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Abstract
Dimensionality reduction is crucial for control- ling nonlinear partial differential equations
(PDE) through a “reduce-then-design” strategy, which identifies a reduced-order model and
then implements model-based control solutions. However, inaccuracies in the reduced-order
modeling can substantially degrade controller performance, especially in PDEs with chaotic
behavior. To address this issue, we augment the reduce-then-design procedure with a policy
optimization (PO) step. The PO step fine-tunes the model-based controller to compensate
for the modeling error from dimensionality reduction. This augmentation shifts the overall
strategy into reduce-then- design-then-adapt, where the model-based controller serves as a
warm start for PO. Specifically, we study the state-feedback tracking control of PDEs that
aims to align the PDE state with a specific constant target subject to a linear-quadratic cost.
Through extensive experiments, we show that a few iterations of PO can significantly improve
the model-based controller performance. Our approach offers a cost-effective alternative to
PDE control using end-to-end reinforcement learning.
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Policy Optimization for PDE Control with a Warm Start

Xiangyuan Zhang Saviz Mowlavi Mouhacine Benosman Tamer Başar

Abstract— Dimensionality reduction is crucial for control-
ling nonlinear partial differential equations (PDE) through a
“reduce-then-design” strategy, which identifies a reduced-order
model and then implements model-based control solutions.
However, inaccuracies in the reduced-order modeling can sub-
stantially degrade controller performance, especially in PDEs
with chaotic behavior. To address this issue, we augment the
reduce-then-design procedure with a policy optimization (PO)
step. The PO step fine-tunes the model-based controller to com-
pensate for the modeling error from dimensionality reduction.
This augmentation shifts the overall strategy into reduce-then-
design-then-adapt, where the model-based controller serves as
a warm start for PO. Specifically, we study the state-feedback
tracking control of PDEs that aims to align the PDE state with
a specific constant target subject to a linear-quadratic cost.
Through extensive experiments, we show that a few iterations
of PO can significantly improve the model-based controller
performance. Our approach offers a cost-effective alternative
to PDE control using end-to-end reinforcement learning.

1. INTRODUCTION

Closed-loop control of spatio-temporal systems such as
turbulent flows promises enhanced energy efficiency in
various applications, including vehicle dynamics, chemical
and combustion processes, and heating, ventilation, and air
conditioning (HVAC) systems [1]. The primary challenges
of controlling such systems are the strong nonlinearity and
the infinite dimensionality of the governing nonlinear partial
differential equations (PDEs). As a result, computationally
permissible control strategies typically involve discretization
and dimensionality reduction, followed by applying standard
model-based control solutions. This process is known as
the reduce-then-design approach [2]–[6]. To date, numerous
research efforts have focused on developing more accurate
reduced-order models (ROMs) for various PDEs [7]–[12],
thus refining the “reduce” part of the two-step process.
Although more precise ROMs certainly improve control
performance, their increased complexity and nonlinearity can
diminish the computational benefits.

In contrast, we focus here on enhancing the “design”
part of the process given a coarse ROM. Existing model-
based controllers often come with optimality guarantees
contingent on the specific dynamical models they are based
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on [13]–[17]. However, the potentially large inaccuracies
from reduced-order modeling, as to trade off computational
efficiency, can drastically impair control performance, espe-
cially in PDEs that model chaotic systems such as turbulent
flows. To address this issue, we augment the reduce-then-
design procedure with a model-free policy optimization
(PO) step that fine-tunes the model-based control gains to
compensate for the coarse modeling. This shifts the overall
control strategy into reduce-then-design-then-adapt, where
the model-based control gains serve as a warm start for
model-free PO.

Specifically, we study the state-feedback tracking control
problem that aims to align the PDE state with a specific
constant target subject to an infinite-horizon linear-quadratic
(LQ) cost. First, we discretize the PDE in space and time at
a set of grid points to arrive at a finite but high-dimensional
nonlinear system. Then, we apply the off-the-shelf Dynamic
Mode Decomposition with control (DMDc) [18] to compute
a linear surrogate model that reduces the state dimension
by at least tenfold. Lastly, we compute the model-based LQ
tracking controller and apply it as a warm start for model-free
PO. The PO step further fine-tunes the controller gains using
nonlinear high-dimensional PDE solutions until convergence.

We demonstrate the effectiveness of the additional PO step
through extensive experiments on three nonlinear PDE con-
trol tasks governed by Burgers’, Allen-Cahn, and Korteweg-
de Vries equations, respectively. With a thirty-two-fold di-
mensionality reduction in modeling, model-free PO reduces
the cost of the model-based LQ tracking controller by 28.0%,
15.8%, and 36.4%, respectively, after only a few iterations.
Furthermore, we show that the warm start significantly
accelerates the PO process and leads to a more stable
training process toward convergence. Our proposed strategy
offers a cost-effective solution to PDE control that combines
the strengths of model-based and data-driven approaches.
It optimizes the reduce-then-design process in applications
where fine-grained modeling is impractical. As a by-product,
the concept of a computationally cheap warm start could also
be beneficial in applying end-to-end reinforcement learning
(RL) to PDE control.

A. Related Literature

Most PDEs produce solutions that reside on a manifold
of moderate dimension in the phase space [19]. ROMs take
advantage of this property by discovering an approximation
of this manifold and a dynamical model within [20], [21].
Decades of research have resulted in numerous data-driven
techniques to construct linear and nonlinear ROMs [22]–[24].
We employ DMDc due to its offline nature, ability to model



the control mapping, and that the generated linear surrogate
model enables closed-form computations of optimal con-
trollers. Our proposed strategy generalizes to more complex
ROMs, controller parametrizations, and PO schemes.

Our work bridges model-based and data-driven approaches
for closed-loop PDE control. Traditionally, ROM-based con-
trollers have been proposed following the reduce-then-design
approach [25]–[27], but their control performance has been
limited by the accuracy of the ROM. To overcome this
limitation, a recent trend is to directly learn controllers from
data, assuming access to a simulator of the real system.
These approaches include genetic algorithms [28], Bayesian
optimization [29], and deep RL [30], [31], but they require
formidable computational or experimental resources.

Lastly, our work is relevant to the literature on PO for
control [32]–[36] and the theoretical foundation underlying
this approach [37]–[45]. In particular, [39] studied the con-
vergence of PO in linear systems with a “small” nonlinear
perturbation, where the linear dynamics were utilized to
warm start PO for adapting to the nonlinear perturbation.
In contrast to [39], we study general nonlinear PDEs where
an explicit linear component is not readily identifiable. We
propose the generic strategy of first designing a ROM-based
controller and then using data-driven PO for fine-tuning.

2. PROBLEM FORMULATION

We consider one-dimensional PDE control problems with
periodic boundary conditions and spatially distributed con-
trols, following the definitions in Section 2.2 of [36]. The
spatial domain is defined as Ω = [0,L] ⊂ R, where L is its
length, and u(x, t) :Ω×R+→ R represents a continuous field
over spatial and temporal coordinates x and t, respectively.
The PDE dynamics is described by:

∂u
∂t
−F

(
∂u
∂x
,
∂2u

∂x2
, . . .

)
= a(x, t), (2.1)

with F being a nonlinear differential operator involving
spatial derivatives of various orders and depending on various
physical parameters, and a representing a distributed control
as a(x, t) =

∑na−1
j=0 Φj (x)aj (t). Here, a(x, t) integrates na

scalar inputs aj (t), each modulated by its forcing support
function Φj (x), to model energy addition or external influ-
ences on the PDE dynamics. The periodic boundary condi-
tions enforce the continuity of u and its spatial derivatives
at the boundary of Ω. We use ur (x) to denote the constant
target state with which we aim to align the field u(x, t).

We discretize (2.1) in space and time, defining the high-
dimensional state zk ∈ Rnz to represent u at nz equally-
spaced points in Ω at discrete time k ∈ N, with t = k∆t
and ∆t ∈ R+ as the user-defined sampling time. We treat
scalar control inputs ai(t) as piecewise constant over each
time step ∆t. The PDE dynamics are then approximated by

zk+1 = f (zk , ak), (2.2)

where f : Rnz × Rna → Rnz is a time-invariant function
contingent on the physical parameters and forcing support

Algorithm 1: DMDc [18]
Input: A single trajectory of (2.2), i.e., {z0, · · · , zN } and
{a0, · · · , aN−1}, truncation values p and ns.

Output: Reduced-order system matrices A ∈ Rns×ns ,
B ∈ Rns×na , and the projection matrix U ∈ Rnz×ns .

1: Construct the data matrix Ω =
[
Z

Υ

]
, where:

Z =

z0 z1 . . . zN−1
, Z′ =

z1 z2 . . . zN
, Υ =

a0 a1 . . . aN−1
;

2: Find the p-truncated SVD of Ω ≈ ΨΞΛ> =

ΨZΨΥ

ΞΛ>;

3: Compute the ns-truncated SVD of Z′ ≈UΓV>;
4: Generate A =U>Z′ΛΞ−1Ψ >Z U , B =U>Z′ΛΞ−1Ψ >

Υ
;

5: return A, B, and U .

functions Φi of the specific PDE, and the initial condition
z0 is sampled from a distribution D.

A. State-Feedback Tracking Control

Our objective is to design a state-feedback controller that
enables asymptotic tracking of the discretized constant target
state zr ∈ Rnz . Specifically, we aim to minimize the LQ
tracking cost defined as

J := Ez0

{ ∞∑
k=0

(zk − zr )>Q(zk − zr ) + a>k Rak
}

(2.3)

s.t. zk+1 = f (zk , ak), ak = φ(z0, · · · , zk , a0, · · · , ak−1),

where Q ≥ 0 and R > 0 are the symmetric positive (semi)-
definite weighting matrices. The control policy φ maps all
available information up to k to the control input ak . Setting
zr to 0 simplifies our setting to the LQ regulation task. Due
to the nonlinearity of f , there are no general closed-form
solutions for the optimal φ that minimizes the cost (2.3).

B. Reduced-Order Model Identification

To address the computational challenges posed by a high-
dimensional state zk ∈ Rnz , we adopt a two-step strategy: first
performing a dimensionality reduction and then designing a
state-feedback controller using the ROM. Among numerous
data-driven methods to construct a ROM [46], we utilize the
DMDc algorithm [18] described in Algorithm 1.

DMDc generates a reduced-order linear model (A,B)
using N consecutive snapshots from a single trajectory of
the nonlinear system (2.2). The dimensionality reduction is
defined by an orthogonal mode-spanning matrix U ∈ Rnz×ns
generated from DMDc such that zk ≈ Usk , with sk ∈ Rns
denoting the reduced-order state with dimension ns � nz.
Then, DMDc identifies the best-fit linear ROM described by

sk+1 = Ask +Bak , (2.4)

where s0 is the projection of the initial condition z0 onto the
reduced-order space, given by s0 =U>z0.



3. POLICY OPTIMIZATION WITH A WARM START

We first formulate the LQ tracking problem based on the
ROM (2.4) and present its closed-form solution. Specifically,
the tracking objective is defined as

JR := Es0

{ ∞∑
k=0

(sk − sr )>Q̃(sk − sr ) + a>k Rak
}

(3.1)

s.t. sr =U
>zr , Q̃ :=U>QU ≥ 0, sk+1 = Ask +Bak ,

ak = ϕ(s0, · · · , sk , a0, · · · , ak−1).

The linearity and the low dimensionality of the ROM enable
the closed-form computation of the JR-minimizing control
policy ϕ. Then, it is natural to apply ϕ back to addressing
the original high-dimensional problem (2.3). This could be
done by projecting {zk}k≥0 onto the reduced-order space Rns
and using the policy ak = ϕ(U>z0, · · · ,U>zk , a0, · · · , ak−1) to
generate control inputs. However, dimensionality reduction
may introduce significant modeling errors (e.g., when the
reduced state dimension ns is too low or the PDE dynamics
are highly nonlinear), which limit the performance of JR-
minimizing control policy ϕ when applied to (2.3). Nonethe-
less, ϕ provides a valuable, computationally cheap starting
point for further policy fine-tuning using trajectories from
the nonlinear high-dimensional system (2.2). The structure of
this section is as follows: Section 3-A describes the model-
based solution to the reduced-order LQ tracking problem
(3.1), which serves as a warm start to the PO algorithm in
Section 3-B for further fine-tuning.

A. Model-Based LQ Tracking Controller

For the reduced-order LQ tracking problem (3.1), the
optimal controller has the form of [14]:

ak =−(R+B>P B)−1B>PAsk+(R+B>P B)−1B>qk+1, (3.2)

qk = (A−B(R+B>P B)−1B>PA)>qk+1 + Q̃sr , q∞ = Q̃sr ,

where P is the solution of the algebraic Riccati equation

P = A>PA−A>P B(R+B>P B)−1B>PA+ Q̃, Q̃ =U>QU.

Moreover, the closed-loop matrix A−B(R+B>P B)−1B>PA
has a spectral radius less than 1. Note that for any square
matrix X with a spectral radius less than 1, it holds that∑∞
k=0X

k = (I − X)−1. Therefore, we can rewrite (3.2) as
ak = KMBa sk+K

MB
b sr , where KMBa ,KMBb are the optimal gain

matrices independent of the state sk and the target sr :

KMBa = −(R+B>P B)−1B>PA, (3.3)

KMBb = (R+B>P B)−1B>(I − (A+BKMBa )>)−1Q̃. (3.4)

A direct application of the KMBa ,KMBb to the high-
dimensional problem (2.3) results in the controller

ak = K
MB
a (U>zk) +K

MB
b (U>zr ). (3.5)

When the DMDc model is accurate such that the modeling
gap is sufficiently small to be negligible, then (3.5) is a
good candidate for addressing the original problem (2.3),
providing desired performance at very low computational

Algorithm 2: Zeroth-Order Gradient Oracle
Input: Policy π, smoothing radius r.
Output: The approximated PG ∇πJ(π).

1: Sample a random matrix Θ ∈ Rna×(2ns) from a
zero-mean Gaussian distribution, and normalize it to
‖Θ‖F = 1 ;

2: Perform symmetric perturbation to π by setting
π+ = π+ r ·Θ and π− = π − r ·Θ ;

3: Sample z0 ∼ D and perform two rollouts with policy
π+ and π−, respectively. Collect instantiations of the
objective value J(π+) and J(π−);

4: return ∇πJ(π) =
nans
r [J(π+)− J(π−)]Θ;

cost. However, in the presence of a large modeling gap,
the performance of (3.5) could degrade substantially, which
motivates further fine-tuning using PO.

B. Policy Optimization with a Warm Start

We propose to fine-tune KMBa ,KMBb using PO to achieve
a good balance between performance and computational
efficiency, utilizing simulated trajectories of the nonlinear
system (2.2) until reaching a (local) minima of (2.3). Specif-
ically, we define the PO problem with respect to the concate-
nated control policy π := [Ka Kb] ∈ Rna×(2ns) as

min
π

J(π) s.t. zk+1 = f (zk , ak), ak = π

U>zkU>zr

 , (3.6)

where the objective function J(π) follows (2.3).
To address (3.6), we employ a derivative-free policy gra-

dient (PG) method utilizing a (two-point) zeroth-order oracle
[47]–[49]. We define the vanilla PG update rule as

πi+1 = πi − η · ∇πi J(πi), π0 = [KMBa KMBb ], (3.7)

where η > 0 is the learning rate and ∇πi J(πi) is the noisy
PG sampled from Algorithm 2.

Upon converging to a local minimum of (2.3), the fine-
tuned policy π and the dimensionality reduction matrix U
are applied in tandem to address the high-dimensional control
problem defined in (2.3). The effectiveness and efficiency of
the proposed framework will be showcased through extensive
numerical experiments in the following section.

4. EXPERIMENTAL RESULTS

In this section, we present numerical experiments on three
nonlinear PDE control problems in the controlgym library
[36] that are, respectively, governed by the Burgers’, Allen-
Cahn, and Korteweg-de Vries equations. We introduce the
setups of these environments below.
(P1): Burgers’ Equation is a nonlinear PDE that models
shock formation in water waves and gas dynamics. The
temporal dynamics of the velocity u(x, t) is

∂u
∂t

+u
∂u
∂x
− ν ∂

2u

∂x2
= a(x, t),



where ν > 0 denotes the viscosity coefficient, and the source
term a(x, t) is defined according to the forcing functions
detailed in Section 2.2 of [36]. In the experiments, we set
ν = 10−4, the sampling time to ∆t = 0.05, the integration
time of controlgym’s internal PDE solver to dt = 0.01,
the initial field to u(x, t = 0) = α · sech( 1β (x −

L
2 ) with

α ∼ uniform(0.9,1.1) and β ∼ uniform(0.04,0.06), and
L = 1. The target field is set to ur (x) = 0.1 · cos(2πx/L).

We also set the problem time horizon to 300, the number
of states to nz = 128, the number of actions to na = 6, the
width of each distributed forcing support function to 0.15L
(cf., [36]), and the weighting matrices to Q = R = I . In
DMDc, we set p = 8, ns = 4, and use ak ∼ N (0,0.1 · I)
to generate the exploratory system trajectory.
(P2): Allen-Cahn Equation is a nonlinear PDE in materials
science that models phase separation in binary alloy systems.
The temporal dynamics of u(x, t) in one spatial dimension,
with u = ±1 indicating different phases, is described by

∂u
∂t
− ν2∂

2u

∂x2
+V (u3 −u) = a(x, t),

where ν > 0 is the diffusivity constant and V is the potential
constant. In the experiments, we set ν = 5 × 10−2, V = 5,
the sampling and integration times to ∆t = dt = 0.01, the
initial field to u(x, t = 0) = α+(x− L2 )

2 ·cos(2πL (x− L2 )) with
α ∼ uniform(−0.1,0.1), and L = 2. The target field is set
to ur (x) = −cos(2πx/L).

We also choose the problem time horizon to be 80, the
number of states to nz = 256, the number of actions to na =
12, the width of each distributed forcing support function to
0.05L, and the weighting matrices to Q = I and R = 0.1 · I .
In DMDc, we set p = 16, nx = 8, and use ut ∼N (0,0.1 · I)
to generate the exploratory trajectory.
(P3): Korteweg-de Vries Equation is a nonlinear PDE that
models the propagation of solitary waves on shallow water
surfaces. The temporal dynamics of u(x, t) is given by

∂u
∂t

+
∂3u

∂x3
− 6u∂u

∂x
= a(x, t).

We set the sampling time to ∆t = 0.01, the integration time
to dt = 0.001, and the initial field to u(x, t = 0) = −α2 ·
sech(

√
α
2 (x− L2 )) with α ∼ uniform(1,3), and L = 20. The

target field is set to ur (x) = sin(2πx/L).
We also choose the problem time horizon to be 200, the

number of states to nz = 256, the number of actions to na =
10, the width of each distributed forcing support function to
0.05L, and the weighting matrices to Q = R = I . In DMDc,
we set p = 16 and nx = 8, i.e., a 32-fold reduction in the
state dimension, and use ut ∼ N (0,0.01 · I) to generate the
exploratory trajectory.
PO parameters: We choose the learning rates of LQT-PO
as η = 10−4 in (P1)-(P2) and η = 5 × 10−5 in (P3). The
learning rates of pure PO is η = 10−5 in (P1), η = 10−4 in
(P2), and η = 5×10−5 in (P3). See Figure 1. The smoothing
radius of Algorithm 2 is set to r = 0.1 in all cases.

Figure 1 demonstrates that by adding a few iterations of
PO, we can reduce the cost of the LQ tracking controller

based on DMDc by 28.0%, 15.8%, and 36.4%, respectively,
in the three PDE control tasks. Our results confirm the
degradation of model-based controllers from the optimum
in the presence of a large, unavoidable modeling gap. Con-
sequently, there exist significantly outperforming controllers
within the same reduced-order policy space, which could be
found using PO. Furthermore, Figure 1 shows that compared
to PO from a zero initialization, PO with a (computationally
cheap) warm start from the DMDc-based LQ tracking con-
troller exhibits faster and more stable convergence across all
three tasks. In the case of (P1), the warm start also allows
using a more aggressive learning rate in PO, leading to faster
convergence without destabilizing the training process.

In Figures 2, 3, and 4, we compare model-based, PO
with warm start, and pure PO control strategies, where the
latter two are subject to a certain budget of PO iterations.
Each controller’s behavior is evaluated with the initial field
u(x, t = 0) set to the mean of their respective distributions.
The results, as observed across Figures 2-4, indicate that
PO with a warm start achieves the best target state tracking
among the three control strategies. The numerical results in
this section confirm the effectiveness of our methodology.

5. CONCLUSION

We have augmented the “reduce-then-design” strategy
with model-free PO for controlling spatio-temporal systems
governed by nonlinear PDEs. Our numerical experiments
demonstrate that PO significantly improves the performance
of the ROM-based controller against the substantial modeling
gap incurred from dimensionality reduction. Conversely, the
ROM-based controller facilitates a warm start for PO, leading
to accelerated and more stable learning than PO alone.
An immediate future research topic is PDE control with
imperfect state measurements, necessitating a data-driven
state estimator in the controller design [50]. It is also worth
considering nonlinear controller parametrizations, possibly
through neural networks, and other PO schemes.
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[41] Xiangyuan Zhang and Tamer Başar. Revisiting LQR control from the
perspective of receding-horizon policy gradient. IEEE Control Systems
Letters, 7:1664–1669, 2023.

[42] Xiangyuan Zhang, Bin Hu, and Tamer Başar. Learning the
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