
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Audio Signal Processing in the Artificial Intelligence Era:
Challenges and Directions

Steinmetz, Christian; Uhle, Christian; Everardo, Flavio; Mitcheltree, Christopher; McElveen, J.
Keith; Jot, Jean-Marc; Wichern, Gordon

TR2025-116 August 02, 2025

Abstract
Artificial intelligence ( AI ) has seen significant advancement in recent years, leading to in-
creasing interest in integrating these techniques to solve both existing and emerging problems
in audio engineering. In this paper, we investigate current trends in the application of AI for
audio engineering, outlining open problems and applications in the research field. We begin by
providing an overview of AI-based algorithm development in the context of audio, discussing
problem selection and taxonomy. We then explore human-centric AI challenges and how they
relate to audio engineering, including ethics, trustworthiness, explainability, and interaction,
emphasizing the need for ethically sound and human-centered AI systems. Subsequently,
we examine technical challenges that arise when applying modern AI techniques to audio,
including robust generalization, audio quality, high sample rates, and real-time processing
with low latency. Finally, we outline applications of AI in audio engineering, covering the
development of machine learning-powered audio effects, synthesizers, and automated mixing
systems, as well as spatial audio, speech enhancement, dialog separation and music genera-
tion. We emphasize the need for a balanced approach that integrates human-centric concerns
with technological advancements, advocating for responsible and effective application of AI.
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Artificial intelligence (AI) has seen significant advancement in recent years, leading to
increasing interest in integrating these techniques to solve both existing and emerging problems
in audio engineering. In this paper, we investigate current trends in the application of AI for
audio engineering, outlining open problems and applications in the research field. We begin by
providing an overview of AI-based algorithm development in the context of audio, discussing
problem selection and taxonomy. We then explore human-centric AI challenges and how they
relate to audio engineering, including ethics, trustworthiness, explainability, and interaction,
emphasizing the need for ethically sound and human-centered AI systems. Subsequently,
we examine technical challenges that arise when applying modern AI techniques to audio,
including robust generalization, audio quality, high sample rates, and real-time processing
with low latency. Finally, we outline applications of AI in audio engineering, covering the
development of machine learning-powered audio effects, synthesizers, and automated mixing
systems, as well as spatial audio, speech enhancement, dialog separation and music generation.
We emphasize the need for a balanced approach that integrates human-centric concerns with
technological advancements, advocating for responsible and effective application of AI.

0 INTRODUCTION

Technological improvements ushered in by Deep Learn-
ing (DL) algorithms, large datasets, and massive comput-
ing infrastructure have made great progress towards AI.
The term AI is generally used as an umbrella term en-
compassing various fields beyond specific technological
domains, including Machine Learning (ML), which in turn
encompasses DL [1]. The AES has a long history in AI-
related topics for audio, which predates the current DL
boom, e.g., with topics such as semantic audio [2]. More
recent overviews focus on ML and DL from both a learning
algorithm [3] and human perspective [4]. In this paper, we
provide a discussion on important issues that have emerged
as AI-based techniques become more prominent in process-
ing and generating audio signals.

One key concept in ML and AI is to solve problems
by learning how to compute output data from input data.
Desired input-output behaviour is obtained during a train-

ing phase by adjusting the parameters of the implemented
functions, e.g. a Deep Neural Network (DNN) [5]. Exam-
ple applications are noise reduction in speech recordings,
where the signal processing algorithm is learned from pairs
of noisy input signals and desired clean speech signals, or
classification of musical genre of a recording that can be
learned from datasets of recordings and corresponding ref-
erence for their genre.

Data-driven learning is further categorized into super-
vised, unsupervised and reinforcement learning [5]. The
most widely used, supervised learning, is the process where
the desired functionality is defined by data sets comprising
input data and references (ideal output data) and loss func-
tions for computing an evaluation criterion quantifying how
well a computed output signal matches the ideal output. The
learning process is numerical optimization of the trainable
parameters. Starting with randomly initialized values, a loss
function is computed from mismatch between reference and
prediction, as shown in Figure 1.
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Fig. 1. Block diagram of supervised learning. Dashed lines are
parts that are only used during training, all other during both,
training and inference.

A gradient descent method is applied to adjust the weights
such that the loss function is reduced by iteratively subtract-
ing a fraction of the gradient of the loss function with respect
to the weights. This process is also referred to as empirical
risk minimization.

Data-driven concepts are important for the following dis-
cussion because they relate to challenges mentioned here:
they require appropriate data. The quality of the data (how
representative are the inputs and how correct are the refer-
ences) determines the quality of the implementation. The
noise reduction processing, for example, may not yield
effective results when reference data contain artifacts or
interfering sounds. The fact that similar input data can have
different references causes (amongst other aspects) that the
outputs of DNN are estimates of probabilities of true output.
For genre classification the reference labels may stem from
multiple taxonomies, musical works are often genre mix-
tures, and genre labeling experts have different opinions.

DNNs are trained by accumulating the evaluation met-
ric for multiple data points in the data set, typically by
averaging. This causes DNNs to perform better for input
signals that are similar to training data. It is challenging
to obtain good classification performance for less popular
genres like Bossa Nova when DNNs have not been trained
with sufficient amount of examples.

This dependence of ML on a dataset of input/output pairs
for learning algorithm parameters, is in contrast to the well
understood input/output mappings present in classical signal
processing algorithms. In the context of audio engineering
tasks, we consider three different ML problem formulations,
based primarily on the types of input/output pairs used by
the learning algorithm: labeling, processing, and generation,
as shown in Figure 2.

Labeling is the problem formulation where a neural net-
work is tasked with analyzing an audio recording and pre-
dicting labels. These labels can be discrete classification
labels, e.g., for predicting sound events [6] or musical
genre [7], or continuous regression labels, e.g., for esti-
mating quantities such as perceptual loudness [8], musical
tempo [9], or fundamental frequency [10]. Audio labeling
algorithms are typically tackled using supervised learning
techniques (e.g., we learn from a piece of music and its
associated genre label). While labeling approaches do not

Fig. 2. Problem taxonomy categorizing ML approaches into la-
beling, signal processing, and generation.

produce audio, they can still be an important part of an au-
dio engineering workflow, as certain processing decisions
(e.g., a target equalization curve) can be selected based on a
label estimated from an ML algorithm.

The audio processing algorithms shown in Figure 2 (b),
are most-related to what we think of as classical Digital Sig-
nal Processing (DSP), where the neural network modifies
certain characteristics of the input audio. An audio engineer-
ing example where DL has enabled tremendous progress
is audio source separation, where a network learns to iso-
late certain sound signals from a mixture [11]. Combining
ML methods with classical DSP components [12] has also
become a workhorse technique for audio applications, espe-
cially those with processing and/or latency constraints.

The generation algorithms shown in Figure 2 (c) use
generative modeling techniques to create audio signals in
a manner akin to audio synthesis. This emerging class of
data-driven generative audio models is beginning to allow
for the creation of high-fidelity audio and music signals of
remarkable complexity given only text descriptions.

This paper will present some fundamental concepts nec-
essary for comprehending the core principles of AI, with
a emphasis on ML, DL, and audio signal processing. As
we move forward, our discussion will divide into two pri-
mary sections. The initial section examines the prevailing
challenges encountered in this domain, analyzing both the
human-related challenges in AI and the technical hurdles
that require resolution. Shifting focus, the following section
explores applications, paving the way for future research
directions. As previously mentioned, AI is a large topic with
a long history in the AES. While it is not possible to cover
everything, we hope that the subset of topics covered in the
following sections will provide inspiration for new audio
researchers looking for interesting problems, or for expe-
rienced professionals transitioning to an AI-based audio
algorithm workflow.

1 Human-Related Challenges

AI has emerged as a transformative technology that in-
fluences various aspects of our lives, including music, its
production, and inherent facets such as DSP. As AI be-
comes increasingly integrated into society, it is imperative
to discuss general human-AI-related concepts such as ethics,
trustworthiness, explainability, and interaction, in the con-
text of audio engineering as well. Such factors play critical
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roles in shaping responsible development, deployment, and
utilization of AI systems.

1.1 Ethics
Ethics form the foundation for ensuring that AI tech-

nologies are developed and used in a manner that aligns
with societal values and norms. Ethical considerations in
AI encompass a wide range of aspects, including fairness,
transparency, accountability, privacy, and bias mitigation.
Ethics sets the ground for what humans, for example de-
velopers, and AI should, or should not do, even starting
with the question of whether a computer can create art [13].
Ethical guidelines and frameworks, along with ongoing dis-
cussions and multidisciplinary collaboration, are essential
for promoting responsible AI development. Given the well-
established understanding that results from a ML model
are influenced by training data, our subsequent discussion
focuses on ethical considerations within the audio domain,
particularly regarding data-related rights.

Data-related rights address the protection of data at dif-
ferent levels. From the development side, privacy rights and
personal data protection are essential to avoiding perpetu-
ating discriminatory practices and biases. For training, we
need to consider intellectual property (IP) rights [14]. One
current challenge in dialog separation, demixing, or auto-
mated mixing, is the lack of material permitted for training.
It is unlikely to obtain access to the multitrack sources be-
hind successful commercial songs, or to an isolated dialog
recording from produced content. These materials are li-
censed, owned, and protected by the major record labels
that produce the material. Access to audio content, whether
publicly available or obtained through payment, does not
imply permission to train on that data.

Another popular concern is the natural uncertainty about
AI replacing existing jobs [15]. Despite the same feeling that
happened when drum machines emerged in the 1980s, there
has not been a complete or actual replacement of human
drummers. The capabilities of (ethical) AI will determine
if a job remains in demand [16]. When studios firmly re-
fused to commit to abstaining from producing AI-generated
scripts, members of the Writers Guild of America recog-
nized the imminent threat and strictly stood their ground.
This labor dispute spanned more than 140 days, from May
to September 2023, marking the writers’ strike as the inau-
gural workplace confrontation between humans and AI.

1.2 Trustworthiness and Explainability
Trustworthiness in AI relates to reliability, robustness,

and accountability of AI technology development and de-
ployment [17, 18]. From the most general perspective, users
may require assurance that AI systems will perform as in-
tended and make decisions based on accurate, unbiased,
and up-to-date information. It is understood that data pro-
tection, privacy safeguards, and secure handling of sensitive
information are vital for establishing trust as discussed here.

During the training process, it is desirable to avoid dis-
crimination or favoritism, biased training data, minimize
algorithmic preferences, and promote diversity and inclusiv-

ity. In audio technology, this is a very important challenge
contingent on the availability of training sets that contain
representative data. In music production, avoiding biases
requires data representative of multiple music genres, in-
strumentation choices, languages and more, across industry-
standard sample rates such as 44.1, 48 or 96 kHz. Trustwor-
thiness implies accountability of both the developers and the
users of AI systems. Clear lines of responsibility, recourse
mechanisms, and appropriate governance frameworks are
necessary to address the potential risks.

The second way trust will be reinforced relies on the
quality of results [19]. During the usage of the model, we
identify two possible cases depending on whether the re-
sults are observable or verifiable immediately by the user.
An example of immediate verification is the evaluation of
the fidelity of an audio output signal produced by an auto-
matic mixing solution (see Section 3.3) or the quality of
dialog separation from produced content (see Section 3.6).
In contrast, the effectiveness of an AI-based audio effect
processor settings recommendation system is not immedi-
ately verifiable. This challenge of verifiability links closely
to explainability, which seeks to address the “black-box” na-
ture of many AI systems. Trust can be enhanced when users
understand the processes behind AI outputs. For example, if
a “black-box” AI-based system outputs an audio signal, the
user cannot readily identify or apply a reverse-engineering
process to back-trace the results. This drawback may be mit-
igated by implementing a white-box or explainable solution,
as discussed below.

Explainable AI, or XAI [20], refers to the set of tech-
niques and methods employed to make AI systems more
transparent and interpretable. These aim to mitigate the
“black box” nature of certain AI models and algorithms,
which may make determinations or predictions without
providing clear explanations for their derivations. In many
cases, AI systems such as neural networks can achieve high
accuracy and performance but lack transparency, making it
challenging to understand why they arrive at specific deci-
sions [21]. This lack of interpretability can be problematic.
For instance, an AI-based audio effect processor might pro-
duce undesirable artifacts without offering means for the
mixing engineer to recreate or correct the processing chain
or signal flow, or even know the approach the AI took to
reach the specific EQ curve or amount of compression rec-
ommended automatically by the system. Explainable AI
seeks to provide insights into the inner workings of AI mod-
els, enabling users to understand how and why a particular
decision was made [22]. In turn, by understanding the fac-
tors, features, or patterns that influenced the AI’s output,
users can gain more trust, identify potential biases, and
detect errors or issues.

Trustworthy AI upholds human values by fostering a
human-centric design that prioritizes enhancing human ca-
pabilities rather than replacing or undermining them. A key
component of this trust is explainability, which allows users
to understand and engage with AI systems effectively, bridg-
ing the gap between technological complexity and human
oversight. By promoting transparency and interpretability,
explainable AI empowers users to make informed deci-
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sions and fosters confidence in AI systems. Frameworks
such as the European Commission’s Ethics Guidelines for
Trustworthy AI and the IEEE Global Initiative on Ethics
of Autonomous and Intelligent Systems provide essential
guidance for developing AI solutions that are both reliable
and comprehensible, ensuring alignment with societal needs
and values [23].

1.3 Interaction
Here, interaction refers to the collaboration and engage-

ment between AI systems and human users. Effective in-
teraction design goes beyond the graphical user interface,
and is crucial to facilitate seamless communication and
understanding between humans and AI-based tools.

The capabilities and limitations of AI are intertwined
with a specific set of responsibilities. These responsibilities
are delineated through levels of automation in AI, typically
categorized into four tiers, which define the extent of control
we are willing to entrust to AI systems [19, 24–26].

r Automatic: The system operates fully autonomously,
without requiring human intervention. A non-expert user
may, for instance, rely on the system to handle tasks
entirely on its own.r Independent: The AI acts as an assistant, carrying out
specific delegated tasks. The user supervises the system
and has the authority to override its decisions. Essential
work is completed to a near-finished state.r Suggestive: The system’s role is limited to analyzing data
and proposing recommendations. It serves to guide users
by suggesting starting points or alternative options based
on input analysis. The user retains complete control over
the final outcome.r Insightive: Offering the highest level of control, this tier
empowers the user with additional insights, textual data,
visualizations, and other resources to facilitate informed
decision-making. It is ideal for professionals and industry
experts accustomed to having comprehensive control over
their work processes.

An example of automatic system is a virtual audio engi-
neer that sets suitable recording/mixing levels for a band
during a rehearsal session. A musician who is dedicated to
mastering an instrument does not necessarily need to learn
audio engineering techniques to meet this objective. In [27],
Paul White wrote: “There is no reason why a band record-
ing using reasonably conventional instrumentation should
not be EQ’ed and balanced automatically by advanced DAW
software.” At the other extreme, an AI-based system might
analyze audio signals and recommend adjustments defined
by its detection that a snare drum has too much artificial re-
verberation effect applied, or that two audio sources cannot
be heard clearly due to masking problems, leaving it to the
user to execute any changes.

Figure 3 illustrates two workflows that promote AI into an
assistant, according to the suggestive or insightive descrip-
tors listed above. In Figure 3(a) the decision is performed
by the user in conjunction with the system after the input

analysis, whereas in Figure 3(b), the user is entirely respon-
sible for the decision making, such as determining whether
the desired output is in the solution proposals or whether
the result must return as input for further analysis. Ideally,
the user can either accept or decline the solution proposal
by the system before an action is performed.

Fig. 3. Example intelligent music production system workflows
(inspired by [25, 26]). (a) The decision happens within the sys-
tem, in contrast to (b) where the user is responsible for deciding
whether the solutions are desired or a new search with feedback is
performed.

2 Technical Challenges

Applications of data-driven implementation and DNN
are different in various aspects compared to other technical
solutions that are important during development and usage,
and are discussed in the following.

2.1 Generalization and Robustness
Neural networks typically yield larger errors when ap-

plied to data not used in training. This may cause perfor-
mance drops for some inputs without apparent reason, for
example when noise reduction applications achieve attenu-
ation of different sound quality depending on spoken lan-
guage. Generalization refers to the ability of a model to
achieve low error for both, training data and new data [28].

A straightforward solution to obtain robust models is to
train with a large variety of data to achieve domain-invariant
feature representations1. Data augmentation refers to trans-
forming available data to enrich the training data sets quan-
tity and diversity, which is often used in image processing
(e.g., by rotating and cropping images), but also in audio
(e.g., by applying perceptual audio encoding and decod-
ing, filtering, adding noise, etc.) [29–31]. These procedures
are dataset-dependent, and thus require the use of expert
domain knowledge.

A special case demonstrating the lack of robustness are
adversarial examples which are created with the intent to

1Growing list of AI audio datasets for speech, music,
and sound effects https://github.com/Yuan-ManX/
ai-audio-datasets
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obtain wrong results and uncover weaknesses, for example
by applying imperceptible changes to images that result in
the model outputting an incorrect result with high confi-
dence [32]. An example from the audio field is to create
adversarial inputs to fool automated speech recognition sys-
tems into outputting a malicious transcription chosen by
the attacker [33]. Another type of unexpected errors are
those caused by shortcut learning [34] where systems learn
unintended cues to solve the task, for example by classify-
ing image backgrounds or copyright information instead of
recognizing the primary object in the picture.

2.2 High Sample Rates
Using very high sampling rates (e.g., 96 kHz) is a topic

of debate in audio engineering, that may have some percep-
tual benefits [35]. While supporting variable sampling rates
is a straightforward process with DSP algorithms, many
DNN implementations support only a fixed sampling rate.
This means that signals recorded at a sampling rate higher
than the one supported by the DNN will have their high-
frequency information lost or left unprocessed.

One obvious solution to this challenge is to train all mod-
els at high sampling rates, however this solution is imprac-
tical for multiple reasons. First, the availability of audio
content at sampling rates greater than 44.1 kHz is extremely
limited, so acquiring the data necessary to train a large au-
dio model on 96 kHz sampling rate data can be difficult or
impossible. Second, compute requirements increase dramat-
ically at large sampling rates, as the tensor size required
to contain all samples in a given time frame grows with
the sampling rate, and a larger model (e.g., longer filter
receptive field sizes) may be required to maintain equivalent
performance. Given the large computation costs required to
train state of the art models, it is quite common for these
models to operate at low sampling rates, e.g., 16 kHz. While
these sampling rates may be appropriate for certain speech
applications where intelligibility of the speech content is
the main target, they are not appropriate for most audio
engineering applications.

Recently, researchers have begun exploring sampling fre-
quency independent convolution layers for audio source sep-
aration applications [36, 37]. Here, the first convolutional
layer in a network architecture is treated as an analog filter
which is independent of the sampling rate of the input audio.
Classical DSP techniques for digital filter design from ana-
log prototypes are then used to convert the analog filter into
a typical convolutional neural network layer during training
and inference allowing the model to process data at any sam-
pling rate (without resampling the input audio). However,
none of the existing work on sampling frequency indepen-
dent convolutional layers considers sampling rates greater
than 48 kHz. Related sampling rate independent approach
has recently been proposed for recurrent layers [38, 39].

Audio bandwidth extension based on generative model-
ing [40, 41] could be one potential approach for overcoming
the lack of data available at high sampling rates. Further
exploration of implicit neural representations [42], where an
audio signal is represented as a continuous function of time

rather than a discrete set of samples, could also potentially
lead to compute efficient models that operate independent
of sampling rate.

2.3 Temporal Context
Ideally, an audio ML model would not make indepen-

dent decisions for each audio sample (or chunk of audio
samples), but rather model dependencies across the entire
signal. To better model prior knowledge of important seman-
tic characteristics of an audio signal, typically, the signal is
first transformed into a feature representation with a lower
temporal frame-rate such as the short-time Fourier trans-
form (STFT), mel frequency cepstral coefficients (MFCC),
chroma, or more recently neural audio codec features [43].
Oftentimes, these feature representations have the added
benefit of reducing the temporal frame-rate, and hence the
amount of context that must be modeled. Additionally, many
novel DL network architectures have been invented specifi-
cally to better model the temporal context of audio signals.

Stacked dilated convolutions, an approach initially popu-
larized in WaveNet [44], effectively increase the available
temporal context by increasing the receptive field in suc-
cessive layers of the network where the dilated convolu-
tions allow for compute and memory efficient operation.
For recurrent neural networks (RNNs), the Dual Path RNN
(DPRNN) [45] increases temporal context by maintaining
two paths of recurrent layers, where the second path oper-
ates every N time steps.

The transformer architecture has become the dominant
type of deep learning model across application domains,
and audio is no different. In addition to exhibiting state
of the art performance in tasks such as audio classifica-
tion [46] and music source separation [47], it also forms
the backbone of many current text-to-audio generation mod-
els, which will be discussed in more detail in Section 3.7.
Built on the self-attention mechanism, the transformer is un-
matched in its ability to incorporate context across an entire
sequence, but in a naive implementation, the complexity of
the model grows quadratically with sequence length, limit-
ing its applicability to long sequences such as audio signals.
However, recent software optimizations such as key-value
caching [48] and flash attention [49] are rapidly improving
the efficiency of attention computation.

Given the exploding interest in large language models
(LLMs) built with transformers, research on techniques to
increase the context length of transformers, e.g., [50], will
also likely be useful for increasing the temporal context
in audio models. Additionally, a new class of architectures
based on structured state space models (SSMs), which can
operate in both recurrent and convolutional modes, have
been shown to be incredibly powerful at modeling long
sequences, including time-domain audio signals [51].

2.4 Real-time and Low-Latency Operation
Interacting with audio, whether playing a musical in-

strument, using signal processing tools for live sound and
production applications, or augmenting the human auditory
system with hearing-aid technology requires algorithms to
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operate in real-time with low-latency. By real-time we mean
that any audio input to an algorithm is processed within a
given time-limit or latency requirement. For example, in
the Clarity Challenge, which focused on the development
of ML algorithms for hearing aids, the latency requirement
was 5 ms [52]. Similarly, studies show that digital musi-
cal instruments should have a latency below 10 ms [53].
These requirements are significantly more demanding than
visual systems where latency values of 30-85 ms can be
tolerated [54], and present a serious challenge for audio ML
systems.

We note that latency has two main components: (1) al-
gorithmic latency, which is caused by constraints on the
specific algorithm, e.g., overlap-add operations require all
future overlapping frames containing a given audio sample
to be observed before the processed version of the audio
sample can be output, and (2) hardware latency, which is the
computing time required to complete the algorithm process-
ing. In analog hardware tools for audio processing, these
two sources of latency were completely coupled, whereas
digital tools allowed for buffering of audio samples, effec-
tively decoupling algorithmic and hardware latency.

Over the past several years, there has been a growing
interest in causal deep network architectures for audio pro-
cessing, which aim to minimize algorithmic latency. Many
architectures that operate on audio signals can be made
causal in a straightforward manner such as unidirectional
recurrent networks and adding the appropriate padding for
dilated convolutions. The Realtime Audio Variational au-
toEncoder (RAVE) [55] is a good example of these tech-
niques, although obtaining high fidelity results usually re-
quires latency values greater than 20 ms. One interesting
future direction for reducing algorithmic latency is training
a neural network to predict future frames of a signal to over-
come the delay from algorithms that introduce latency such
as overlap-add processing [56]. However, a network that is
required to perform such a difficult task as predicting the
future requires significant modeling capacity and therefore
computation to produce accurate results, thus increasing its
hardware latency as well.

Combining classical DSP algorithms that are known
to be computationally efficient with modern ML tech-
niques, known as differentiable digital signal processing
(DDSP) [12, 57], is a promising direction for overcom-
ing hardware latency, which will be further discussed in
Section 3.1. As an example, PercepNet [58], took the nor-
mally compute-heavy process of DNN-based speech en-
hancement, and reduced both algorithmic and hardware
latency by learning perceptual band gains and comb filter
taps for a DSP-inspired model.

2.5 Artifacts, Sound Quality, and Loss Functions
The human auditory system is a complex and non-linear

function of the input stimulus it receives. Many well under-
stood properties, such as auditory masking, have long been
exploited in audio signal processing, perhaps most famously
in audio coding. Additionally, the human auditory system
has evolved to be particularly sensitive to certain auditory

cues that when modified or missing can make processed
audio sound unnatural. As a result, designers of ML systems
for audio signal processing must consider potential artifacts
produced by their systems.

Artifacts present in audio processed by ML models will
be unique to every model, and unlike classical DSP algo-
rithms, the cause of an artifact cannot easily be traced back
to a certain property of the algorithm. Artifacts may be
caused by a property of the model architecture, the data rep-
resentation, or the loss function, but could also be related to
lack of generalization as discussed in Section 2.1.

Artifacts are generated when loss functions do not ad-
equately penalize them. Reduction of artifacts can be
achieved by improving the design of the loss function and
potentially making task specific modifications informed by
human auditory perception. However, incorporating many
of the best existing models of the human auditory system
into loss functions used for training is non-trivial, as they
may be non-differentiable, computationally costly, or lack
robustness when presented with real-world stimuli.

Despite tremendous recent progress, there are still many
shortcomings in both the loss functions used for network
training, and the objective metrics used for network eval-
uation. A basic approach for constructing a loss function
often involves computing the distance between the output
and target signal directly in the time domain, with popular
approaches such as the signal-to-distortion ratio (SDR) [59].
However, time domain metrics enforce strict adherence to
the target both in magnitude and phase response, which
may be overly restrictive. This motivates frequency do-
main metrics, which often measure distance in terms of
frequency magnitude, and relax constraints on absolute
phase coherence. While both time and frequency domain
metrics are lacking in that they require strict coherence to
their respective representations, modifications such as fre-
quency weighting can help to further improve the perceptual
relevance of these metrics [60–62].

In order to construct more perceptually relevant metrics a
number of approaches have been proposed, such as deep fea-
ture losses, adversarial losses, and differentiable implemen-
tations of reference-free metrics. Deep feature losses mea-
sure the distance between representations extracted from
neural networks pretrained in audio classification tasks [63–
65]. Adversarial losses are similar to deep feature losses
in that a neural network is used to construct the loss func-
tion, however, this network is trained in tandem with the
main network, similar to generative adversarial networks
(GANs) [66]. Finally, differentiable reference-free metrics,
such as DNSMOS [67] and Torchaudio-Squim [68], use net-
works trained on perceptual evaluations, which can then be
used as an objective. Future work could consider adapting
techniques for enhancing language models, such as rein-
forcement learning through human feedback (RLHF) [69],
in the context of audio quality using perceptual evaluations
from human listeners.

Approaches used for evaluation are subject to fewer con-
straints since they need not be differentiable or as compu-
tationally efficient, and can additionally consider dataset-
wide performance [70]. It is common to use traditional
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signal processing-based metrics such as PESQ [71] and
PEAQ [72]. However, PESQ is limited in that it is opti-
mized for speech transmission and only considers sampling
rate of 16 kHz, whereas PEAQ may only be appropriate for
measuring coding artifacts, and lacks open source imple-
mentations. Improving perceptual models for other audio
engineering tasks such as spatial audio [73] and overall au-
dio quality [4] remain an important research direction. Dis-
tributional approaches such as the Fréchet Audio Distance
(FAD) [74] are often employed. Unlike other approaches,
FAD relies on measuring the distance between distributions
of features from the system under test and the target do-
main. While this can capture a more holistic snapshot of the
system performance, it still relies upon the representations
from pretrained models, such as VGGish [75], which suffer
from the same limitations as deep feature losses, although
music-specific improvements were recently proposed [76].
As a result, the gold-standard in evaluation still relies on per-
ceptual studies involving human listeners, which are often
based on the ITU-R BS.1116-2 or MUSHRA test designs.

2.6 From Research to Practice
A challenge that remains in the field of AI and audio

signal processing is bridging the gap between researchers
and practitioners. This is not just about interactivity; it is a
human-AI challenge that also involves technical, logistical,
and design considerations to create a tool for end users from
a research project. While this problem exists for all research
fields, the human and technical challenges specific to audio
discussed in the previous sections can make bridging this
gap particularly difficult.

Making AI and audio research usable by practitioners
requires more than standard software engineering best prac-
tices such as detailed installation instructions, container-
ization, and dependency management. For example, when
these systems are made publicly available via an open
source code repository, they usually require some program-
ming knowledge to set up and are often controlled asyn-
chronously through a command line interface. This is in
stark contrast to the real-time feedback-driven workflow
introduced by audio plugins which have streamlined music-
making since the VST standard was introduced in 2005. An
easily installable solution callable within your Digital Audio
Workstation (DAW) aligns with today’s production work-
flows and practitioner requirements of real-time processing,
low-latency output, and adaptability to arbitrary input audio.
Research projects that are accessible in the DAW, such as
Spleeter2 for source separation, demonstrate this and remain
popular due to their ease of use, even when outperformed
by newer, less accessible state of the art solutions, such as
Hybrid Demucs [77].

Fortunately, in the last few years there has been a surge
in general purpose deployment tools such as Google Colab
and Huggingface Spaces, as well as audio specific offerings,
including HARP [78], Neutone3, RTNeural [79], and more
that specialize in deploying AI audio research in the cloud

2https://github.com/deezer/spleeter
3https://github.com/Neutone/neutone_sdk

or as an audio plugin in the DAW. These tools are free and
provide user-friendly interfaces which further contribute to
the democratization of AI audio technology.

However, making these tools available without overly
restrictive technical guardrails in place such that they can
also be misused creatively is a delicate balancing act. Re-
searchers can help reduce the gap between their work and
practitioners by choosing a deployment tool and consider-
ing its limitations from the onset of a project when critical
decisions are typically made about latency, model sizes,
sampling rates, applications, and target audience.

Another point that should be considered when bridging
the gap between audio research and practice is how the
capabilities of a system are communicated. While most aca-
demic works report the average performance of a system,
the worst-case performance can be more important from a
practitioner’s point of view. Determining this can be chal-
lenging and authors may have less incentive to highlight
this information when trying to publish. However, it can
also be provided in the supplemental material of a paper
for readers who are interested. Considering both best- and
worst-case scenarios can provide a more realistic picture of
an AI model’s abilities, thus aiding potential users in mak-
ing informed decisions about its suitability for real-world
applications. Making a system easily accessible through a
deployment tool like the ones discussed previously can en-
able others to determine the limits of the system, even if they
are not explored in the original academic work. In addition
to this, allowing users to provide their own inputs reduces
the cherry-picking bias of pre-selected audio samples.

3 APPLICATIONS

In this section we provide overviews of some exciting
uses of AI in audio signal processing applications. As with
any widely applicable technology, the number of possible
applications is vast and this list is in no way meant to be
exhaustive. Some notable omissions include room acous-
tics, audio coding, physical modeling, and audio retrieval,
among many others. It is our hope that the description of
audio effects, synthesizers, automatic mixing and mastering,
spatial audio, speech enhancement, dialog separation, and
text-to-music generation will provide useful overviews of
these areas, and also serve as potential roadmaps for using
AI in new audio applications.

3.1 Audio Effects
Audio effects are signal processing devices used to shape

the sonic characteristics of audio signals and they play a
central role in audio production with applications in mu-
sic, film, broadcast, and video games [80]. While there is
a large body of research outlining the design and imple-
mentation of audio effects, in recent years, researchers have
investigated how ML and AI may be used to address previ-
ously difficult to solve problems. These applications may
include analysis tasks, such as the detection or classifica-
tion of audio effects [81–83], or estimation of audio effect
parameters [84, 85]. Other approaches build on this and
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Fig. 4. Comparison of parameter and audio-based loss formula-
tions for controlling the parameters p of an audio effect y = h(x, p)
to process an audio signal x using a neural network controller fθ .
(a) Formulation using a parameter-based loss function Lp, which
requires ground truth parameters p. (b) Formulation using differ-
entiable signal processing techniques to enable an audio-domain
loss function La by backpropagating through h.

propose to automatically control audio effects by estimating
optimal control parameters. This can include tasks such as
automatic equalization [86, 87], noise reduction [88, 89], as
well as audio production style transfer, also known as sound
matching, with applications to equalization [90], dynamic
range compression [91], artificial reverberation [92] and a
complete signal processing chain [93].

However, applications of ML for audio are not restricted
to only analysis. They also include applications where a neu-
ral network operates directly on audio signals to produce
a processed version. This can involve tasks such as virtual
analog modeling, where a system is designed to emulate
the behavior of an analog system. Traditional approaches
have leveraged measurement data for this task [94, 95].
However, studies leveraging neural networks in both black-
box [96, 97] or grey-box [98, 99] models have shown su-
perior performance and reduced need for hand-designed
components.

Neural networks can also be used for the inverse prob-
lem of removing audio effects from processed recordings,
both for single effect such as distortion [100], reverbera-
tion [101], and dynamic range compression [102], or entire
effect chains [83, 103]. Finally, ML can also enable the
construction of novel transformations through neural au-
dio effects, with approaches including randomly weighted
networks [104] and steerable networks [105].

An emerging research direction in audio effects involves
leveraging techniques from differentiable signal process-
ing [57] to construct differentiable implementations of audio
effects. As shown in Fig. 4, implementing audio effects in a
differentiable manner enables the use of gradient based tech-
niques from ML. This can enable a number of applications.
For example, it can facilitate reverse engineering of audio
effect parameters through a gradient-based optimization pro-
cess [106] and can also aid in the construction of grey-box
models for virtual analog effect modeling [99]. By combin-
ing existing components such as filters and non-linearities,
we can construct interpretable and efficient models in a
data-driven fashion.

Differentiable audio effects also have applications in pa-
rameter estimation and control scenarios, with applications

in audio production style transfer [93] and automatic mix-
ing [107]. Directly incorporating audio effects in the com-
putation graph while training enables the use of an audio
domain loss as opposed to a parameter-based loss, which
can be problematic [108]. This is critical for applications
where the ground truth parameters are not known, such as
in automatic mixing or style transfer applications.

Open challenges in applications of ML for audio effects
include: first, the lack of neural audio representations that ad-
equately capture information about transformations caused
by audio effects [109], and second, the generalization of ex-
isting techniques to real-world use cases due to the difficulty
in interfacing with commercial audio effects.

While there has been significant development in so-called
general purpose audio representations [110], pretrained
models have been shown to lack detailed information about
audio effects [109]. This is often due to the fact that audio
effects are commonly used as data augmentations during
training, hence encouraging invariance to these transforma-
tions. While this may be beneficial for certain downstream
tasks, such as sound event detection, it is important to cap-
ture these transformations for audio effect related tasks. As
a result, more work is needed in developing audio repre-
sentations that capture information about audio transforma-
tions while remaining largely invariant to the underlying
content [111].

The generalization gap in existing approaches is often due
to the inability to produce training data using commercial
audio effects. As a result, it is common for many approaches
to use simplified or basic implementations of audio effects.
While this can be useful for toy problems, it prohibits the
construction of systems that interface with the tools used
in the audio engineering practice. This reality also impacts
work in differentiable signal processing.

Due to the constraints of existing approaches, approx-
imations must be made for explicitly differentiable ap-
proaches [93] and methods for enabling gradient based
learning for black-box devices such as neural proxies [107]
and gradient approximation [112] remain limited. As a re-
sult, the field could benefit from further work on general-
izing and improving these methods to enable efficient and
stable learning in the control of arbitrary signal processing
devices.

3.2 Synthesizers
Synthesizers for music production are hardware devices

or software instruments designed to generate sound through
various signal processing techniques. There are several com-
mon types of musical instrument synthesizers, such as addi-
tive, subtractive, concatenative, wavetable, frequency mod-
ulation, granular synthesis, and more, each employing dis-
tinct methods to create and shape sound. Synthesizers offer
creative freedom over every aspect of sound design and
can be controlled with MIDI (Musical Instrument Digital
Interface) commands for precise control and expressive per-
formances. Since the 1990s [113, 114], and especially in the
past decade [115–118], ML has been applied to synthesizers
for several different tasks such as estimating their param-
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Fig. 5. Synthesizer parameter estimation for sound matching.
(a) A synthesizer renders audio according to some synthesis pa-
rameters. (b) Parameter estimation using a neural network and a
parameter or perceptual audio loss function.

eters, exploring new methods of synthesis, and providing
novel control mechanisms. While the machine learning ap-
plied to audio synthesis research topic is vast, this section
focuses on these three research directions along with their
associated challenges for controllable synthesizers typically
used by audio engineers and music producers.

A relatively recent research direction, illustrated in Fig-
ure 5, is sound matching using synthesizer parameter es-
timation. This is an analysis task involving ML systems
to reverse engineer the parameter settings (also known as
a patch) for creating a certain sound [119]. Learning to
program synthesizers is a time-consuming process, usually
obtained through inefficient trial and error and only mas-
tered after years of experience. As a result, the parameter
estimation task can serve as an educational tool for novices
and as a creative tool for experts when a predicted patch is
different or erroneous. Evolutionary algorithms [120] and
DNNs [117] have successfully been applied to the Yamaha
DX7 synth [115], Serum synth [116], modular synths [121],
and more.

Several open challenges remain for the parameter esti-
mation task. Interfacing with most existing synthesizers to
automate data collection is difficult, which limits training
datasets and the ability for parameter estimation systems
to generalize to other synths. Different parameter settings
can create the same sound, which results in contradictory
gradients when training a neural network and comparing
its output directly to the parameter values (also known as
P-loss). Parameters also often have “dead zones” where
modifying them results in no perceivable change in audio
which further exacerbates this issue.

These challenges have led to recent work on learning
synth parameters end-to-end [118] and directly compar-
ing the resulting synthesized audio to the target audio us-
ing a perceptual similarity metric [122]. However, this ap-
proach comes with its own challenges, such as those re-
lated to loss functions discussed in Section 2.5 and the non-
differentiability of most synths hindering gradient-based
learning. This approach also expects an isolated recording

of the synthesizer as target audio which may not always be
obtainable. Similar to audio effects, differentiable synth im-
plementations and neural proxies have been used to address
some of these challenges, but are still at an early stage and
could benefit from further work.

Another direction is using neural networks to synthesize
audio directly by providing a target sound or high-level
control parameters as input. This approach comes with sev-
eral benefits such as fully differentiable synths enabling
gradient-based learning, GPU acceleration enabling faster
data generation, and novel methods of synthesis such as
timbre transfer and interpolation. Recent work [12, 118]
has leveraged neural networks to control the parameters of
white-box differentiable digital signal processing (DDSP)
synth architectures which provide better interpretability via
their intermediate parameters and strong guardrails on the
resulting audio. Differentiable and parameterized physical
models of the vocal tract [123], resonators [124], and other
instruments have also been used as the synth architecture in
these systems, resulting in efficient and controllable genera-
tion of audio modalities that are beyond the capabilities of
traditional DSP-based synths.

Several open challenges exist for this research direction.
Neural synth architectures may be technically differentiable,
but have incorrect or missing gradients [125], thus hinder-
ing gradient-based optimization. Neural synthesizers also
often lack interpretable controls and are prone to produc-
ing artifacts, making them less suited for professional ap-
plications. These challenges are explained more in Sec-
tions 1.2, 1.3, and 2.5. Finally, due to their custom differen-
tiable implementations, these novel forms of synthesis are
typically less accessible and cannot be applied to existing
non-differentiable synthesizers, thus preventing widespread
adoption by practitioners.

Controllability of synthesizers is another recent research
area. Most synthesizers have a large number of parameters
that can make it difficult and tedious to discover new sounds.
This has resulted in research on mapping synthesizer pa-
rameters to a latent space [126] where similar sounds are
embedded close to each other. This enables a new method
of generating synth patches by sampling from the latent
space and “exploring” it. This approach can also be applied
to novel neural synthesis methods [127], resulting in a new
form of synth control called latent space exploration.

One major challenge of synth controllability is the inter-
pretability of the latent space and reducing the dimension-
ality of it such that it can be visualized and explored by
the user. Prior work has investigated which dimensions of
the latent space are most important [128], but this area of
research is still nascent. Further research needs to be done
on novel control methods beyond latent space exploration
that are also suitable for the workflow of audio production
practitioners.

3.3 Automatic Mixing and Mastering
In the context of music production, both mixing and mas-

tering without any intelligent support are very challenging
tasks. After recording and editing, the mixer must perform a
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set of decisions that involves technical challenges [129],
such as ensuring balance between sources, minimizing
masking, distributing elements in the panorama field and
guaranteeing a desired stereo breadth, but also, creative or
artistic decisions like the application of audio effects such
as reverb or the automation of the cutoff frequency of a
filter. The interaction of these mixing decisions enables a
constant trade-off in trying to produce the best possible
outcome [130].

The role of the mastering engineer has evolved from its
early days of simply transferring music from tape to acetate
disc with technical adjustments like equalization and noise
reduction. Today, mastering involves not only enhancing
sound quality but also ensuring consistency across different
songs in an album and across various playback systems,
from headphones to large event speakers. Modern mastering
also focuses on meeting specific loudness standards as part
of optimizing audio before distribution.

In today’s digital music production, the entire process
from recording to mastering can be done within a digital
audio workstation (DAW). The transition from analog to dig-
ital has brought a wealth of software tools for both mixing
and mastering engineers. DAWs now replicate traditional
mixing consoles, in the same way audio plugins emulate
physical peripherals. Modern computers, with their high
computational power, handle large sessions with numer-
ous tracks, synthesizers, and effects, all at high resolutions
and sampling rates. This shift has democratized access to
high-quality digital versions of analog equipment like com-
pressors, making them more affordable than their hardware
counterparts.

The integration of AI in music production has led to the
rise of Intelligent Music Production (IMP; [25, 131–133]).
This growing field aids mixing and mastering engineers by
automating certain processes using intelligent systems. As
automatic mixing enters its second decade [132, 134], the
use of ML in multitrack mixing tools [135, 136] has become
increasingly popular together with expert or knowledge-
based systems [107]4. Today, commercial applications in
this area can produce complete mixes from individual audio
sources or provide feedback on a single mix file.

AI mainly in the form of ML or DL, has demonstrated its
effectiveness in research [90, 91, 107, 137] with dedicated
drum mixing techniques, or even entire multitrack mixing
approaches [138], as well as in various commercial products
across different formats, often integrated into common daily
workflows, as discussed in Section 2.6. While more compa-
nies are inclined to gather user data, it’s commonplace for
products to be presented within a web browser. Conversely,
the most intuitive approach to introduce AI to individuals
typically confined to studio environments is through audio
plugins, which requires to enable further functionalities to
attain visibility into activities and processes across other
audio channels as shown in Figure 6, so an audio plugin for
mixing purposes can listen to what is happening in another
track at the same time. Conversely, this workflow is natural

4Automatic mixing research https://csteinmetz1.
github.io/AutomaticMixingPapers/index.html

for a DAW, because of the scope and visibility of all audio
information in the session.

Fig. 6. Mixing processes with cross-adaptive signal processing
from [134].

Exploring a potential research direction involves inves-
tigating the incorporation of explanations into ML-based
solutions. Establishing trust between the user and the sys-
tem remains crucial, regardless of the user’s and the AI’s
level of participation [26]. This research aims to address
this challenge by emphasizing the importance of delivering
high-quality results accompanied by transparent explana-
tions or reasons for the AI’s decisions. A cross-adaptive
framework can provide the desired explanations.

The evolution of AI in the realm of creative processes
is evident, with a shift from emulating analog gear to ex-
ploring novel avenues. As for challenges in the automation
of mixing and mastering, the application of ML and DL in
specific cases, introduces both promising advancements and
significant challenges in ensuring the production of reliable
and valuable content. Several key considerations emerge:

Efficiency and Speed: DL can accelerate the mixing and
mastering processes, reducing manual adjustments. How-
ever, efficiency (considering worst-case scenario as dis-
cussed in 2.6) depends on the quality and complexity of
the ML model. Specific training strategies may be required
for optimal performance, and the current challenge lies in
accessing an ample supply of high-quality data.

Costs: Online or plugin-based solutions cater to hands-
on producers, contrasting with professional mastering engi-
neers who command higher fees due to established industry
reputations.

Consistency and Customization: ML approaches en-
sure consistent sound quality across tracks while allowing
customization. Model quality is crucial; poorly trained mod-
els may introduce inconsistencies, biases or unintended
artifacts.

Subjectivity: Subjectivity plays a crucial role, particu-
larly in creative decisions tied to emotional judgment. De-
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spite training models with industry-standard data, certain
subjective decisions remain challenging to quantify, com-
plicating the training of models for specific creative as-
pects. Subjectivity may enhance creative freedom but poses
a tradeoff, potentially limiting the intuitive and personal
touch that skilled human engineers contribute.

In leveraging ML for audio mixing and mastering, it is
imperative to recognize both its exciting possibilities and
inherent limitations. Striking a delicate balance between
automation and human expertise in a collaborative manner
stands out as a key challenge in harnessing ML for these
creative processes.

3.4 Upmix and Format Conversion
Along with traditional two-channel stereophony, the de-

mand for the production and distribution of audio content in
surround or immersive multichannel formats has grown in
the cinema, broadcast and music industries. This trend has
motivated the continued development of multichannel audio
signal processing methods for the conversion of recordings
between different multichannel and spatial audio formats,
as illustrated in Figure 7.

In traditional formats, each audio waveform channel is
destined to feed discretely an individual loudspeaker or
cluster within an array facing or surrounding the listener,
according to a predefined geometrical layout [139]. More
recent layout-agnostic formats and low-bit-rate coding spec-
ifications are deployed in professional or consumer-grade
media authoring software, distribution services and play-
back equipment [140–142]. Layout agnosticity may be re-
alized by representing the multichannel audio signal as an
Ambisonic spatial audio scene or as a collection of spa-
tial audio objects each assigned a fixed or time-varying
perceived position on a virtual sphere centered on the lis-
tener [139].

Multichannel audio format conversion scenarios include:
Upmixing – including the conversion of legacy mono or
stereo audio content to address consumer systems, venues
or distribution formats comprising a higher channel count;
Downmixing – conversely, in some situations, it is necessary
to adapt a multichannel audio signal to a reduced number
of channels. An important special case is binaural audio
reproduction for headphone playback, which typically in-
volves downmixing by virtual loudspeaker array simulation,
potentially following an upmixing stage aiming to enhance
the listener’s sense of immersion.

These operations leverage a well researched frequency-
domain processing framework nowadays commonly re-
ferred to as parametric spatial audio signal process-
ing [143, 144]. A common set of signal processing chal-
lenges confronts the DSP algorithm designer. Primary-
ambient decomposition of the source signal is employed
so that ambient signal portions, such as reverberation, may
be processed selectively by employing a format conversion
strategy that preserves the perceived diffuseness of the re-
produced sound field [145–150]. Primary components, on
the other hand, require distribution strategies that maximize
spatial discrimination, often accomplished by estimating

Fig. 7. Upmix or conversion of an audio signal to various immer-
sive playback configurations or distribution formats.

and re-rendering the apparent direction of arrival of each
time-frequency component [145, 151–153].

Inevitably, the source audio material may present a signifi-
cant degree of time-frequency overlap: at any given time and
frequency, it is typically composed of ambient or reverbera-
tion components superimposed with one or more primary
components emanating from different directions of arrival.
Parametric methods seek to exploit the information implied
by inter-channel signal differences in the time-frequency
domain. They assume that spatial information is supplied
for each input audio channel (such as its directional coordi-
nates). Most critically, they implicitly assume sparsity (low
overlap) in the time-frequency domain.

Accordingly, therein lies an opportunity for ML-based
approaches to drastically improve input signal decomposi-
tion/reconstruction performance, in analogy with the recent
progress demonstrated in the performance of musical source
or stem separation methods [154, 155]. Exemplary studies
explore this opportunity to develop improved solutions for
ambience extraction [156–158], format conversion of pri-
mary components [159–161], or pseudo stereophony from
a mono source signal [162, 163].

As observed in [164], the development of data-based
signal processing algorithms for spatial audio format con-
version is currently hindered by infrastructure and psy-
choacoustic modeling limitations. Training such algorithms
may involve the construction of datasets comprising audio
recordings stored in several possible multichannel formats,
thus placing extra requirements on storage and computation
capacity. Additionally, the many subjective attributes that
underlie spatial audio perception are not readily encom-
passed in a differentiable loss function suitable for training
supervised or non-supervised ML models, such as those
discussed in Section 2.5.

In the future, bringing ML/AI techniques to bear in
the development of novel spatial audio analysis/synthesis
methods can unlock practical applications with transfor-
mative impact. It may enable, for instance, the realization
of immersive media and experiences leveraging legacy or
historic recordings (many of which accompany synchro-
nized video media). Recent work illustrating such perspec-
tives demonstrates the incorporation of ML techniques
in wearable immersive audio [165], audio-visual process-
ing [166, 167], spatial audio coding [43, 168, 169], or dif-
ferentiable frequency-domain representation [170].
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3.5 Speech Enhancement in Acoustic
Environments

Speech Enhancement (SE), a key signal processing task
in many audio systems, is utilized in numerous applications
to boost the signal-to-noise ratio (SNR) and improve speech
signal quality. This enhancement is typically aimed at two
main objectives: serving as an immediate goal in devices
like hearing aids, and as a preparatory phase in systems that
depend on high SNR or speech quality, such as speech or
speaker recognition systems. Common components of SE
include acoustic echo suppression and cancellation, back-
ground noise reduction, bandwidth extension, suppression
of competing speech, and source separation.

Recent developments in ML and neural network-based
approaches have demonstrated significant progress in SE.
Techniques that require pre-training, such as Generative
Adversarial Networks (GANs), DNNs, and other architec-
tures, have improved on the state-of-the-art in enhancing
near-field speech in particular [171–174]. At the same time,
data-driven approaches that do not need pre-training, includ-
ing physics-based ML models, have advanced notably in
regards to source separation for reverberant environments
in the far field, addressing challenges like the Cocktail Party
Problem [175].

However, applying AI and ML techniques to SE presents
several considerable challenges to real world implementa-
tions, particularly those for live and battery-powered appli-
cations. For example, key requirements in many portable
and wearable applications include very low power consump-
tion and latency below 20 milliseconds or even 5 millisec-
onds for hearing aid applications. While hardware archi-
tectural advancements, such as the emergence of analog
AI chips, have been made in response to these concerns,
continued research and development efforts are still needed
to achieve these goals.

Furthermore, the availability of suitable, large training
datasets impacts the design of effective AI and ML solu-
tions for some applications. Real recording datasets such as
TIMIT [176], Librispeech [177], Voice Bank [178], NOI-
SEX, and CHiME [179] are widely used but are of limited
size relative to the amounts used in training models in other
modalities such as text and images. Simulated datasets are
widely used in research to augment the size of the training
datasets, but they may not suffice for complex or dynamic
applications. The effectiveness of general models derived
from these simulations often hinges on their quality and
realism.

In recent years, several datasets containing real, sim-
ulated, or a combination of both types of data have be-
come publicly available, such as Amazon’s MASSIVE 51-
language dataset [180]. Additionally, various competitions
have been held focusing on applying DL to augmented real-
ity and hearing aids which have provided their own training
datasets comprising simulated and some real recordings,
such as the SPEAR Challenge [181], the Interspeech 2021
Deep Noise Suppression Challenge [182], and the Clarity
Enhancement Challenge [52]. To mitigate the lack of real
recording datasets suitable for training, ongoing research

into learning methods that do not require large datasets is
underway, with some early promise being shown by meta-
learning and few-shot learning approaches [183, 184].

While all SE applications share the common goal of im-
proving SNR and quality, the diversity and dynamic com-
plexity of acoustic environments present both challenges
and opportunities for AI and ML solutions and some re-
search into alternative solutions is already occurring [67].

3.6 Dialog Separation in Produced Content
Dialog separation refers to the process of obtaining a

target speech signal from produced content with interfer-
ing sounds, e.g., music, recorded ambience and sound ef-
fects during post-production. It can be applied to improve
the intelligibility or reduce the listening effort of TV and
movie sound when the clean speech signal is not separately
available and background is mixed at too high level, or for
upmixing.

An early data-driven approach for Dialog Enhancement
(DE) combined conventional feature extraction with shallow
Artificial Neural Networks (ANNs) [185]. Current methods
use DNNs to estimate a representation of the target signal or
the parameters for retrieving the target signal from the input
mixture. They are mainly applied to time-domain signals
[186] or Short-Time Fourier Transform (STFT) coefficients
directly, except works on SE that implement strong induc-
tive biases using signal processing methods for real-time
processing at low latency [88]. Similar concepts are used
for music source separation [154, 155] with applications
to karaoke or music remixing and SE for communication
applications.

Many methods process signals in the time-frequency do-
main obtained with STFT by predicting the target signal
directly or by element-wise multiplication with real-valued
scalars estimated by a DNN that are referred to as a mask
[187]. Complex-valued parameters are used in order to re-
store the signal phase in addition to magnitudes of STFT
coefficients [188] or phase information is estimated [189].
Current systems use architectures with jointly optimized
encoder, masking and decoder. These methods are based
on convolutional layers, recurrent units or attention mecha-
nisms.

While most methods optimize a cost function with-
out taking perceptual constraints into account, perceptu-
ally motivated cost functions have been developed based
on Short-Time Objective Intelligibility (STOI) [190], Per-
ceptual Evaluation of Speech Quality (PESQ), and Per-
ceptual Evaluation methods for Audio Source Separation
(PEASS) [191]. Other works propose to control the trade-
off between sound quality and attenuation [192].

First systems are already commercialized and more work
on improving separation and sound quality is continuously
published. Source separation is challenging, because the
variety of interfering sound is large (music, environmental
noise and effect sounds), no a-priori knowledge of the mi-
crophone configuration is available, and the listeners expect
high sound quality, i.e., the processing should not intro-
duce audible artefacts. For many applications processing
in real-time with low-latency is required, but better results
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in terms of sound quality and separation are achieved in
off-line processing.

Various data sets have been made publicly available in
the past that can be used to train dialog separation [193]
when combining clean speech data [194] with interfering
sounds [195], but high quality data with spontaneous speech
from fiction content is unfortunately not publicly available
to the required extent.

Current trends are increasing depth of neural networks
[189] and source separation with weakly labelled data,
which is of interest to address applications with specific re-
quirements on separated targets or signal formats for which
no extensive data resources exist [196].

3.7 Text-to-Music Generation
Music generation is a fundamental task in music signal

processing and can be traced back to early algorithm music
composition that emerged in the 1950s [197]. Since then,
there has been significant evolution in the application of AI
for music generation with increasing sophistication [133].
In recent years, a wide range of approaches leveraging DL,
and more specifically generative modeling, have been devel-
oped. The first generation of DL approaches demonstrated
promise from adapting speech synthesis methods, such as
WaveNet [44] and WaveRNN [198]. However, the results
were notably lacking both in fidelity and controllablity, as
these were unconditional models and scaling them was chal-
lenging since they operate on the waveform.

More recently, powerful large-scale generative models
have demonstrated impressive performance in adjacent do-
mains such as image generation with Stable Diffusion [199]
and DALL-E [200], as well as text generation with GPT-like
models [201]. These results have sparked renewed interest
in audio generation using similar techniques and has led to
a series of emerging generative models that adapt a similar
text-prompt based generation process, commonly referred
to as text-to-audio models [202].

Text-to-audio models can enable the generation of com-
plete musical tracks based upon a user-provided text prompt,
such as “dance music with violins and cuica with odd
rhythm changes and delicate dynamics.” While there has
also been significant advancement in symbolic music gener-
ation systems, we will focus our discussion only on those
systems that synthesize audio directly based on a user-
provided text prompt. While text-to-audio has become a
predominant paradigm for music generation models, there
is a range of underlying training techniques and model ar-
chitectures. We will further focus our discussion on two
of the most common strategies, which involve leveraging
diffusion or autoregressive generative models.

Autoregressive approaches, which often use transformer
building blocks, treat the generation process as a sequence
modeling task where the sequence is generated by predict-
ing small subsequences in an iterative and recursive process.
Examples of autoregressive transformer models include Mu-
sicGen [203] and MusicLM [204]. As addressed in Sec. 2.3,
one of the major challenges of audio models is context
length. This is of particular relevance for transformer based
sequence models due to their quadratic scaling in relation

to the sequence length, which makes training such a model
at the waveform level infeasible.

To make the modeling of audio tractable, it is common
to first build a temporally compressed representation on
which the sequence model can be trained. In practice, this
is often achieved with a neural audio codec [205, 206], a
learnable model trained in a compression task to represent
a waveform as a sequence of discrete codes or tokens. This
transforms the task of modeling audio sequences into a form
very similar to natural language enabling the application
of successful techniques from this domain. Conditioning
of the generation process on text prompts can be achieved
either with cross-attention layers that modulate the behavior
of the sequence model or by simply prepending tokens from
a text encoder to the sequence of neural audio codec tokens.

On the other hand, diffusion models, which often operate
either in the time domain or the time-frequency domain,
model the complete sequence concurrently, but instead em-
ploy a process of iterative refinement [207]. Some diffu-
sion models operate directly in the time domain such as
Moûsai [208], however, latent-diffusion models are more
common, which instead first train an autoencoder to tem-
porally compress audio signals, and then train a diffusion
model on these compressed representations. Latent diffu-
sion models share some conceptual similarity with the use
of neural audio codecs, however, they do not require dis-
crete sequences, often easing the training process. Popular
latent diffusion approaches for music generation include
StableAudio [209], MusicLDM [210].

While recent models continue to demonstrate compelling
generation performance, even leading to some commer-
cially viable solutions, fundamental improvements are still
needed to achieve superior fidelity of generated audio and
further extend the mechanisms for control and conditioning.
This may involve further advancements to the underlying
architecture components, training techniques, or generative
model approaches. Recent works have begun to explore
more sophisticated conditioning techniques [211, 212] and
improvements in neural audio codecs are rapidly develop-
ing, leading to improved audio fidelity [213].

4 CONCLUSION

In this paper, we have outlined the advancements in audio
engineering enabled by the integration of AI. We presented
an overview of current trends, challenges, and emerging
applications and identified the importance of addressing
both technical and human-centric challenges in the develop-
ment of AI systems that are robust, ethically grounded, and
user-oriented. Our discussion comprises a description of
technical challenges including generalization, audio quality,
and real-time processing, which require further innovation.
Additionally, we identified directions for applications of
AI in audio engineering. While AI has already begun to
enable applications in audio engineering, we argue for a
balanced approach that aligns technological progress with
ethical standards and human-centric principles, fostering
the responsible and effective utilization of AI in audio engi-
neering.
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Audio Distance: A Reference-Free Metric for Evalu-
ating Music Enhancement Algorithms.” in Proc. Int.
Speech Commun. Assoc., pp. 2350–2354 (2019).

[75] S. Hershey, S. Chaudhuri, D. P. Ellis, et al., “CNN
architectures for large-scale audio classification,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
pp. 131–135 (2017).

[76] A. Gui, H. Gamper, S. Braun, et al., “Adapting
frechet audio distance for generative music evalua-

tion,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1331–
1335 (2024).
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[84] M. Comunità, D. Stowell, J. D. Reiss, “Gui-
tar effects recognition and parameter estimation
with convolutional neural networks,” J. Audio Eng.
Soc., vol. 69, no. 7/8, pp. 594–604 (2021 Nov.),
doi.org/10.17743/jaes.2021.0019.

[85] H. Jürgens, R. Hinrichs, J. Ostermann, “Recognizing
guitar effects and their parameter settings,” in Proc.
Int. Conf. Digit. Audio Effects (2020 Sep.).

[86] S. Venkatesh, D. Moffat, E. R. Miranda, “Word em-
beddings for automatic equalization in audio mixing,”
J. Audio Eng. Soc., vol. 70, no. 9, pp. 753–763 (2022
Feb.), doi.org/10.17743/jaes.2022.0047.

[87] D. R. K. Balasubramaniam, J. Timoney, “Word based
end-to-end real time neural audio effects for equali-
sation,” in 155th Conv. Audio Eng. Soc. (2023 Oct.).

[88] J.-M. Valin, “A Hybrid DSP/Deep Learning Ap-
proach to Real-Time Full-Band Speech Enhance-
ment,” in Int. Workshop Mult. Sig. Proc. (2018),
doi.org/10.1109/MMSP.2018.8547084.

[89] C. J. Steinmetz, T. Walther, J. D. Reiss, “High-
Fidelity Noise Reduction with Differentiable Signal
Processing,” in 155th Conv. Audio Eng. Soc. (2023
Oct.), doi.org/10.48550/arXiv.2310.11364.

[90] S. I. Mimilakis, N. J. Bryan, P. Smaragdis,
“One-shot parametric audio production style
transfer with application to frequency equaliza-
tion,” in Proc. IEEE Int. Conf. Acoust. Speech

16 J. Audio Eng. Soc., Vol. , No. ,



PAPERS REFERENCES

Signal Process., pp. 256–260 (2020 May),
doi.org/10.1109/ICASSP40776.2020.9054108.

[91] D. Sheng, G. Fazekas, “A feature learning
siamese model for intelligent control of the
dynamic range compressor,” in Proc. Int.
Jt. Conf. Neural Netw., pp. 1–8 (2019 Jul.),
doi.org/10.1109/IJCNN.2019.8851950.

[92] C. J. Steinmetz, V. K. Ithapu, P. Calamia, “Fil-
tered noise shaping for time domain room im-
pulse response estimation from reverberant speech,”
in Proc. IEEE Workshop Appl. Signal Pro-
cess. Audio Acoust., pp. 221–225 (2021 Oct.),
doi.org/10.1109/WASPAA52581.2021.9632680.

[93] C. J. Steinmetz, N. J. Bryan, J. D. Reiss, “Style trans-
fer of audio effects with differentiable signal process-
ing,” J. Audio Eng. Soc., vol. 70, no. 9, pp. 708–721
(2022 Feb.), doi.org/10.17743/jaes.2022.0025.
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