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Abstract
Recently, there are a lot efforts in developing machine learning and deep learning methods for
the prediction of electric motor performances. In particular, torque profile for a given motor
design, including cogging torque and torque ripple, are challenging for surrogate models to
achieve high prediction accuracy. One promising approach is to represent a motor design as
a 2d image, and utilize deep learning models that found success in image recognition and
classification tasks for motor performance prediction. A number of deep convolutional neural
networks (CNNs) have been adopted for motor applications previously, while more recently
Vision Transformer (ViT) models are gaining interests. In this paper, we evaluate multiple
deep CNN and ViT models on two datasets of interior permanent magnet motors, and show
that ViT based models can achieve superior accuracy for cogging torque prediction compared
with CNN based models, and can be jointly trained on the two different datasets and still
provides prediction with low error.
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Recently, there are a lot efforts in developing machine learning and deep learning methods for the prediction of electric motor
performances. In particular, torque profile for a given motor design, including cogging torque and torque ripple, are challenging
for surrogate models to achieve high prediction accuracy. One promising approach is to represent a motor design as a 2d image,
and utilize deep learning models that found success in image recognition and classification tasks for motor performance prediction.
A number of deep convolutional neural networks (CNNs) have been adopted for motor applications previously, while more recently
Vision Transformer (ViT) models are gaining interests. In this paper, we evaluate multiple deep CNN and ViT models on two datasets
of interior permanent magnet motors, and show that ViT based models can achieve superior accuracy for cogging torque prediction
compared with CNN based models, and can be jointly trained on the two different datasets and still provides prediction with low
error.

Index Terms—Deep Learning, Surrogate Model, Electrical Motors, Vision Transformer

I. INTRODUCTION

The accurate analysis of a motor design typically relies on
numerical simulations based on finite-element analysis (FEA),
which are time-consuming, especially when various operating
points are evaluated for one design. For motor design opti-
mization tasks, parameter sweeping or iterative optimization
methods are often utilized to evaluate a large number of design
candidates using FEA in order to identify the optimal design.
It is therefore desirable to develop surrogate models to rapidly
predict motor performances. In recent years, machine learning
and deep learning models have found success in many appli-
cations, and have been proposed for motor surrogate model
due to their powerful capability to emulate highly nonlinear
functions [1], [2]. In particular, one popular approach is to
represent a motor magnetic design as a 2D image, and fed
it into a convolutional neural network (CNN) based model
to predict the motor performance [3]. However, it remains a
challenge to accurately predict highly sensitive metrics such as
cogging torque and torque ripple for permanent magnet motors.
More recently, Vision Transformer (ViT) [4], [5] architectures
have demonstrated very strong capabilities in image recogni-
tion. ViT adopts multi-head self-attention mechanism to grasp
the correlation between different input parts of an image, and
is considered to be more capable than CNN in grasping global
features in an image [6].

In this work, we build deep CNN models and ViT models as
surrogate for the prediction of cogging torque on two dataset
of interior permanent magnet synchronous motors (IPMSMs).
By comparing different variations of CNN and ViT models,
we show that ViT based models generally can achieve higher
performance for the task.

II. DATASET & EXPERIMENT DESIGN

In this work, we built datasets on the evaluate the cogging
torque of 4-pole 24-slot IPMSMs for two types of magnet
configurations. Fig. 1 shows a representative design of one
magnetic pole for each configuration. All the motor designs

Fig. 1. Example design of IPM motors with (left) flat magnets and (right)
V-shape magnets.

in the two datasets have the same inner and outer dimensions.
For motors with flat magnets as shown in the left figure, a total
of 19,375 designs are generated by adjusting 13 geometrical
parameters, and evaluated with FEA simulations. For motors
with V-shape magnets as shown in the right figure, a total of
35,001 designs are generated by adjusting 17 geometrical pa-
rameters, and evaluated with FEA simulations. The simulated
torque waveform for each design is decomposed into a Fourier
series including the dominating harmonic terms:

T(θ) = A12 cos(12θ) +B12 sin(12θ) +A24 cos(24θ) +B24 sin(24θ) (1)

The four Fourier coefficients A12, B12, A24, B24 are recorded
to recover the torque waveform and cogging torque. Each entry
in the compiled dataset includes the value of design parameters,
the corresponding 2D cross section image, and four Fourier
coefficients.

Surrogate models are trained to predict the Fourier coeffi-
cients for a given motor design, which can be used to recover
the torque waveform according to Eq.(1). The cogging torque
is then determined by the difference between maximum and
minimum value of the torque: Tc = max(T (θ))−min(T (θ)).
Based on previous research [7], the performance of cogging
torque prediction with the Fourier series approach is generally
better than directly predicting cogging torque value using the
same model.



TABLE I
HYPERPARAMETERS FOR THE CNN AND VIT MODELS

Hyperparameter CNN Models ViT Models
Batch Size 128 128
Learning rate 0.0001 0.09 (with cosine decay)
Training epoch 300 300

Each dataset is split into 70% training set, 10% validation
set, and 20% test set. During training of surrogate models, we
aim to minimize the root-mean-square error (RMSE) of the
cogging torque prediction. Performance of a trained model is
evaluated on the test dataset.

For fair comparison, we aim to keep key hyperparameters
consistent between CNN and ViT models consistent, and adjust
for optimal performance for each model if needed. Table I lists
some key hyperparameters of our experimental setup. Notably,
for ViT models, the learning rate is initially large and gradually
decreases as the training epochs progress. However, for the
CNN-based models, a smaller learning rate is preferred for
optimal performance.

III. RESULTS & DISCUSSIONS

We train each model on the two datasets separately, and
evaluate the performance using RMSE on the test dataset.
For CNN models, variations of VGG models and ResNet
models are evaluated, including VGG16, VGG19, ResNet50,
ResNet101, ResNet152. For ViT models, base and large models
with different patch sizes are evaluated, including B/16, B/32,
L/16, L/32. Due to the large number of model parameters
and relatively small dataset size, all model parameters are
pretrained on ImageNet before fine-tuned on our IPMSM motor
datasets.

The results are shown in Table II, along with the model size
in terms of trainable parameters in Millions. All RMSE values
for the cogging torque are in N·m. Noticeably, all ViT based
models outperform all the CNN based models on both datasets.
For the dataset with flat magnets, the best performance from
a CNN model is 0.905, achieved by VGG16 model, while for
ViT models, the RMSE is reduced to 0.215 achieved by the
L/16 model. Even the worst performing ViT model has a low
RMSE of 0.272, which is still significantly more accurate than
CNN models. All models perform better on the dataset with V-
shape magnets, possibly due to the larger dataset size. Still, all
ViT models have smaller prediction error than CNN models,
with the best performing L/16 achieving a very low 0.146 N·m
RMSE.

In addition to evaluating the models separately for the
two datasets, we also would like to evaluate the prediction
capability of a surrogate model for a given motor design
without specifying the configuration of magnets of the IPM
motor. To do this, we fine-tune the model with the training
data from both datasets, and evaluate its performance jointly
on the test data from both datasets. We expect that the new
model would perform worse than the same model for a single
dataset due to the more complicated task.

We perform the experiment on the smaller ViT model B/32,
and the jointly trained model achieves an RMSE of 0.332 ±

TABLE II
PERFORMANCE COMPARISON FOR COGGING TORQUE PREDICTION:

RMSE ON TEST DATASET

Model Model Size Dataset: Flat Dataset: V-shape
ResNet152 58.8M 0.995 ± 0.897 0.299 ± 0.286
ResNet101 42.8M 1.010 ± 0.904 0.299 ± 0.283
ResNet50 23.9M 0.979 ± 0.873 0.307 ± 0.287
VGG19 144M 0.938 ± 0.829 0.280 ± 0.258
VGG16 138M 0.905 ± 0.806 0.285 ± 0.264
ViT-B/16 86M 0.258 ± 0.179 0.187 ± 0.151
ViT-B/32 88M 0.272 ± 0.201 0.176 ± 0.132
ViT-L/16 304M 0.215 ± 0.151 0.146 ± 0.115
ViT-L/32 305M 0.309 ± 0.231 0.189 ± 0.151

0.246. While this is worse than the same model trained on the
flat magnet or the V-shape magnet dataset only, the error is
still very small, and it still outperforms CNN models on the
flat magnet data, and comparable with CNN models on the V-
shape magnet dataset. This result shows the capability of ViT
models in extracting features from motor images with different
magnet configuration, and the potential of generalizing to other
design configurations.

IV. CONCLUSIONS

In conclusion, we evaluated deep learning models for the
surrogate of electric motor cogging torque prediction with
motor design image as input, and compared various CNN and
ViT based models on two datasets with different magnet con-
figurations. Results show significant improvement of prediction
accuracy and low RMSE with ViT models, which demonstrate
their capability of extracting features from the whole image.
ViT model trained jointly on the two dataset also shows low
prediction error without specifying the magnet configuration,
making this approach promising for electric motor surrogate
modeling.
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