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Abstract
In this paper, we investigate a simulation-to-reality domain adaptation approach for detecting
motor faults, aiming to address the data scarcity problem in data-driven fault detection.
A physics-based fault model is developed to generate simulation data under various fault
conditions. A DQ transformation and feature extraction step is then performed for both
simulation and real data, before domain adaptation is applied to align the simulation data
with the limited real measurement data. Machine learning models can then be trained on the
adapted data to make predictions. We demonstrate the effectiveness of the proposed method
on eccentricity fault level prediction of an induction motor using stator current signal. Results
demonstrate superior prediction performance compared to baseline model with only real data,
with significant error reduction under both no-load and on-load conditions. This approach
offers a promising and practical solution for motor fault detection in scenarios where obtaining
comprehensive real fault data is challenging, as it leverages simulated data to enhance model
performance with limited real-world measurements.
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Abstract—In this paper, we investigate a simulation-to-reality
domain adaptation approach for detecting motor faults, aiming to
address the data scarcity problem in data-driven fault detection.
A physics-based fault model is developed to generate simulation
data under various fault conditions. A DQ transformation and
feature extraction step is then performed for both simulation
and real data, before domain adaptation is applied to align the
simulation data with the limited real measurement data. Machine
learning models can then be trained on the adapted data to make
predictions. We demonstrate the effectiveness of the proposed
method on eccentricity fault level prediction of an induction
motor using stator current signal. Results demonstrate superior
prediction performance compared to baseline model with only
real data, with significant error reduction under both no-load
and on-load conditions. This approach offers a promising and
practical solution for motor fault detection in scenarios where
obtaining comprehensive real fault data is challenging, as it
leverages simulated data to enhance model performance with
limited real-world measurements.

Index Terms—Simulation-to-Reality (Sim2Real), domain adap-
tation, eccentricity fault detection, induction motors

I. INTRODUCTION

Motor fault detection and predictive maintenance are im-
portant in protecting the assets in many industries. A lot of
fault conditions can occurs during the lifetime of an electric
motor. In particular, eccentricity is a significant indicator of
mechanical faults [1], [2] in electric machines. It occurs when
the stator and rotor are not concentric. This common fault can
significantly impact motor performance and reliability. Tradi-
tionally, motor fault detection typically depends on sensing
modalities such as vibration and acoustic emission [3]. How-
ever, these measurements are often unreliable due to sensor
mounting locations and interference from nearby machinery,
making it difficult to accurately detect faults or quantify
their severity. Conversely, motor current signature analysis
(MCSA) offers several advantages over vibration and acoustic
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sensing methods, including simple implementation and low
cost [4]. MCSA relies on measured motor current data to
detect motor faults [5]–[7], eliminating the need for additional
sensors. Physics-based techniques [8]–[10] establish models
to describe motor faults, identifying detailed fault signatures
and specifying requirements for experimental measurements
and data analysis to extract appropriate signals. However,
there is always some discrepancies between signals generated
by physical models and real measurement data, making it
challenging to identify and quantify motor faults based on
model only.

On the other hand, data-driven methods, especially machine
learning methods [11], [12] rely on experimental data to
train models that can make decisions regarding motor fault
conditions. However, in practical applications and operational
environments, particularly for motor eccentricity fault analysis,
fault detection using data-driven techniques presents a signif-
icant challenge. The main issue is the lack of sufficient data
to represent both good and faulty conditions (i.e., different
eccentricity levels) because induction motors typically operate
normally, making it difficult to obtain faulty data.

To address these challenges, we propose to apply
simulation-to-reality (Sim-to-Real, Sim2Real) Domain Adap-
tation (DA) that employs DA algorithms [13] to transfer
knowledge learned in a simulated environment to real-world
applications. Sim2Real DA [14], [15] offers a number of
advantages compared with other machine learning based meth-
ods, including reduced development costs and time (e.g., dif-
ficult to install experimental equipment and collect sufficient
real data) and enhanced reliability and robustness during test-
ing (e.g., generating simulated data with different eccentricity
levels as source data to adapt and train a robust model).

In this paper, we apply Sim2Real DA to the eccentricity
level prediction of an electric motor: first a physics model is
developed to generate simulation data under faulty conditions;
then a DQ transformation and feature extraction step is applied
to both simulation and real data to reduce the dimension and



extract fault-related information; domain adaptation is then
applied to align the simulation data with the limited real
measurement data; finally a regression model is trained on
the adapted data to make predictions. Multiple numerical tests
with two different domain adaptation techniques are performed
to demonstrate the effectiveness of the method.

The remaining parts of this paper are organized as follows:
Section III outlines the data acquisition and data analysis.
Section IV details the experiment setup. Sections V–VI present
results and conclude the paper.

II. METHODOLOGIES

The proposed methodology for detecting induction motor
eccentricity faults is illustrated in Fig. 1. First, the simulated
data is generated using a physics-based model, denoted as
source domain data Xs. Then, data pre-processing and feature
extraction is performed to obtain Zs, in this paper through DQ
transformation. On the other hand, limited real measurement
data serve as target domain data Xt. With the same data pre-
processing and feature extraction step, target domain data is
obtained in feature space, denote as Zt. Domain adaptation
is performed to align the distribution of source domain data
Zs with target domain data Zt, and the transformed source
domain data is denoted as Z ′

s after the DA process. During the
training stage, a regression model is trained to minimize the
prediction error compared against actual label of the training
data. In the testing stage, real measurement data is fed into the
trained model to make predictions on motor fault condition.

A. Physics-based Eccentricity Model

We develop a physics-based eccentricity model to generate
simulation data under different eccentricity conditions, based
on modified winding function method (MWFM) and coupled-
circuit model. The key input parameters of this physics-based
numerical model include: motor design parameters, supply
voltage, load condition, and fault condition. These parameters
are used to calculate the inductance terms between rotor and
stator windings at each rotor position, updating the dynamic
signals including stator current, speed, and torque throughout
the motor operation. The eccentricity condition is described
by period modulations to the air gap function g(ϕ, t):

g(ϕ, t) = g0Kc − δSEg0 cos(ϕ)− δDEg0 cos(ϕ− ωrt) (1)

with g0 as the nominal air gap length, Kc as Carter’s coef-
ficient, and δSE, δDE as the static and dynamic eccentricity
amplitudes, respectively.

The motor dynamics are represented through coupled circuit
equations. Inductance terms and their derivatives, crucial for
determining motor current and torque, are computed using
MWFM, updating at each rotor position [5], [10], [16]. The
detailed modeling process is further described in [17].

Dynamic simulations are subsequently conducted to obtain
motor current signals under each condition. While the sim-
ulation does not exactly match the experimental data due
to inevitable model simplifications, it accurately identifies
key signal features attributable to eccentricity. The model

(a)

(b)

Fig. 1: Flow chart of the Sim2Real DA method for motor
fault detection. (a) Training process. (b) Evaluation process of
a trained model.

describes the electromagnetic interactions within the motor
under eccentric conditions, providing a robust framework for
analyzing motor faults.

B. DQ Transformation & Feature Extraction

The DQ Transformation of three-phase currents is a math-
ematical method that converts three-phase alternating current
(AC) signals into direct current (DC) form. This transforma-
tion converts the dynamic signals of a three-phase system into
a rotating reference frame, where they appear as constant (DC-
like) values under steady-state conditions on the rotating DQ
axes, simplifying the control and analysis of these signals. The
steps of this process are as follows:

1) Clarke Transformation (abc to αβ Transformation): The
Clarke transformation converts the three-phase signals
ia, ib, and ic into the αβ reference frame iα, iβ . The
matrix form of the Clarke transformation is:
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2) Park Transformation (αβ to DQ Transformation): Once
the final rotation angle θfinal is calculated (based on the
system’s angular velocity and PLL adjustment), the Park
transformation can be performed to convert the signals
from the αβ coordinate system to the DQ coordinate



system. The mathematical expression for this process is
as follows: [

id
iq

]
=

[
cos θ sin θ
− sin θ cos θ

] [
iα
iβ

]
(3)

Phase angle θ is the instantaneous angular position of
the rotating reference frame, and can be computed based
on the system’s angular velocity ωt, and dynamically
adjusted using a phase-locked loop (PLL) to synchronize
with the phase of the motor’s rotating magnetic field.

3) Feature Extraction from id Signal: Since id signal is
related to the magnetic flux, it provides critical informa-
tion about the motor’s magnetic characteristics to extract
meaningful statistical features. We first calculate the
mean of the id signal, and then subtract the mean from
each signal to center the waveform around zero, high-
lighting deviations and variations and making waveform
analysis more precise. Then, we extract eleven primary
statistical features: mean, standard deviation, maximum,
minimum, peak, root mean square (RMS), skewness,
kurtosis, range, median, and interquartile range (IQR),
as detailed in Table I.

C. Domain Adaptation

The goal of domain adaptation is to map the feature distri-
butions from the source domain Ds to the target domain Dt,
thereby reducing the distributional discrepancy between them.
Features are extracted from both domains to create feature
vectors Xs and Xt, which are subsequently aligned during
the domain adaptation process.

Various feature alignment methods have been developed
for domain adaptation, such as CORrelation ALignment
(CORAL), Transfer Component Analysis (TCA), Subspace
Alignment (SA), etc. In particular, CORAL is a popular DA
method due to its simplicity in implementation and effective-
ness in reducing domain mismatch [18].

More recently, optimal transport (OT) based methods have
been applied to domain adaptation and show advantages
in achieving precise alignment and handling more complex
domain shifts and class imbalances [19]. In this paper, we im-
plement two representative methods: CORAL and OT, for our
domain adaptation process, and compare their performances
for our motor fault detection problem.

1) CORelation ALignment (CORAL): To ensure that the
alignment focuses solely on second-order statistics (i.e., the
shape of the distribution), feature vectors Xs and Xt are first
centered by subtracting theirs respective means. Then, the
covariance matrices are computed with regularization λ for
numerical stability:

Σs = cov(Xs − µs) + λI, Σt = cov(Xt − µt) + λI (4)

The transformation matrix A is computed to align the second-
order statistics between domains:

A = Σ
− 1

2
s Σ

1
2
t (5)

Finally, the obtained matrix A is then used to transform the
source domain features:

X
′

s = (Xs − µs)A+ µt (6)

2) Optimal Transport (OT): OT for domain adaptation
aims to find a transportation plan that minimizes the cost
of moving data points from the source domain to the target
domain, effectively aligning their distributions. In particular,
we formulate the problem as aregularized OT [19], where an
entropy term is added to the classic transport cost function
to improve computational efficiency and promote smoother
solutions:

γ∗ = argmin
γ

∑
i,j

γi,jC(xi
s, x

j
t ) + ϵ

∑
i,j

γi,j log(γi,j) (7)

where γ represents the transport plan, C(xi
s, x

j
t ) is the cost

of transporting xi
s to xj

t , and ϵ is the regularization parameter
that balances the transport cost and the entropy of the transport
plan. The pairwise distances between the source and target
domain data points are captured by the cost matrix C, typically
computed using the squared Euclidean distance:

Ci,j = ∥xi
s − xj

t∥2 (8)

While equation (7) defines the theoretical OT problem
with entropy regularization, solving this problem directly is
computationally intensive due to the high dimensionality of
the data and the need for stability in finding the transport
plan. To solve this problem, the Sinkhorn algorithm is designed
to efficiently solve the regularized OT problem by iteratively
adjusting the transport plan γ.

Using the cost matrix C and the regularization parameter ϵ,
the Sinkhorn kernel K is computed as:

K = exp

(
−C

ϵ

)
(9)

The Sinkhorn algorithm iteratively updates the dual variables
u and v, which correspond to scaling factors for the source
and target distributions, respectively. The update process is
performed alternately: first, u(k+1) is updated based on the
current v(k), and then v(k+1) is updated using the newly
computed u(k+1). This alternating process continues until
convergence. The update rules are given by:

u(k+1) =
r

Kv(k)
, v(k+1) =

c

KTu(k+1)
(10)

where r ∈ Rns and c ∈ Rnt are uniform probability vectors.
Specifically, r = [r1, . . . , ri]

⊤ and c = [c1, . . . , cj ]
⊤, where

each element ri = 1/ns for all i and cj = 1/nt for all j, with
ns and nt denoting the number of source and target samples,
respectively. After several iterations, the Sinkhorn algorithm
converges, and the final transport plan γ∗ is obtained. This
solution can be expressed as:

γ∗ = diag(u)Kdiag(v) (11)



TABLE I: Features Extracted from id Signal

No. Feature Name Feature Description

1 µ = 1
n

∑n
i=1 xi Mean value of the id signal

2 σ =
√

1
n

∑n
i=1(xi − µ)2 Standard deviation of the id signal, measuring dispersion

3 Max = max(xi) Maximum value of the id signal
4 Min = min(xi) Minimum value of the id signal
5 Peak = max |xi| Peak value, the maximum absolute deviation from zero in the id signal

6 RMS =
√

1
n

∑n
i=1 x

2
i Root mean square (RMS) of the id signal, indicating the magnitude

7 Skewness =
∑n

i=1(xi−µ)3

nσ3 Skewness of the id signal, indicating the asymmetry of the data distribution

8 Kurtosis =
∑n

i=1(xi−µ)4

nσ4 Kurtosis of the id signal, measuring the heaviness of the tails
9 Range = max(xi)−min(xi) Range of the id signal

10 Median = Q2 Median value of the id signal, representing the central value
11 IQR = Q3 −Q1 Interquartile range (IQR), the difference between the third quartile Q3 and the first quartile Q1 of the id signal

Equation (11) represents the output of the Sinkhorn algorithm,
which provides an efficient numerical solution to the regular-
ized OT problem defined in equation (7). Using the computed
transport plan γ∗, the source domain data Xs is transformed
into the target domain space:

X
′

s = γ∗Xs (12)

This transformation aligns the source domain data with the
distribution of the target domain.

Next, we train a new regression model using the transported
source domain data { X

′

s, Ys}, with the goal of improving
predictive performance of the test data.

III. DATA ACQUISITION & DATA ANALYSIS

A. Experiment Data Acquisition

To validate the model performance, we set up a data
acquisition system to collect real stator current signals from
a motor under different eccentricity conditions. An induction
motor is modified to create controlled eccentricity: bearings
were removed, and the rotor is supported by two custom-
made mounting structures with a pair of new bearings on the
extended rotor shaft. The motor’s stator assembly is mounted
on a linear stage, allowing horizontal position adjustments
using two pairs of micrometers. Additionally, two pairs of
displacement sensors are installed on the stator facing the air
gap to measure the real air gap size in both horizontal and
vertical directions while the motor is running [20]–[22]. A
powder brake is connected to the test motor to serve as load.

In our experiment, data from three-phase current sensors
were recorded at a 10 kHz sampling frequency for each SE
and load condition. We created six SE levels in the horizontal
direction while the motor was stationary: 7.1%, 16.5%, 31.1%,
42.5%, 47.5%, and 57.3%. These percentages represent the
ratio of maximum air gap deviation to the nominal air gap
size. The motor was tested under two load conditions: 0 N·m
and 3.5 N·m.

B. Simulation Data Acquisition

Simulation data can be easily generated according to differ-
ent fault and load conditions of the machine by the physics-
based model described in Section II-A. For each load con-
dition, we set the SE level from 5% to 70% for every 5%,
run simulations, and obtain the stator current data with the
same sampling frequency of 10 kHz. Therefore, much more
simulation data can be obtained than the real data.

C. Data Analysis

For both simulation and real data, we segment 1,024 con-
secutive data points from the stator current in time-domain,
corresponding to approximately 0.1 seconds of measurement
at a 10 kHz sampling frequency, to investigate signal charac-
teristics. Fig. 3 (a) and (c) display simulated data at an SE
level of 40%, while Fig. 3 (b) and (d) show real data at an
SE level of 42.5%, all recorded under no-load conditions. DQ
transformation simplifies the current waveforms, enhancing the
visibility of periodic characteristics and reducing complexity.
Such an approach is especially valuable because real data often
contains noise and irregularities, whereas simulated data tends
to be cleaner and more periodic. Analyzing id signal allows
for quantitative differentiation between simulated and real data
patterns, capturing subtle phase and magnitude differences that
may be less apparent through visual inspection alone.

IV. NUMERICAL TEST SETUP

There different numerical experiments are designed to val-
idate the effectiveness of Sim2Real DA, as shown in TABLE
II. In practical applications, it is feasible to collect real data
at normal condition and one faulty condition. We assume the
data collected at SE levels 7.1% and 57.3% are available for
training machine learning models. The rest of the measured
data at SE levels 16.5%, 31.1%, 42.5%, and 47.5% are
reserved as test data.

1) Real Data (Baseline): Only real measurement data at SE
levels 7.1% and 57.3% are used for training.

2) Simulated Data without DA Algorithm: As a reference,
we use simulated data generated by the physics-based



Fig. 2: Simulated data (a, c) at SE level of 40% and real data
(b, d) at SE level of 42.5%, with load L=0 N·m, showing phase
current signals in time-domain (top) and DQ-transformed id
signal (bottom).

eccentricity model, with SE levels varying from 5% to
70%, as training data. No real data is used.

3) Simulated Data with DA Algorithm: Finally, we com-
bine the available real data, and simulation data gener-
ated by the physics-based model (SE levels 5% to 70%),
and apply Sim2Real DA process to align simulation data
with real data and enhance the training data.

TABLE II: Experiment design

Data Real Data
(Baseline)

Simulated Data without
Domain Adaptation

Simulated Data with
Domain Adaptation

Training Real Data (7.1, 57.3 levels) All Simulated Data All Simulated Data +
Real Data (7.1, 57.3 levels)

Testing Real Data (16.5, 31.1, 42.5, 47.5 levels)

V. RESULTS AND DISCUSSIONS

During training, a regression model is built using Support
Vector Regression with a Radial Basis Function kernel (SVR-
RBF) to predict SE levels based on extracted statistical features
of id signal under two load conditions: no-load and 3.5 N·m
load. During testing, model performance is evaluated using
two key metrics: root-mean-squared-error (RMSE) and mean-
absolute-error (MAE) on testing data. Both CORAL and OT
methods are implemented separately for the DA process.
The results, as shown in Table III, illustrate the prediction
performance of load conditions: 0 and 3.5 N·m.

A. Simulated Data without Domain Adaptation

For no-load condition, both RMSE (6.76%) and MAE
(5.76%) values are notably lower than those of the real data
baseline (RMSE = 9.21%, MAE = 8.03%). This indicates that
the simulated data captures features related to those in real
data, even without DA. However, with 3.5 N·m load, the model
prediction based on simulation data alone is much worse (with
both RMSE and MAE over 20%) than the baseline result
of using only real data, indicating large discrepancy between
simulation and real data.

B. Simulated Data with Domain Adaptation (CORAL and OT)

Under the no-load condition, both CORAL and OT methods
achieve RMSE and MAE values lower than the real data
baseline. Specifically, the OT method reaches an RMSE of
5.65% (a 3.56% reduction) and an MAE of 5.28% (a 2.75%
reduction) compared to the baseline (RMSE = 9.21%, MAE =
8.03%), showcasing their effectiveness in aligning simulated
data with real data.

At the load condition of 3.5 N·m, lowest RMSE (5.59%)
and MAE (4.77%) is obtained with OT method, outperforming
the real data baseline and confirming OT’s robustness in
enhancing model accuracy. Additionally, the CORAL method
also produces RMSE and MAE values lower than the baseline,
showing that both DA methods improve performance under
this load condition, though OT shows a more pronounced
effect.

C. Data Visualization

Fig. 3 and Fig. 4 provide a visual distribution of SE level
predictions under both no-load and on-load conditions. These
violin plots allow us to observe the spread and concentration
of prediction values across different experimental setups.

Fig. 3: Violin plot of SE level predictions on testing data under
no-load condition using id signal to compare (a) real data:
baseline, (b) simulated data without DA, (c) simulated data
with DA:CORAL, and (d) simulated data with DA:OT.



TABLE III: Prediction Performance Comparison between Real Data and Simulated Data with and without Domain Adaptation

Load Metric Real Data
(Baseline)

Simulated Data without
Domain Adaptation

Simulated Data with
Domain Adaptation:CORAL

Simulated Data with
Domain Adaptation:OT

0 RMSE (%) 9.21 6.76 6.20 5.65
MAE (%) 8.03 5.76 5.80 5.28

3.5 N·m RMSE (%) 10.69 21.92 6.01 5.59
MAE (%) 9.22 20.65 5.02 4.77

Fig. 4: Violin plot of SE level predictions on testing data
at a consistent load condition of 3.5 N·m using id signal to
compare (a) real data: baseline, (b) simulated data without DA,
(c) simulated data with DA:CORAL, and (d) simulated data
with DA:OT.

For no-load condition, simulated data without DA demon-
strates a distribution relatively close to the actual values,
confirming that some features of the simulated data naturally
align with real data characteristics. With the application of
DA, the distribution becomes even more refined.

For on-load condition, with real data only (Fig. 4(a)), the
prediction has a large spread over true values. With simulation
data alone (Fig. 4(b)) prediction result largely deviates from
the true value, indicating the large mismatch between simula-
tion and real data. The results with DA, for both CORAL and
OT (Fig. 4(c) and (d)), show a narrower spread and a more
centralized prediction distribution than the real data baseline
and simulated data without DA. This concentrated prediction
range indicates improved model stability with DA, particularly
for the OT method, which exhibits the closest alignment with
actual values.

For both load conditions, the OT method, in particular,
shows a more concentrated distribution than CORAL, achiev-
ing a closer alignment to actual values and exhibiting a stable,
centered prediction profile.

The effectiveness of the Sim2Real DA method can also be
visualized with t-distributed stochastic neighbor embedding (t-

SNE) plot in Fig. 5. During training, when comparing the
differences between simulated data without DA and with DA,
all simulated data is considered as source domain data, while
all real data from the 7.1% and 57.3% SE levels is regarded
as target domain data. Under both load: no-load and 3.5 N·m
conditions, the distributions of source data and target data
without DA are not well-aligned, as shown in Fig. 5 (a) and (c).
However, with DA applied, the OT method aligns the target
data more closely to the source data distribution, as illustrated
in Fig. 5 (b) and (d).

Fig. 5: t-SNE plot in 2d for id signal at: (a) no-load without
DA, (b) no-load with DA, (c) 3.5 N·m without DA, and (d)
3.5 N·m with DA.

VI. CONCLUSION

This study presents a novel approach to motor eccentricity
fault detection using simulation-to-reality domain adaptation.
The proposed methodology, combining a physics-based ec-
centricity model, direct-quadrature transformation, and op-
timal transport for domain adaptation, demonstrates signifi-
cant improvements in fault prediction accuracy compared to
traditional methods relying solely on limited real data. The



results highlight the potential of leveraging simulated data to
enhance fault detection capabilities, particularly in scenarios
where acquiring extensive real fault data is impractical. The
performance improvements observed under both no-load and
loaded conditions validate the effectiveness of this simulation-
to-reality approach in real-world applications. Future research
can focus on extending this simulation-to-reality framework
to address more complex motor fault scenarios and exploring
advanced domain adaptation techniques to further bridge the
gap between simulated and real data.
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