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Abstract
This article investigates real-time fast charging for lithium-ion batteries at high C-rates. First,
an electrochemical- thermal-inspired battery model is presented to capture key dynamics
accurately. The model is validated through hardware experiments, showing small modeling
errors across a wide range of charging (up to 4 C) and discharging (up to 14.5 C) currents. A
fast-charging framework is then proposed, consisting of two components: an offline trajectory
optimization and an online current reshaping algorithm. First, the offline component solves
a time-optimal charging trajectory optimization problem once at the start of the charging
process. This generates an optimal reference trajectory for battery states and controls, which
is then used by the online component. Second, the online component continually reshapes the
reference charging current in real time. Operating at a higher frequency, it adjusts the current
based on the present state and the reference current for the next time instance, ensuring
compliance with charging constraints. Numerical experiments confirm the effectiveness and
computational efficiency of the proposed framework.
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Abstract— This article investigates real-time fast charging for
lithium-ion batteries at high C-rates. First, an electrochemical-
thermal-inspired battery model is presented to capture key
dynamics accurately. The model is validated through hardware
experiments, showing small modeling errors across a wide range
of charging (up to 4 C) and discharging (up to 14.5 C) currents.
A fast-charging framework is then proposed, consisting of
two components: an offline trajectory optimization and an
online current reshaping algorithm. First, the offline component
solves a time-optimal charging trajectory optimization problem
once at the start of the charging process. This generates an
optimal reference trajectory for battery states and controls,
which is then used by the online component. Second, the online
component continually reshapes the reference charging current
in real time. Operating at a higher frequency, it adjusts the
current based on the present state and the reference current
for the next time instance, ensuring compliance with charging
constraints. Numerical experiments confirm the effectiveness
and computational efficiency of the proposed framework.

I. INTRODUCTION

Lithium-ion batteries (LiBs) have become essential across
various sectors, including electric vehicles (EVs) [1] and
electric vertical takeoff and landing (eVTOL) aircraft [2].
These applications require fast charging and high output
power, which in turn demand high charging/discharging
currents. For example, compared to EVs, eVTOL aircraft
require batteries capable of discharging at rates three times
higher during takeoff and landing, with charging frequencies
up to four times faster [2]. However, fast charging LiBs at
high C-rates poses significant challenges due to the excessive
heat generated by high currents, potentially jeopardizing both
battery safety and lifespan. Ensuring safe and efficient fast
charging requires accurate modeling of battery dynamics,
including electrical, thermal, and chemical behaviors under
high C-rate conditions. Two primary categories of LiB mod-
els have emerged: Electrochemical Models and Equivalent
Circuit Models (ECMs).

Electrochemical models offer high modeling fidelity but
tend to be computationally intensive. For onboard appli-
cations, where fast computation is essential, models that
balance accuracy and efficiency are highly desirable. One
popular choice is the pseudo-2D Doyle–Fuller–Newman
(DFN) model, which describes lithium-ion (Li-ion) diffusion
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and charge transfer within a cell’s electrodes, electrolyte, and
separator [3]. A more computationally efficient alternative
is the single-particle model (SPM), which simplifies each
electrode as a single spherical particle, neglecting electrolyte
dynamics [4]. While this enhances computational speed,
the SPM is typically limited to low C-rates (no higher
than 1 C) [5]. In contrast, ECMs, incorporating circuit
components, provide a computationally efficient way of rep-
resenting the dynamics of LiB’s key characteristics from the
user’s perspective, including state of charge (SoC), voltage,
temperature, and power capabilities during charging and
discharging. ECMs are easy to interpret, simple to calibrate,
and scalable for larger battery systems. Their low-order
ordinary differential equations (ODEs) allow for fast onboard
computation, making ECMs a popular choice for battery
management systems with limited computing resources.

Recent literature has explored advanced real-time battery
charging control techniques. For example, a two-level archi-
tecture is proposed in [6]–[8], using a simplified linear dy-
namic model derived from DFN. This architecture employs
a low-level linear quadratic regulator to ensure stability and
fast reference tracking, while a high-level reference governor
enforces constraint satisfaction by adjusting the reference.
Feng et al. [9] apply cascade-CBF (control barrier func-
tion) to modify the conventional constant current/constant
voltage (CC/CV) strategy, using the thermal-ECM model
proposed in [10]. Based on a DFN model, Li et al. [11]
converts a constrained optimal control problem into an
output tracking problem through nonlinear model inversion-
based control, thereby improving real-time computation per-
formance. Meanwhile, researchers have explored bridging
the gap between ECMs and electrochemical models. The
nonlinear double capacitor (NDC) model [5], for instance,
approximates Li-ion diffusion within the electrodes and
captures nonlinear voltage behavior, offering a reduced-order
circuit analog to the SPM. A variant, the thermal-NDC model
[12], integrates a two-state lumped thermal model [10] to
account for temperature-dependent electrothermal dynamics
during charging at up to 1.5 C.

Despite their widespread use, the simplicity of ECMs
limits their accuracy, especially at high C-rates [13]. One
of the more advanced ECMs, the BattX model [13], builds
upon the Single-Particle Model with Electrolyte and Ther-
mal dynamics (SPMeT) [14]–[16]. It employs equivalent
circuits to simulate a LiB cell’s electrode, electrolyte, and
thermal dynamics independently, which are then combined
into a comprehensive ECM. This approach improves model
accuracy across a wide range of C-rates while maintaining



computational efficiency, making it suitable for real-time
fast charging. However, the increased state dimension of
the BattX model, at least 10 states compared to the 4-
state thermal-NDC model in [12], introduces a computational
challenge. These challenges become especially significant
when managing a large number of battery cells or im-
plementing long-horizon model predictive control (MPC),
primarily due to the curse of dimensionality. Thus, designing
an efficient real-time fast charging strategy for high-fidelity
battery models remains a significant challenge.

A. Problem Statement, Summary & Contributions

The problem of interest is to develop a real-time fast-
charging strategy for LiBs in high C-rate scenarios. To tackle
this, an electrochemical-thermal-inspired battery model is
used to accurately capture critical dynamic processes, in-
cluding electrode-phase diffusion, electrolyte-phase diffu-
sion, thermal behavior, and voltage response. The model
is validated through hardware experiments, demonstrating
small modeling errors across a wide range of charging (up
to 4 C) and discharging (up to 14.5 C) currents.

Building on this, a real-time fast-charging framework
is introduced, comprising two components: (1) an offline
trajectory optimization and (2) an online current reshaping
algorithm. The offline component formulates a time-optimal
charging trajectory problem using coarse time discretization.
This problem is solved once at the start of the charging
process to generate a reference trajectory for battery states
and control variables. This reference trajectory is then pro-
vided to the online component. The online current reshap-
ing algorithm operates at a higher frequency, continually
adjusting the charging current in real time based on the
present state and reference point at the next time instance.
By employing a computationally efficient one-step prediction
method, the reshaping algorithm ensures compliance with
charging constraints while refining the initial reference tra-
jectory. Numerical experiments and comparisons validate the
proposed framework’s effectiveness in maintaining charging
constraints throughout the process.

The primary contributions of this work are as follows.

1) Real-Time Fast-Charging Framework: A computation-
ally efficient fast-charging strategy is introduced, combining
offline trajectory optimization with real-time current reshap-
ing. Numerical results confirm the framework’s effectiveness
in safely and efficiently achieving fast charging.

2) Model Validation: This article utilizes a modified
electrochemical-thermal-inspired model, based on the BattX
model [13]. This model is validated through hardware exper-
iments with a wide current range, demonstrating its ability
to accurately capture battery dynamics with the identified
model parameters.

Notations. The real number set and natural number set
are denoted by R and N, respectively. Let Ja, bK denote a
set of all integers between a ∈ Z and b ∈ Z, with both
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Fig. 1. The modified BattX battery model proposed in this article.

ends included. For x,y ∈ Rn, x ≤ y indicates element-
wise inequality. Denote column stack as col{v1, · · · ,va} ≜[
v1

⊤ · · · va
⊤]⊤. For a vector x ∈ Rn, x[−1] ∈ R

indicates the last element of x. Let 0n,1n ∈ Rn denote
a zero and a one vector.

II. SYSTEM DYNAMICS, PARAMETERS & CONSTRAINTS

This section introduces a modified electrochemical-
thermal-inspired battery model, based on the BattX model
[13]. The proposed model characterizes the key dynamic
processes occurring in a LiB cell across a broad range of
current rates. As illustrated in Fig. 1, the model adopts
a similar philosophy to ECMs and is represented by four
coupled sub-circuits, labeled A through D. These sub-circuits
conceptually correspond to the cell’s distinct dynamics re-
spectively: electrode-phase lithium-ion (Li-ion) diffusion,
electrolyte-phase Li-ion diffusion, thermal dynamics, and
voltage response. Note that the sub-circuits are conceptual
representations and do not correspond directly to physical
components within the battery cell.

A. System Dynamics

Sub-circuit A uses a chain of N ∈ N (N ≥ 3) resistors
and capacitors to approximate the Li-ion diffusion in the
negative electrode (solid) phase, i.e., ∀i ∈ J2, N − 1K,

V̇s,1(t) =
Vs,2(t)− Vs,1(t)

Cs,1Rs,1,T(t)
+

I(t)

Cs,1
, (1a)

V̇s,i(t) =
Vs,i−1(t)− Vs,i(t)

Cs,iRs,i−1,T(t)
+

Vs,i+1(t)− Vs,i(t)

Cs,iRs,i,T(t)
, (1b)

V̇s,N (t) =
Vs,N−1(t)− Vs,N (t)

Cs,NRs,N−1,T(t)
, (1c)

where I(t) is the current at time t, with I > 0 for charging
and I < 0 for discharging. For all i ∈ J1, NK, Vs,i(t),
i = 1, · · · , N , are the voltages across the capacitors Cs,i,
which correspond to the normalized Li-ion concentrations
at N different locations of an electrode, from the surface
to the center, that spread along the radius of the electrode
sphere. Cs,i are analogous to the volumes of the subdomains
if one subdivides the electrode sphere at these discrete lo-
cations. Rs,i,T(t) represent charge transfer resistance, which
are temperature-dependent (state-dependent) and introduced



later. The positive electrode dynamics are not considered due
to the charge conservation assumption between the positive
and negative electrodes.

Sub-circuit B uses a chain of 3 resistors and capacitors to
approximate the Li-ion diffusion in the electrolyte,

V̇e,1(t) =
Ve,2(t)− Ve,1(t)

CeRe
+

I(t)

Ce
, (2a)

V̇e,2(t) =
Ve,1(t)− 2Ve,2(t) + Ve,3(t)

CeRe
, (2b)

V̇e,3(t) =
Ve,2(t)− Ve,3(t)

CeRe
− I(t)

Ce
. (2c)

Sub-circuit B is analogous to the one-dimensional
electrolyte-phase diffusion that is discretized along the
spatial coordinate. Ve,j(t), j = 1, 2, 3, indicate the
normalized Li-ion concentrations at the anode, separator,
and cathode, respectively. Re represents resistance to the
diffusion. The spatial discretization is assumed to be uniform
in the electrolyte, thus leading to the same values of Ce and
Re for each region.

Remark 1. Since Vs,i and Ve,j are the normalized Li-
ion concentrations at different locations and a LiB cell
has a capacity limit, Vs,i and Ve,j must have an upper
and lower bound. V s = 1 V and V s = 0 V are the
upper and lower bound for Vs,i(t), ∀i ∈ J1, NK. V e = 1
V and V e = 0 V are the upper and lower bound for
Ve,j(t), ∀j = 1, 2, 3. Thus, sub-circuit B assumes that a LiB
cell is at equilibrium when Ve,j(t) = 0.5 V,∀j = 1, 2, 3.
Note that

∑N
i=1 Cs,iV s indicates the cell total capacity, and∑N

i=1 Cs,iVs,i(t) indicates the battery’s remaining capacity.

Define the SoC as the (unitless) percentage of the currently
available charge over the total charge capacity:

SoC(t) ≜
∑N

i=1 Cs,iVs,i(t)∑N
i=1 Cs,iV s

× 100%. (3)

This article formulates a minimal state-space representation
for the battery dynamics, thus SoC is not a system state but
acts as another coordinate of the states Vs,i.

Sub-circuit C is a lumped circuit model for the thermal
dynamics of the cylindrical LiB cell, with the design inspired
by [10]. The dynamics are given by

Ṫcore(t) =
Q̇(t)

Ccore
+

Tsurf(t)− Tcore(t)

RcoreCcore
, (4a)

Ṫsurf(t) =
Tamb − Tsurf(t)

RsurfCsurf
− Tsurf(t)− Tcore(t)

RcoreCsurf
, (4b)

where Tamb is the ambient temperature; Tsurf(t) and Tcore(t)
are the cell surface and core temperature, respectively; Csurf ,
Ccore and Rsurf , Rcore represent the thermal capacitance and
resistance at the surface and core, respectively. Q̇(t) is the
internal heat generation rate accompanying electrochemical
reactions inside the cell during charging/discharging, i.e.

Q̇(t) = I(t)(V (t)−Us(SoC(t)))+ I(t)Tcore(t)
dUs

dTcore
, (5)

where V (t) is the cell’s terminal voltage provided by sub-
circuit D, Us(SoC(t)) is the open-circuit voltage (OCV)
function, which is given by sub-circuit D. The term
I(t)(V (t)−Us(SoC(t))) considers the irreversible heat gen-
eration from ohmic loss. Unlike the BattX model [13],
this article accounts for reversible entropic heating, i.e.,
I(t)Tcore(t)

dUs

dTcore
, which becomes significant in high C-

rate scenarios. The entropic coefficient is assumed to be a
function of SoC [17]:

dUs

dTcore
= c1 + c2SoC(t) + c3SoC(t)2, (6)

where c1, c2, c3 are constant coefficients.

Finally, sub-circuit D summarizes the effects of the solid
and electrolyte phase dynamics on the terminal voltage V (t),

V (t) = Us(Vs,1(t))+Ue(Ve,1(t), Ve,3(t))+Ro,T(t)I(t), (7)

where the first and second terms account for the open circuit
voltage in the electrode phase and the voltage caused by
the electrolyte phase dynamics, respectively; the third term
captures a voltage due to film resistance and over-potential.
The OCV mapping Us : R→ R is

Us(Vs,1) =
α0V

2
s,1 + α1Vs,1 + α2V

V 3
s,1 + α3V 2

s,1 + α4Vs,1 + α2
, (8)

where αi, i = J0, 4K are constant coefficients; V > 0 V is a
constant minimum terminal voltage. In the electrochemical
model SPMeT, the electrolyte potential depends on the
electrolyte concentration at the anode and cathode. Thus, Ue

is a function of Ve,1 and Ve,3, i.e.

Ue (Ve,1(t), Ve,3(t)) = β1 · ln
(
Ve,1(t) + β2

Ve,3(t) + β2

)
, (9)

where βi, i = 1, 2 are constant coefficients. Ro,T(t) is an
internal resistance dependent on SoC and Tcore(t), capturing
film resistance and over-potential,

Ro,T(t) = Ro(SoC(t)) · exp
(
κ1

(
1

Tcore(t)
− 1

Tref

))
,

(10)
where κ1 is a constant coefficient, Tref is a constant refer-
ence temperature of the Arrhenius-like equation. Ro(SoC(t))
captures the dependency of Ro,T on SoC:

Ro(SoC(t)) = γ1 + γ2SoC(t) + γ3SoC(t)2, (11)

where γ1, γ2, γ3 are coefficients. Rather than the monotoni-
cally decreasing exponential function employed in the BattX
model [13], this article utilizes the quadratic function (11) to
achieve greater modeling accuracy in high C-rate scenarios.
An Arrhenius relationship can be used to capture the relation
between the electrode-phase diffusion resistances Rs,1,T(t)
and temperature:

Rs,1,T(t) = Rs,1 · exp
(
κ2

(
1

Tcore(t)
− 1

Tref

))
. (12)



TABLE I
BATTERY PARAMETERS

Parameter Value Parameter Value

Cs,1 4840.181 F Rs,1 0.086 Ω
Ce 9171.013 F Re 0.025 Ω

Ccore 46.064 J/K Rcore 1.299 K/W
Csurf 30.743 J/K Rsurf 6.967 K/W
κ1 2829.399 K κ2 2415.149 K
β1 5.404 V β2 30.428 V
c1 -0.00048 V/K c2 0.00159 V/K
c3 -0.00108 V/K α0 -180.557 V2

α1 179.899 V3 α2 0.614 V3

α3 -55.834 V α4 54.427 V2

γ1 0.050 Ω γ2 -0.059 Ω
γ3 0.039 Ω σ2 1.77
σ3 4.00 σ4 15.98
η2 0.6066 η3 0.3115
η4 0.1148 η5 0.0164
Tref 298.15 K N 5

Due to the spatial discretization, Rs,i(t), i ∈ J2, N − 1K and
Cs,j , j ∈ J2, NK have the following relationships to Rs,1,T(t)
and Cs,1 respectively [13],

Rs,i,T(t) = σiRs,1,T(t), ∀i ∈ J2, N − 1K, (13a)
Cs,j = ηjCs,1, ∀j ∈ J2, NK, (13b)

where σi, i ∈ J2, N − 1K and ηj , j ∈ J2, NK are predefined
constant coefficients.

The continuous-time system dynamics are given by (1),
(2), (4) - (13). However, the system dynamics are not control-
affine due to the term I2(t) in I(t)V (t) of (5), together with
the definition of V (t) in (7). And one system output V (t)
is not solely determined by the states. To address these, the
current I(t) can be modeled as an additional state with the
following fictitious dynamics,

İ(t) = uf(t), (14)

where uf(t) ∈ R is a fictitious control input.
Thus, denote the augmented system state as x ≜
col{Vs,1, · · · , Vs,N , Ve,1, Ve,2, Ve,3, Tcore, Tsurf , I} ∈ Rn

(n ≜ N + 6), the fictitious system control as u ≜ uf ∈ R,
the augmented system output as y ≜ col{Tsurf , I, V } ∈
R3. Given (1), (2), (4) - (13), the continuous-time system
dynamics are

ẋ(t) = fc(x,u) = f(x) + g(x)u, (15)

where fc : Rn × R 7→ Rn, f : Rn 7→ Rn, g : Rn 7→ Rn;
g(x) = col{0N+5, 1}, f(x) = fc(x,u)−g(x)u. According
to (7), the terminal voltage V (t) can be determined given
the state x(t), denoted as V = gV(x) with gV : Rn 7→ R.
Similarly, according to (3), denote SoC = gs(x) with gs :
Rn 7→ R. Note that the actual outputs of a battery cell are
terminal voltage V (t) and surface temperature Tsurf(t).

B. Parameter Identification and Model Validation

Using the parameter identification method proposed in
[13], the necessary parameters for the battery dynamics
(15) are identified and summarized in Table I, based on

(a) Battery current trajectory given the US06 profile.

(b) Battery terminal voltage from the experimental and simulation data.

(c) Battery surface temperature from the experimental and simulation data.

Fig. 2. Experimental validation for the proposed model with the identified
parameters and the US06 profile.

an A123 ANR26650M1B LFP (LiFePO4) cell. The cell’s
nominal capacity is 2.5 Ah, and its 1 C current is 2.5 A.
The maximum charging current is I = 10 A (4 C). The
maximum and minimum terminal voltages are V = 3.6 V
and V = 2.26 V, respectively.

The obtained model is validated by charging and dis-
charging an A123 ANR26650M1B LFP cell given the US06
current profile with a wide current range [−14.5, 4] C. The
experimental data includes measurement trajectories of bat-
tery terminal voltage and surface temperature. The simulation
data with the same US06 profile is generated by the proposed
model and the identified parameters in Table I. Fig. 2 shows
the experimental validation of the proposed model under the
US06 profile. Fig. 2a shows the battery current trajectory
given the US06 profile. Fig. 2b shows the battery terminal
voltage trajectories from the experimental data and simu-
lation data. Fig. 2c shows the battery surface temperature
trajectories from the experimental data and simulation data.
Fig. 3 shows the absolute error trajectories of the battery
terminal voltage (Fig. 3a) and surface temperature (Fig. 3b)
between measurement and simulation data. The root mean
square error (RMSE) for the terminal voltage and surface
temperature are 0.0287 V and 0.14 K, respectively.

C. Constraints

This subsection introduces some necessary constraints
required for fast charging. To begin with, the SoC must be
constrained to avoid overcharging, i.e.

SoC ≤ SoC(t) ≤ SoC, ∀t. (16)



(a) Absolute error between measurement and simulation data of battery
terminal voltage.

(b) Absolute error between measurement and simulation data of battery
surface temperature.

Fig. 3. Absolute error trajectories between measurement and simulation
data of battery terminal voltage and surface temperature given the identified
parameters and the US06 profile.

Fig. 4. Proposed framework for real-time high C-rate battery fast charging.

The current, terminal voltage, and temperature must be
within limits, i.e. ∀t,

0 ≤ I(t) ≤ I, V ≤ V (t) ≤ V , (17a)

T core ≤ Tcore(t) ≤ T core, (17b)

T surf ≤ Tsurf(t) ≤ T surf . (17c)

For all capacitors i ∈ J1, NK, j = 1, 2, 3,

V s ≤ Vs,i(t) ≤ V s, V e ≤ Ve,j(t) ≤ V e, ∀t. (18)

III. METHODOLOGY

This section proposes a framework for real-time high C-
rate fast charging. As summarized in Fig. 4, the proposed
framework includes two components, an offline time-optimal
charging reference trajectory optimization and a real-time
charging current reshaper.

First, as illustrated by the pink block in Fig. 4, a time-
optimal trajectory optimization (19) is solved once at the

start of the charging process, which is

min
u0:Np−1

x1:Np ,tf ,ϵs

tf + wsϵ
2
s (19a)

s.t. xk+1 = xk +∆fc(xk,uk), (19b)
∀k ∈ J0, Np − 1K with given x0, (19c)
Vk = gV(xk), SoCk = gs(xk), (19d)
constraints (16)− (18), ∀k ∈ J1, NpK, (19e)
SoCNp − SoCdes ≥ ϵs, (19f)
tf ≥ 0, ∆ = tf/Np, ϵs ∈ [0, 0.01], (19g)

where Np ∈ N is a prescribed number of prediction steps;
tf ≥ 0 is a decision variable for the trajectory final time;
ϵs ∈ [0, 0.01] is a relaxation variable that ensures the
solvability of the optimization as penalized by a prescribed
weight ws > 0. x1:Np

≜ col{x1, · · · ,xNp
} ∈ RnNp

includes all the states within the prediction horizon; sim-
ilarly, u0:Np−1 ≜ col{u0, · · · ,uNp−1} ∈ RNp . Vk and
SoCk denote the terminal voltage and SoC level at the k-
th step in the prediction horizon J0, NpK. Constraint (19b)
describes the discrete-time dynamics via Euler integration
from the continuous-time dynamics (15) with time interval
∆ = tf/Np, which is an expression of the decision variable
tf . Constraint (19f) softens the requirement of reaching the
exact desired terminal SoC level SoCdes = 98%. Denote the
optimal solution of optimization (19) as x̂1:Np

, û0:Np−1, t̂f ,
and ϵ̂s. Then the optimal reference state and control trajectory
x̂1:Np and û0:Np−1 are passed to the second component, i.e.
the real-time charging current reshaper.

Second, as demonstrated by the blue block in Fig. 4, at
each time instance k, a real-time charging current reshaper
takes in the optimal reference current Îk+1 ≡ x̂k+1[−1] at
the next time k + 1 and the present state xk, and reshapes
the reference control ûk such that the current at next time
instance k + 1 stays as close as possible to the reference
value Îk+1, subject to some constraints. Specifically, at each
time instance k, given Îk+1, xk, Tamb, and the reshaper’s
time interval ∆p, the charging current reshaper is

min
uk

||Ik+1 − Îk+1||22 (20a)

s.t. Ik+1 = Ik +∆puk, Ik = xk[−1], (20b)

I − Ik+1 ≥ 0, Ik+1 − 0 ≥ 0, (20c)
xk+1 = xk +∆pfc(xk,uk), (20d)

Vk+1 ≜ gV(xk+1) ≤ V . (20e)

Constraint (20e) is enforced at the next step, as this constraint
is more prone to violation due to its definition (7) and the
thermal dynamics (4) - (13). This statement will be validated
by the numerical results presented later.

Algorithm 1 summarizes the proposed real-time fast-
charging framework. As shown by Line 3, the system state
is observed with a smaller sampling time ∆s, i.e. ∆s < ∆p.
The current reshaper is executed for every time interval ∆p

given the present state xk at time tk, as shown by Line 4-
7. For every time instance ti, the input ui is calculated by



interpolating the reshaped control uk from (20) with zero-
order hold, as indicated in Line 9.

Algorithm 1: Real-time Fast-charging Framework
Input: k = −1, ti=0 = 0, x0 := x(t0), ∆p, ∆s, Np

1 x̂1:Np
, û0:Np−1, t̂f ← solve (19) given x0 at time t0

2 while SoCi < SoCdes do
3 observe xi and Tamb at time ti
4 if ti % ∆p == 0 then // for every time

interval ∆p

5 k ← k + 1
6 uk ← solve (20) with xk, Tamb at time tk
7 tk ← tk +∆p

8 else apply ui given uk and zero-order hold
9 ti ← ti +∆s, i← i+ 1

IV. NUMERICAL EXPERIMENTS

This section presents some numerical results to validate
the effectiveness of the proposed framework. A comparison
study is performed for several strategies. The proposed
framework Algorithm 1 is named strategy P1. Two baseline
strategies, referred to as B1 and B2, interpolate the reference
control trajectory û0:Np−1 given present time tk as ũk for
every time interval ∆p. Then the interpolated control ũk is
passed through a clipping function to ensure that the current
at the next time step does not violate the current constraint
(17a). This step compensates for quantization errors caused
by integrating the fictitious control with differing discretiza-
tion intervals ∆ (from (19)) and ∆p. Strategy B1 can be
summarized as

uk = max((I − Ik)/∆p,min(ũk,−Ik/∆p)), (21)

which limits the control uk such that Ik+1 lies in its
bound [0, I]. In other words, strategy B1 replaces Line 6 of
Algorithm 1 by (21). The only difference between B1 and
B2 is that B2 includes an additional and typical shutdown
protocol: if the terminal voltage V (t) ≥ V + 0.001 V,
B2 reduces the charging current to 0 A for the duration
of the time interval ∆p. The subsequent discussion on
B1 demonstrates that, without the shutdown protocol in
B2, B1 significantly violates the voltage constraint (17a),
resulting in faster charging compared to other strategies.
However, this result is invalid for real-world applications,
as charging the battery beyond the maximum voltage V
poses significant risks, including thermal runaway, thereby
compromising the battery’s safe operation. Therefore, the
inclusion of this shutdown protocol is crucial for B2. Strategy
P2 revises the current reshaper’s objective (20a) to minimize
the discrepancy between the reference and actual fictitious
control, i.e. replacing (20a) by ∥uk − ûk∥22.

The parameters are: Np = 300, ws = 10−4, ∆p = 0.1 s,
∆s = 0.05 s. The initial state x0 = col{0.2 × 15 V, 0.5 ×
13 V, 45 + 273.15 K, 45 + 273.15 K, 0 A}. Tamb = 45 +

TABLE II
BATTERY CHARGING RESULT

Strategy Charging Time [s] Computational Time [ms]

P1 1279.35 0.94± 0.25
P2 1559.75 0.93± 0.14
B1 1262.15§ 0.01± 0.00
B2 1743.6 0.02± 0.00

§: strikethrough indicates invalid result due to con-
straint violation

273.15 K. SoC = 0%, SoC = 100%. T core = 273.15 K,
T core = 333.15 K. T surf = 243.15 K, T surf = 348.15 K.

The true discrete-time system dynamics are obtained by
forward propagating the continuous-time dynamics (15) with
Runge-Kutta 4th order method, the time step ∆s, and control
under zero-order hold, i.e.

θi,1 = fc(xi,ui), θi,2 = fc(xi +
∆s

2
θi,1,ui)

θi,3 = fc(xi +
∆s

2
θi,2,ui), θi,4 = fc(xi +∆sθi,3,ui)

xi+1 = xi +
∆s

6
(θi,1 + 2θi,2 + 2θi,3 + θi,4).

The trajectory optimization (19) and current reshaper (20)
are programmed by Python with CasADi [18], compiled as
a C library with a nonlinear programming solver IPOPT
[19] with its linear solver MUMPS, and then executed
at run-time in Python. All the numerical experiments are
performed on a desktop equipped with an Intel® Core™
i7-13700 CPU and 32 GB RAM. The optimal final time
obtained from the offline trajectory optimization (19) is
t̂f = 1262.20 s, with the relaxation ϵ̂s = −1.00 × 10−8.
The computational time is 0.23 s. The corresponding time
step for the optimal reference trajectory x̂1:Np , û0:Np−1 is
∆ = tf/Np = 4.21 s. Although this particular computational
time seems promising for real-time applications, further
reducing the large discretization interval ∆ = tf/Np would
substantially increase the computational burden, primarily
due to the curse of dimensionality. The optimal reference
trajectory is provided to four strategies: P1, P2, B1, and
B2. The numerical experimental results are summarized in
Table II.

A. Result Analysis

Fig. 5 illustrates the optimal reference trajectory of termi-
nal voltage and the terminal voltage trajectories under strate-
gies B1 and B2. Although the optimal reference trajectory
with a coarse time step does not violate the terminal voltage
constraint (17a), the actual terminal voltage trajectory under
B1 violates the constraint roughly since 650 s, resulting in the
shortest but invalid charging speed in Table II. As illustrated
by Fig. 6, to avoid such constraint violation, B2 reduces the
charging current to 0 A roughly between 650 s and 1250 s,
resulting in a longer charging time.

The proposed strategy P1 charged the battery from 20%
SoC to 98% in approximately 21 minutes. Strategy P2, on
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Fig. 5. Terminal voltage trajectories of optimal reference, B1, and B2.
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Fig. 6. Charging current trajectories of optimal reference, B1, and B2.
Black dashed lines indicate bounds.

the other hand, required approximately 26 minutes to reach
SoCdes = 98%. The longer charging time in P2 is due to the
reduction in charging current for minimizing ∥uk − ûk∥22.
This objective function introduces a current tracking error,
caused by the fictitious control mismatch given different time
discretization between ∆ and ∆p. This discrepancy is also
illustrated in Fig. 7a, where this error is reflected by the gap
between P2’s current and the reference. B2 completed the
charging roughly 8 minutes longer than P1. As shown in
Table II, the computation time for the proposed strategy P1
is about 0.94 ms, without any coding optimization, indicating
its good real-time performance.

Fig. 7b illustrates how the proposed current reshaper
enforces the critical terminal voltage constraint by adjusting
the optimal reference current. After approximately 650 s,
although the optimal reference trajectory with ∆ = tf/Np =
4.21 s predicts the terminal voltage to remain below the
upper bound, direct interpolation by B1 causes a constraint
violation due to the mismatch between the dynamics used
in the trajectory optimization (19) and actual dynamics, as
shown in Fig. 5. Fig. 7c demonstrates the SoC trajectories
under P1, P2, and B2, where P1 first reached SoCdes = 98%
roughly in 21 minutes.

Fig. 8 shows the battery dynamics under strategy P1 and

B2. For both P1 (top subfigure) and B2 (middle subfig-
ure), roughly starting from 650 s, the Li-ion concentration
Vs,1(t) at the anode surface reaches its upper bound and
penetrates into the inner part of the anode at a slower rate.
This fact slows down the charging process, compared to
the first phase when Vs,1(t) is less than the upper bound
1 V with constant maximum charging current. When the
terminal voltage V (t) reaches its upper bound approximately
at 650 s, the SoC is closed to 85% and the charging current
must decrease. This is because, with the definition of V (t)
in (7), the voltage Ro,T(t)I(t) due to file resistance and
over-potentials has to be decreased to avoid exceeding the
terminal voltage upper bound. Together with the battery core
temperature dynamics (4a) and the internal heat generation
rate (5), reducing charging current could decrease Tcore(t),
which subsequently increases Ro,T(t) and V (t). As the SoC
approached 100%, the fidelity of the initial optimal reference
trajectory decreased due to the battery’s highly nonlinear
and contradictory dynamics and voltage response during
this stage. This phenomenon also explains the significant
oscillations observed in the charging current and terminal
voltage after approximately 1350 seconds under strategy
B2, as illustrated in Fig. 7a and Fig.7b. In contrast, the
numerical experimental study confirms that the proposed
real-time current reshaper (strategy P1) effectively balances
the charging speed (or equivalently, current magnitude) with
the voltage constraint satisfaction.

V. CONCLUSION

This article investigates fast charging strategies for
lithium-ion batteries at high C-rates. An electrochemical-
thermal-inspired battery model is presented to accurately
capture key dynamics. A real-time fast-charging framework
is then proposed, consisting of an offline trajectory optimiza-
tion and an online current reshaping algorithm. First, the
offline component solves a time-optimal charging trajectory
optimization problem once at the start of the charging
process. This generates an optimal reference trajectory for
battery states and controls, which is then used by the online
reshaper. Second, the online reshaper continually adjusts the
reference charging current in real time to enforce charging
constraints. Numerical experiments demonstrate the effec-
tiveness and computational efficiency of the proposed frame-
work. Further work may improve the proposed method’s
robustness against modeling uncertainty and measurement
noise.
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