -0.026 0.957 0.109

06-100 0.536 0.349 0.224 0.007 0.107 0.069 0.103 -0.012 1.117 0.106

Average 0.591 0.366 0.232 0.033 0.139 0.062 0.086 -0.006 1.057 0.083

TABLE 8: The list of BD-CD ↑ for KITTI dataset at the wireless channel SNR of 10 dB.

Seq.
JPEG

2000
HEIF AVIF

RPCC

(Deflate)

RPCC

(LZ4)
G-PCC Draco

Oct-

attention
COIN RIC

00-00 0.673 0.424 0.275 0.082 0.172 0.109 0.134 0.027 1.122 0.089

00-25 0.768 0.463 0.256 0.082 0.211 0.096 0.136 0.022 1.067 0.095

00-50 0.964 0.536 0.266 0.085 0.197 0.084 0.099 0.014 1.291 0.087

00-75 1.061 0.586 0.271 0.039 0.128 0.080 0.094 0.014 1.064 0.079

00-100 0.688 0.418 0.257 0.044 0.143 0.100 0.123 0.022 1.279 0.094

01-00 0.757 0.496 0.288 0.080 0.297 0.160 0.232 0.049 1.234 0.151

01-25 0.670 0.454 0.319 0.079 0.189 0.156 0.256 0.063 1.206 0.133

01-50 0.688 0.464 0.298 0.082 0.185 0.139 0.201 0.052 1.217 0.115

01-75 0.806 0.518 0.266 0.075 0.170 0.123 0.136 0.046 1.065 0.098

01-100 0.907 0.574 0.267 0.099 0.234 0.119 0.157 0.041 1.277 0.097

02-00 0.811 0.517 0.266 0.068 0.253 0.117 0.168 0.021 1.110 0.137

02-25 0.624 0.416 0.273 0.078 0.177 0.114 0.180 0.036 1.108 0.117

02-50 0.619 0.421 0.285 0.072 0.156 0.137 0.189 0.034 1.114 0.120

02-75 0.688 0.439 0.287 0.064 0.165 0.112 0.185 0.035 1.085 0.105

02-100 0.626 0.400 0.264 0.063 0.163 0.116 0.152 0.036 1.276 0.084

03-00 0.870 0.485 0.243 0.080 0.216 0.083 0.109 0.018 1.124 0.089

03-25 1.030 0.613 0.272 0.054 0.162 0.077 0.090 0.014 1.052 0.113

03-50 0.807 0.490 0.269 0.046 0.164 0.101 0.138 0.017 1.266 0.128

03-75 0.626 0.416 0.259 0.039 0.141 0.124 0.148 0.024 1.048 0.135

03-100 0.612 0.421 0.267 0.043 0.150 0.122 0.175 0.029 1.276 0.126

04-00 0.665 0.451 0.279 0.096 0.243 0.135 0.172 0.031 1.214 0.144

04-25 0.897 0.558 0.273 0.058 0.178 0.115 0.143 0.022 1.167 0.146

04-50 0.908 0.554 0.265 0.069 0.185 0.096 0.128 0.027 1.211 0.096

04-75 0.808 0.491 0.258 0.055 0.181 0.097 0.122 0.020 1.052 0.113

04-100 0.699 0.421 0.264 0.063 0.156 0.104 0.130 0.034 1.289 0.081

05-00 0.688 0.417 0.271 0.096 0.237 0.112 0.141 0.022 1.127 0.108

05-25 0.704 0.424 0.265 0.045 0.136 0.109 0.128 0.026 1.113 0.087

05-50 1.144 0.659 0.268 0.045 0.154 0.082 0.108 0.011 1.113 0.107

05-75 1.167 0.700 0.276 0.043 0.166 0.080 0.096 0.007 1.044 0.123

05-100 0.939 0.561 0.272 0.049 0.157 0.088 0.115 0.018 1.283 0.093

06-00 0.778 0.494 0.260 0.083 0.234 0.118 0.141 0.017 1.088 0.147

06-25 0.977 0.566 0.254 0.055 0.197 0.106 0.144 0.016 1.107 0.152

06-50 0.930 0.569 0.255 0.052 0.172 0.106 0.124 0.017 1.097 0.154

06-75 1.112 0.698 0.268 0.053 0.174 0.089 0.116 0.009 1.041 0.147

06-100 0.724 0.466 0.270 0.045 0.150 0.135 0.169 0.028 1.271 0.152

Average 0.812 0.502 0.270 0.065 0.183 0.110 0.145 0.026 1.157 0.115
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TABLE 9: The list of BD-CD ↑ for KITTI dataset at the wireless channel SNR of 15 dB.

Seq.
JPEG

2000
HEIF AVIF

RPCC

(Deflate)

RPCC

(LZ4)
G-PCC Draco

Oct-

attention
COIN RIC

00-00 0.735 0.515 0.307 0.096 0.198 0.151 0.172 0.050 1.162 0.108

00-25 0.811 0.563 0.288 0.095 0.229 0.129 0.172 0.042 1.092 0.110

00-50 1.045 0.688 0.303 0.097 0.219 0.110 0.133 0.032 1.335 0.101

00-75 1.176 0.724 0.303 0.054 0.149 0.102 0.128 0.030 1.098 0.093

00-100 0.748 0.509 0.288 0.062 0.164 0.135 0.159 0.043 1.327 0.112

01-00 0.849 0.625 0.337 0.110 0.340 0.207 0.327 0.088 1.287 0.181

01-25 0.741 0.552 0.354 0.102 0.408 0.195 0.344 0.096 1.254 0.160

01-50 0.803 0.601 0.328 0.111 0.221 0.204 0.281 0.086 1.286 0.142

01-75 0.860 0.638 0.297 0.091 0.119 0.162 0.169 0.071 1.093 0.113

01-100 0.981 0.709 0.299 0.121 0.257 0.155 0.200 0.067 1.322 0.112

02-00 0.835 0.620 0.315 0.086 0.265 0.166 0.217 0.051 1.132 0.157

02-25 0.667 0.494 0.312 0.094 0.191 0.153 0.233 0.065 1.143 0.138

02-50 0.664 0.486 0.319 0.087 0.175 0.178 0.240 0.060 1.146 0.139

02-75 0.757 0.547 0.318 0.087 0.185 0.154 0.243 0.064 1.126 0.125

02-100 0.684 0.482 0.292 0.082 0.186 0.154 0.196 0.060 1.327 0.099

03-00 0.937 0.620 0.278 0.092 0.261 0.115 0.147 0.038 1.158 0.105

03-25 1.140 0.742 0.317 0.075 0.205 0.111 0.127 0.037 1.092 0.134

03-50 0.877 0.611 0.318 0.068 0.197 0.145 0.195 0.048 1.317 0.151

03-75 0.672 0.499 0.302 0.061 0.163 0.168 0.208 0.054 1.082 0.158

03-100 0.661 0.501 0.307 0.065 0.172 0.163 0.230 0.059 1.325 0.151

04-00 0.726 0.551 0.323 0.117 0.272 0.178 0.225 0.065 1.259 0.172

04-25 1.000 0.701 0.326 0.086 0.311 0.174 0.198 0.056 1.215 0.178

04-50 0.989 0.684 0.301 0.089 0.199 0.133 0.166 0.049 1.248 0.112

04-75 0.881 0.608 0.295 0.077 0.209 0.137 0.170 0.044 1.088 0.133

04-100 0.758 0.521 0.285 0.078 0.175 0.132 0.169 0.052 1.334 0.094

05-00 0.758 0.521 0.310 0.114 0.268 0.162 0.191 0.050 1.167 0.131

05-25 0.755 0.517 0.296 0.062 0.153 0.144 0.166 0.048 1.147 0.103

05-50 1.225 0.759 0.306 0.063 0.176 0.114 0.148 0.032 1.143 0.125

05-75 1.289 0.823 0.313 0.067 0.204 0.117 0.143 0.032 1.084 0.146

05-100 1.019 0.676 0.311 0.068 0.185 0.121 0.155 0.040 1.330 0.108

06-00 0.860 0.621 0.323 0.113 0.264 0.170 0.193 0.053 1.132 0.177

06-25 1.092 0.721 0.313 0.086 0.180 0.162 0.210 0.053 1.162 0.184

06-50 1.016 0.694 0.310 0.079 0.199 0.155 0.171 0.050 1.139 0.183

06-75 1.338 0.919 0.316 0.092 0.060 0.147 0.184 0.041 1.106 0.185

06-100 0.785 0.578 0.323 0.069 0.175 0.190 0.220 0.062 1.324 0.182

Average 0.890 0.618 0.310 0.086 0.210 0.151 0.195 0.053 1.199 0.137
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