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Abstract
This paper proposes a novel physics-informed ma- chine learning framework for motion plan-
ning and control of autonomous vehicles. By integrating longitudinal and lateral control, a
nonlinear control problem is formulated using Model Predictive Control (MPC). To address
computational challenges, a self-supervised framework, Recurrent Predictive Control (RPC),
is introduced, leveraging differentiable neural networks and recurrent neural networks to
train a neural network controller. Additionally, a heuristic feedback control layer is designed
to reduce steady-state errors in the closed-loop tracking. Through numerical simulations
and co-simulations using Simulink and CarSim, five neural network controllers are compared
with an MPC controller in a lane-changing scenario. The proposed RPC framework improves
computational efficiency by 95.91% com- pared to MPC, enhances generalization performance
compared to Approximate MPC, and reduces performance loss by 17.01% compared to Differ-
entiable Predictive Control. The heuristic feedback control layer further reduces steady-state
errors and improves convergence speed during training.
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Abstract—This paper proposes a novel physics-informed ma-
chine learning framework for motion planning and control of
autonomous vehicles. By integrating longitudinal and lateral con-
trol, a nonlinear control problem is formulated using Model Pre-
dictive Control (MPC). To address computational challenges, a
self-supervised framework, Recurrent Predictive Control (RPC),
is introduced, leveraging differentiable neural networks and
recurrent neural networks to train a neural network controller.
Additionally, a heuristic feedback control layer is designed to
reduce steady-state errors in the closed-loop tracking. Through
numerical simulations and co-simulations using Simulink and
CarSim, five neural network controllers are compared with an
MPC controller in a lane-changing scenario. The proposed RPC
framework improves computational efficiency by 95.91% com-
pared to MPC, enhances generalization performance compared
to Approximate MPC, and reduces performance loss by 17.01%
compared to Differentiable Predictive Control. The heuristic
feedback control layer further reduces steady-state errors and
improves convergence speed during training.

Index Terms—physics-informed machine learning, heuristic
feedback control layer, recurrent predictive control (RPC), au-
tonomous driving, motion planning and control

I. INTRODUCTION

Autonomous driving, a core aspect of intelligent transporta-
tion systems, offers solutions to various mobility challenges.
Key functions include cruise control, lane keeping, and lane
changing. Automatic lane changing is more complex as it
requires both longitudinal and lateral control, and trajectory
planning often uses polynomial or geometric curves, or MPC,
which effectively handles constraints but suffers from high
computational cost, limiting its use to local planning [1].
To reduce complexity, prior work decouples longitudinal and
lateral planning or assumes constant speed [2], though joint
trajectory planning improves performance [3], revealing the
trade-off between performance and computational cost.

Advances in AI have enabled new planning and control
approaches. Approximate MPC (AMPC) leverages neural net-
works to learn explicit control policies, reducing computation
expense but relying on supervised data and lacking direct opti-
mization of control objectives and constraints, leading to learn-
ing biases [4]. Physics-informed learning, particularly PINNs,
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incorporates PDEs and physical constraints into loss functions,
combining data with models for high sample efficiency [5],
and has shown success in fluid mechanics, materials, and
thermal systems [6]. Building on this, Differentiable Predictive
Control (DPC) embeds system dynamics into a neural network
and trains via unsupervised learning, addressing the limitations
of AMPC and generalizing to various system types [7]. How-
ever, since DPC predicts the entire control sequence in a single
forward pass, it cannot directly leverage the updated states
from the physical model, and is also unable to ensure con-
sistency in control inputs across time steps. AI Pontryagin [8]
avoids this by using a recurrent architecture to compute control
inputs step by step. Although promising, physics-informed
control remains underexplored in autonomous driving, with
applications mainly in longitudinal control like adaptive cruise
control [9]. Recent studies have proposed PINN-based MPC
for trajectory tracking [10] and physics-driven neural networks
for modeling the nonlinear lateral dynamics of vehicles [11],
but no prior studies have tackled joint lateral and longitudinal
control using this paradigm.

To address these challenges, this paper formulates a joint
longitudinal–lateral control problem that integrates trajectory
planning and tracking, and proposes an RPC framework with
a heuristic feedback control layer to enhance control accuracy
and efficiency. The contributions are summarized as follows:

• A novel Recurrent Predictive Control framework is pro-
posed, where a single-step differentiable unit combining
the control policy and vehicle model is recursively ap-
plied across the prediction horizon to compute the cost,
enabling self-supervised learning and enhancing both
computational efficiency and control performance.

• A heuristic feedback control layer is introduced to en-
hance tracking accuracy near the reference state, effec-
tively reducing steady-state errors.

• The proposed controller is validated through numerical
and CarSim–Simulink co-simulations, demonstrating su-
perior efficiency and accuracy compared to MPC, AMPC,
and DPC.

The rest of the paper is organized as follows. Section II
introduces the nonlinear vehicle model and formulates the mo-
tion planning and control problem based on MPC. Section III



introduces the physics-informed machine learning framework
proposed in this paper. Section IV presents the training process
and compares the performance of different controllers through
simulations. Finally, some concluding remarks are given in
Section V.

II. PROBLEM STATEMENT

In this section, we first present a nonlinear vehicle dynamics
model and then construct the automatic lane changing problem
based on the MPC framework.

A. Nonlinear Vehicle Model

In this paper, a nonlinear vehicle model is derived based on a
two-degree-of-freedom bicycle model, which can be described
by the following ordinary differential equations:

Ẏ = vx sinψ + vy cosψ (1a)
ψ̇ = ωr (1b)
v̇x = a (1c)

v̇y = −
2(C f +Cr)

mvx
vy

−
[

2(l fC f − lrCr)

mvx
+ vx

]
ωr +

2C f

m
δ f

(1d)
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2(l fC f − lrCr)

Izvx
vy

−
2(l2

fC f + l2
r Cr)

Izvx
ωr +

2l fC f
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(1e)

where the ground and vehicle coordinate systems are denoted
by (X ,Y ) and (x,y), respectively, with the center of gravity
at CG and yaw angle ψ . Vehicle parameters include front
and rear axle distances l f , lr, mass m, moment of inertia Iz,
and cornering stiffnesses C f , Cr. The longitudinal and lateral
velocities are vx and vy, a is the longitudinal acceleration, δ f
the steering angle, and ωr the yaw rate. The system states are
x = [Y,ψ,vx,vy,ωr]

T and the control inputs are u = [a,δ f ]
T .

The above model is a time-invariant nonlinear system denoted
as

ẋ(t) = f (x(t) ,u(t)) (2)

Using Euler forward discretization, a discrete-time represen-
tation of (2) can be obtained as

x(k+1) = x(k)+ f (x(k) ,u(k))∆t = F (x(k) ,u(k)) (3)

Hereafter, u(k) and x(k) are abbreviated as uk and xk for
convenience.

B. Automatic Lane Changing Problem Formulation Based on
MPC

In this paper, the trajectory planning and tracking problem
for automatic lane changing is reformulated as a centerline
tracking problem of the target lane [12], where Yref is the
lateral position of the target, Lw is the lane width, vx,0 is the
initial speed, and vx,ref is the desired speed after lane change.
Based on the above, the lane-changing task is formulated as an

Fig. 1: Motion planning and control problem description

MPC-based dynamic optimization problem. The front wheel
angle varies under piecewise constant inputs, with control
and prediction horizons set equal (Nc = Np). Specifically, a
reference tracking MPC cost function is adopted:

min
U

JMPC =
Np−1

∑
k=0

(xk− xref)
T Qx (xk− xref)+uT

k Quuk

+
(
xNp − xref

)T Qt
(
xNp − xref

) (4)

where U = [u0, ...,uNp−1] is the control sequence, xref the
reference state, xNp the terminal state, and Qx, Qu, Qt are
the state, control, and terminal penalty matrices, respectively,
with the reference state given as follows:

xref =

[
3Lw

2
,0,vx,ref,0,0

]T

(5)

where the reference values for yaw angle, lateral vehicle speed,
and yaw rate are all 0, meaning that the vehicle should keep
a straight line when completing the lane changing.

For the system (3), the following constraints on the control
inputs will be considered:

amin ⩽ a(k)⩽ amax (6a)
δ f ,min ⩽ δ f (k)⩽ δ f ,max (6b)

These are hard constraints on the control inputs to prevent
them from exceeding reasonable limits, which would result in
high energy consumption, low comfort, and potential safety
risks.

III. PHYSICS-INFORMED MACHINE LEARNING
CONTROLLER DESIGN

In this section, we will first provide a brief review of the
DPC method, which is also used to address MPC problems.
Then, we will introduce the RPC framework proposed in
this paper, followed by the heuristic feedback control layer
designed to reduce steady-state tracking errors. Finally, we
will demonstrate the design of the lane-changing controller.

A. Recurrent Predictive Control

DPC is a self-supervised learning framework based on direct
policy gradients, as shown in Fig. 2a [7]. It connects the
control policy network with a differentiable system model,
using initial conditions, reference values, and constraints as
inputs. Forward propagation computes control sequences and
states, while backpropagation updates the network via gradient
descent. DPC features: (i) no need for labeled policies, (ii)



(a) DPC Framework

(b) RPC Framework

Fig. 2: DPC and RPC frameworks

direct interaction with system dynamics, and (iii) low compu-
tational complexity suitable for real-time control.

However, the control policy network in DPC generates the
entire control sequence within the predictive horizon, where
only the first control input directly uses state information from
the previous time step, causing inconsistency in generating
control inputs across time steps. To resolve this, we propose
the Recurrent Predictive Control (RPC) framework, shown in
Fig. 2b. Based on recurrent neural networks, RPC generates
only the current control input and, together with a single-step
system update model, forms a forward differentiable unit. This
unit is recursively called with updated states, and all policy
networks share parameters across time, ensuring consistent and
scalable control.

B. Heuristic Feedback Control Layer

In practical applications, it can be observed that controllers
designed based on RPC, DPC, and approximate MPC exhibit
poor tracking accuracy for certain states near the reference
in closed-loop simulations. This issue arises because the
tracking cost near the reference is small, making it difficult
to accurately learn the corresponding maneuvers using gra-
dient descent alone. To address this problem, we introduce
a heuristic feedback control layer that explicitly incorporates
current state errors into the control inputs generated by the
policy network:

uk = Kk (xref− xk) (7)

where Kk is a gain matrix constructed from the network output.
This formulation enhances the interpretability of the neural
network controller and facilitates constraint design on the gain
matrix to ensure closed-loop stability and reduce steady-state
error.

C. RPC-based Lane-Changing Controller Design with Heuris-
tic Feedback Control Layer

The training framework and real-time control framework for
the lane-changing controller based on RPC with a heuristic
feedback control layer (HFRPC) are shown in Fig. 3. This

subsection focuses on introducing the structure design and
training process of the neural network controller.

Fig. 3: HFRPC-based Lane-changing Controller Training and
Real-time Control Framework: Red Arrows Represent the Data
Flow During the Training Process, While Green Arrows Rep-
resent the Data Flow During the Real-Time Control Process

First, forward propagation is performed. For each 1-step
forward network unit, the inputs consist only of the vehicle’s
current state and the reference state as follows:

xk =
[
xT

k ,x
T
ref
]T

(8)

Under the RPC framework, the multilayer perceptron directly
generates control inputs without normalization for current time
step:

ûk = πRPC (θ ,xk) (9)

where θ represents the network parameters. However, for the
HFRPC, the multilayer perceptron is utilized to generate key
elements that constitute the feedback gain matrix:

gk = πHFRPC (θ ,xk) (10)

Closed-loop simulation results using alternative neural net-
work controllers indicate that, although the errors in yaw
angle, lateral velocity, and yaw rate asymptotically approach
zero, noticeable steady-state errors persist in lateral position
and longitudinal velocity. In this paper, by means of a Lya-
punov function argument 1, we select a feedback control gain
matrix of the following form:

Kk =

[
0 gk,1 g2

k,2 +b1 gk,3 gk,4

g2
k,5 +b2 gk,6 0 gk,7 gk,8

]
(11)

where the constants b1 and b2 and the functions gk,i, i =
1, . . . ,8, are selected to ensure the stability of the closed-loop
system with respect to the reference trajectories. Subsequently,
the control input without normalization at the current time step
can be computed as follows:

ûk = Kk (xref− xk) (12)

The gain matrix in (11) enables corrective actions for lateral
deviations near the reference, aligning with human driving
intuition. Unlike fixed matrices, it adapts to current and
reference states for improved control far from the reference. A

1https://zenodo.org/records/15252897
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tanh-based output layer then enforces hard bounds on control
inputs:

uk = tanh(ûk)◦
umax +umin

2
+

umax +umin

2
(13)

Then, the system state at the next time step can be updated
using the physical model:

xk+1 = F (xk,uk) (14)

At this point, the forward propagation of a single-step predic-
tive network unit is completed. The unit is then recursively
executed until all predictions within the predictive horizon are
completed, and the training loss is computed as follows:

L = JMPC (S,U,xref) (15)

where S =
[
x0,x1, ...,xNp

]
, U =

[
u0,u1, ...,uNp−1

]
.

Following this, backward propagation is performed to com-
pute the gradient of the loss w.r.t. the network parameters and
to update them. The chain rule is employed to compute the
gradient ∇θ L, then the network parameters are then updated
as follow:

θk′+1 = θk′ −η∇θk′
L (16)

where η represents the learning rate. Forward and backward
propagations are performed until the set number of training
epochs is reached. The process for updating the control policy
network parameters is summarized in Algorithm 1.

Algorithm 1 Control Policy Network Parameters Updating

Require: Batch of features
[
xT

0 ,x
T
ref
]T , Current network pa-

rameters θ

Ensure: Updated network parameters θk+1
1: Forward Propagation: Calculating the loss function.
2: Initialize k← 0
3: while k ≤ Np do
4: Input a batch of features

[
xT

k ,x
T
ref
]T .

5: Generate the key elements of the gain matrix gk.
6: Construct the gain matrix Kk.
7: Calculate the control input ûk = Kk (xref− xk).
8: Calculate the normalized control input uk.
9: Update the state for the next time step xk+1.

10: k← k+1
11: end while
12: Calculate the loss Lk = JMPC(S,U,xref).
13: Backward Propagation: Updating the network param-

eters.
14: Compute the gradient of the loss function with respect to

the network parameters ∇θk′
L.

15: Update network parameters θk′+1 = θk′ −η∇θk′
L.

IV. SIMULATION RESULTS

This section presents the controller implementation, includ-
ing training data generation, training process, and comparison
with baseline methods via simulations and co-simulations. All

code is available on GitHub2. Table I summarizes road, and
controller parameters, with vehicle data from [2].

TABLE I: Road and Controller Parameters

Parameter Value(unit)
Lw 4 m

amax 3 m/s2

amin −3 m/s2

δ f ,max 0.3 rad
δ f ,min −0.3 rad

Np 10
∆t 0.5 s
b1 0.6
b2 0
Qx diag [60,500,50,10,100]
Qu diag [5,500]
Qt diag [60,1000,70,20,200]

A. Dataset Generation and Training Process

The training set was built from 6,300 lane-changing trajec-
tories with varied initial and reference states, yielding 321,300
samples, ensuring that all samples correspond to operating
points under good road adhesion conditions. The dataset is
split into training and validation sets with a ratio of 80% to
20%. The vehicle speed ranged from 80 km/h to 100 km/h,
with a maximum initial Y deviation of 4 m. The control policy
network is a fully connected MLP with three hidden layers of
256 nodes each, using GELU as the activation function. It is
trained for 1,000 epochs using a learning rate of 0.0001 and
a batch size of 10,000.

In addition to HFRPC, controllers based on DPC and
RPC were trained using the same dataset. For AMPC, MPC-
generated control inputs were used as labels, with and without
the heuristic feedback layer. All data-driven methods shared
the same MLP architecture (except output dimensions) and in-
cluded control input limitation layers. Training was performed
on a laptop with an NVIDIA 2070 GPU. The evolution of
training and validation losses for all methods is presented in
Fig. 4; final loss and training time are listed in Table III.
The RPC framework achieves a 17.54% lower final training
loss than DPC, with only limited further reduction from the
heuristic layer. All three methods show comparable final val-
idation losses. AMPC and HFAMPC adopt least-squares loss,
with HFAMPC achieving lower final training and validation
losses. Methods with heuristic feedback layers converge faster
and exhibit smoother loss curves. AMPC trains the fastest,
HFRPC the slowest (within 50 minutes), but HFRPC shows the
fastest convergence, suggesting that fewer epochs may suffice
in practice to reduce training time.

TABLE II: Training Loss and Time Summary

Method AMPC HFAMPC DPC RPC HFRPC
Training Loss 0.0182 0.0133 2821 2326 2321

Validation Loss 0.0191 0.0168 2783 2783 2774
Training Time 200s 366s 1670s 1930s 2900s

2https://github.com/XianningLi/IV-2025.git

https://github.com/XianningLi/IV-2025.git


Fig. 4: Evolution of Training Losses for All Methods

B. Closed-loop Numerical Simulation Verification

Closed-loop numerical simulations were conducted to com-
pare MPC, AMPC, and the three physics-informed controllers
under no model mismatch. MPC employed CasADi, which
uses an interior-point method for efficient nonlinear optimiza-
tion [13]. Simulations ran with a 0.01s step size and 0.05s
control period on an i7 2.30GHz CPU. Fig. 5 illustrates the
lane change from 80 to 100km/h, where the neural network
controller yields smoother control inputs, and the physics-
informed learning controller exhibits behavior more consistent
with MPC.

Fig. 5: Lane Change from 80 to 100 km/h

To evaluate generalization, 128 test scenarios were con-
structed from combinations of four initial and four reference
speeds, each associated with eight left/right lane-change tar-
gets. The test range, with up to 8 meters of lateral offset
and a 40 km/h speed difference, doubled that of the training
set. Lane-change trajectories and key metrics are summarized
in Fig. 6 and Table 2. Neural network controllers improved
computational efficiency by over 95%, and only methods
incorporating the heuristic feedback control layer achieved a
100% lane-change success rate. Among all methods, HFRPC
demonstrated the best overall performance across all evaluated
metrics.

C. Co-Simulation of CarSim and Simulink

To assess real-world applicability, a co-simulation using
CarSim and Simulink was conducted. The scenario involves
a leading vehicle moving at 60km/h, initially 100m ahead.

TABLE III: Closed-loop Numerical Simulation Performance

Method MPC AMPC HFAMPC DPC RPC HFRPC
vx RMSE [m/s] 1.23 1.59 1.22 1.41 1.29 1.19
Y RMSE [m] 2.22 2.63 2.22 4.40 2.38 2.28

Avg. Calc. Time [s] 0.0249 0.0006 0.0011 0.0006 0.0006 0.0011
a Var. [(m/s2)2] 0.7877 1.1211 0.8299 0.6402 0.6874 0.6655
δ f Var. [rad2] 0.0034 0.0072 0.0045 0.0025 0.0028 0.0027

Lane-change decisions are based on a critical safety distance
model defined as:

Dsafe = 0.1v+
v2

130
(17)

where Dsafe is the safety distance, and v is the speed of the
following (ego) vehicle. A lane change is triggered when the
gap to the preceding vehicle is less than Dsafe.

Three scenarios were used to compare steady-state track-
ing errors between MPC and physics-informed controllers:
acceleration (80→ 100km/h), constant speed (90km/h), and
deceleration (100 → 80km/h). High-fidelity simulation was
used, while control relied on a simplified model. Simulations
ran for 40s, results are shown in Fig. 7, and errors after
stabilization are listed in Table IV. The simulation video
is available on the website3. The heuristic feedback layer
significantly reduces errors, yielding MPC-level performance.

TABLE IV: CarSim and Simulink Co-Simulation Results

Method MPC DPC RPC HFRPC
Lateral Position [cm] 0.03 8.29 8.28 0.01

Longitudinal Speed [km/h] 0.94 1.32 1.44 0.72

V. SUMMARY

In this paper, the motion planning and control problem
of autonomous driving is studied from the perspective of
physics-informed machine learning. A novel RPC framework
is proposed based on the recurrent neural network architecture
to address the combined longitudinal and lateral control of
autonomous vehicles with nonlinear models. Additionally, a
heuristic feedback control layer is proposed, which can be
integrated into different neural network controllers to reduce
steady-state tracking errors. The results from closed-loop
numerical simulations and co-simulations demonstrate that the
proposed HFRPC framework is computationally more efficient
than traditional MPC and shows performance improvement
over previous physics-informed DPC method. In addition, the
proposed approach has led to significant reduction of the
steady state tracking error. Since the proposed method is
developed based on a standard MPC framework, it holds the
potential to be extended to more complex tasks such as urban
driving, highway merging, or obstacle avoidance in future
work.

3https://youtu.be/FjwLgkqRQnQ

https://youtu.be/FjwLgkqRQnQ


Fig. 6: Closed-loop Numerical Simulation Results. Failure cases: AMPC exhibited 12 significant deviations, DPC and RPC
failed in 2 and 1 cases, respectively. HFAMPC and HFRPC achieved a 100% success rate.

Fig. 7: CarSim and Simulink Co-Simulation Results
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