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Abstract—This paper explores the transformative potential
of the IoT paradigm in promoting smart agriculture. Key
challenges lie in how to connect agriculture sensors to remote
cloud servers in the absence of feasible communication infras-
tructure and the unreliable wireless links in rural areas. To
address these issues, we propose an innovative two-tier smart
agriculture architecture: an Unmanned Aerial Vehicle (UAV)
aided agriculture network model, which leverages UAVs as in-
termediaries to collect and route data from agriculture sensors
to cloud servers. This novel architecture leads to two particular
problems, i.e., data packet scheduling in the first-tier networks
and multi-hop routing in the second-tier UAV mesh network. To
that end, we present formal Markov decision process (MDP)
based problem formulations for both tiers, with a primary
focus on the more challenging multi-hop routing problem in
the second-tier network. This problem is approached as a
multi-agent reinforcement learning (MARL) framework, for
which we introduce a novel distributed algorithm – Focus
Coordination: attention-guided Multi-Agent Deep Determinis-
tic Policy Gradient (FC-MADDPG). This algorithm reduces
communication overhead and mitigates the risks associated
with single-node failures. We evaluated the performance of the
proposed FC-MADDPG algorithm, demonstrating its efficacy
in enhancing data transmission reliability and efficiency.

Index Terms—UAV aided smart agriculture, dynamic two-
tier network model, MDP problem formulation, MARL based
multi-hop routing.

I. INTRODUCTION

As global population grows, sustainable and efficient agri-
cultural practices have become imperative. Internet of Things
(IoT) has been playing important role in urban applications
such as smart city and smart utility. IoT paradigm also fits
many agriculture use cases such as crop monitoring, soil
moisture sensing and predictive analytics for smart farming
[1]–[3]. However, the realization of smart agriculture faces
the challenges as well. The lack of feasible communication
infrastructure in rural area is a major issue for agriculture
sensors to communicate with remote data centers. Poor
communication connectivity in rural area is another issue.
Efficient agriculture sensor data delivery presents additional
challenge. Hardware and operation cost is also a concern.

Smart agriculture technologies can be divided into three
categories: sensing, cloud computing, and networking. There
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are works such as SoilTech project developing smart agri-
culture sensing technology. There are also works such as
Microsoft FarmBeats developing the cloud computing tech-
nology. However, the networking technology, a bridge be-
tween agriculture sensors and cloud servers, is less studied.

This paper delves into the promising capabilities of IoT
paradigm in revolutionizing smart agriculture networking.
To tackle the lack of feasible communication infrastructure
and the inefficient data transfer due to unstable wireless
connections in rural areas, we explore a new use case of the
UAV in smart agriculture, where UAVs are used as dynamic
communication infrastructure. We propose a novel two-tier
smart agriculture network model that utilizes UAVs as sensor
data collectors and relay agents. This UAV aided network
model can significantly enhance the reliability and efficiency
of data transfer from agriculture sensors to cloud servers. To
the best of our knowledge, we are the first to propose such
UAV aided two-tier smart agriculture network architecture.

We further propose formal MDP based problem formu-
lations for data packet scheduling in the first-tier multi-
point to point (MP2P) networks and multi-hop routing in
the second-tier UAV mesh network upon the novel two-tier
network architecture. In addition, we introduce the Focus
Coordination: attention-guided Multi-Agent Deep Determin-
istic Policy Gradient (FC-MADDPG) algorithm to perform
multi-hop routing in the second-tier UAV mesh network,
with reduced communication overhead and mitigating vul-
nerabilities associated with centralized control systems. The
simulation results show significant performance improve-
ments over traditional methods, indicating the potential of
our proposed solutions in revolutionizing data delivery in
emerging smart farming.

II. RELATED WORKS

Smart agriculture draws attention from researchers. IoT,
UAV, and machine learning especially reinforcement learn-
ing (RL) are the most promising technologies in this field.

The precision agriculture (PA) is a collage of strategies
and technologies to optimize operations and decisions in
smart farming. Work [4] models PA as a multi-agent pa-
trolling problem, where robots visit subregions requiring
immediate attention in the agricultural field to address the
area coverage of monitoring crop health.



Authors in [2] present a smart agriculture IoT system
based on deep RL, which includes four layers, namely
agricultural data collection layer, edge computing layer, agri-
cultural data transmission layer, and cloud computing layer.
The presented system integrates some advanced information
techniques such as artificial intelligence (AI) and cloud
computing to increase agricultural production. Paper [1]
highlight the modernization of traditional agriculture through
IoT paradigm. Automation and IoT technologies via smart
GPS-based remote controlled robot are applied to perform
tasks like weeding, spraying, and moisture sensing.

Agricultural UAV has attracted remarkable academic at-
tention recently. Work [5] reviews trends and applications
of leading technologies related to agricultural UAVs, control
technologies, equipment, and development. Authors in [3]
conduct a comprehensive review based on bibliometrics to
summarize and structure existing academic literature and
reveal current research trends. Their analysis indicates that
remote sensing, precision agriculture (PA), deep learning,
machine learning, and IoT are critical topics related to
agricultural UAV. Paper [6] proposes UAV remote sensing
to offer high-resolution imagery and extract crop traits from
3D data. Work [7] surveys a detailed understanding of UAV
applications in PA. This survey classifies UAV applications
into three categories: a) UAV-based applications for tracking,
b) UAV-based applications for spraying, and c) Multi-UAV
applications, but it is noted that there is a shortage of
research studying multi-UAV applications in the agriculture,
which drives our propose of the multi-UAV aided smart
agriculture network architecture.

The dynamic routing in UAV mesh networks has been
studied recently. Paper [8] uses a deep Q-network (DQN)
to design a routing scheme in a manned-and-unmanned
airborne network. More recent works [9], [10] apply multi-
agent deep reinforcement learning (DRL) algorithms to
enhance routing decisions. However, these approaches rely
on a central coordinator which suffer high communication
overhead and risks associated with single-node failures.

III. SYSTEM MODEL

This section presents the proposed UAV aided two-tier
smart agriculture network model as illustrated in Fig. 1, in
which agriculture sensors are divided into clusters, a first-
tier MP2P network is dynamically formed by an agriculture
sensor cluster and an assigned UAV to transfer data from
sensors to the UAV, while the second-tier mesh network is
dynamically formed by UAVs and a cloud server (CS) to
route the collected sensor data from UAVs to the CS. In
this smart agriculture network model, UAVs operate only
in sensor data collection phase for cost reduction. Although
each sensor cluster is assigned one UAV in Fig. 1, it is
possible to assign multiple UAVs to one sensor cluster or
assign one UAV to multiple sensor clusters. To the best of
our knowledge, we are the first to propose such two-tier
dynamic smart agriculture network architecture.

Fig. 1: UAV aided two-tier smart agriculture network model

Fig. 2: First-tier MP2P
Topology Evolution

Fig. 3: Second-tier Mesh
Topology Evolution

During data collection process, UAVs navigate and hover
over their sensor clusters to form dynamic smart agriculture
networks, where an UAV can communicate with multiple
sensors simultaneously if it is equipped with multiple an-
tennas. UAVs navigate over their sensor clusters to establish
reliable communication links with the sensors whose data
to be collected. Once reliable communication links are
formed, UAVs hover over for data collection. Therefore, both
network topologies are varying with respect to time. Fig. 2
illustrates topology variation of a first-tier MP2P network
from time t1 to time t2 with different communication links
and Fig. 3 shows the second-tier mesh topology variation
from time t1 to time t2, indicating the challenge of agricul-
ture sensor data collection and relay as well as the need of
innovative solutions.

This network model considers fact that agriculture sensors
are more practical for smart agriculture tasks such as daily
monitoring and sensing, and they are typically equipped with
short range communication radio operating in unlicensed
frequency band for cost reduction. As a result, agriculture
sensors may not have direct communication links with
remote CS. Accordingly, a set of UAVs are used to bridge
agriculture sensors and remote CS. The use of UAVs is a
novel and practical approach to address the lack of feasible
communication infrastructure issue in rural areas.

We assume there are K sensor clusters and each cluster
consists of N sensors. The UAVs are indexed by set K =
{1, 2, . . . ,K}. It is possible that some UAVs may not be
able to directly communicate with CS as well. This requires
UAVs to collaboratively route sensor data to CS. Therefore,



UAVs form a mesh network to relay sensor data, indicating
that UAVs need to find optimal routes to CS.

As aforementioned, each first-tier MP2P network consists
of N agriculture sensors in a sensor cluster and one UAV
serving that cluster. A sensor n senses data and generates
data packets probabilistically and independently according to
its probability pn, while a UAV with the limited capacity can
only collect data from C out of N sensors in each time slot,
where the capacity is an integrated factor of communication
capability and storage limitation. The challenge is how to
select C sensors during each time slot to minimize the
average latency. This optimization problem encompasses the
need to efficiently allocate resources, consider probabilistic
data generation, and prioritize real-time data delivery.

In the second-tier UAV mesh network, UAVs continuously
traverse over their respective cluster regions to collect data
while collaboratively routing the collected data to CS in
regular intervals of T time slots. To effectively manage
data relay in this dynamic environment, the dynamic routing
is imperative. Traditionally, the routing is performed by
protocol and optimization based methods. Recently, the
RL based routing techniques have been proposed and can
outperform traditional routing methods in complex network
environments [8]–[11]. Therefore, we apply RL methodolo-
gies to design routing techniques that can efficiently allocate
UAV resources and minimize latency.

Although we assume each sensor cluster consists of N
sensors, the proposed model works for different cluster sizes.

IV. MDP BASED PROBLEM FORMULATIONS

This section provides formal problem formulations for the
first-tier and the second-tier networks.

A. Data Packet Scheduling in the First-Tier Networks

Consider an agriculture sensor cluster N = {1, · · · , N} as
shown in Fig. 4, where agriculture sensors collect different
data and generate different data packets to be transmitted
to the remote CS. The goal of the UAV is to decide at
each time slot which sensors to serve so that the cumulative
value of the average packet delivery latency experienced by
agriculture sensors is minimized.

Fig. 4: Sensor queue for data packet buffering and scheduling

Packet Generation and Delivery Model: Consider a
scheduling interval with T time slot denoted by t ∈ T =

{1, . . . , T}. The data packets generated by sensor n are
buffered in a queue as shown in Fig. 4. The queue length
at time t is denoted by Xn,t. The number of data packets
generated by sensor cluster may be larger than the service
capacity of the UAV [12], [13]. Hence, the data packets may
not be served immediately so that there will be a latency. In
addition, the wireless links between the UAV and agriculture
sensors can be unreliable. Assume successful data packet
transmission probability for sensor n is qn. This motivates
us to consider a queuing model that captures the latency
and successful packet transmission probability. The model
is formulated as an MDP.

States: Denote the state of sensor cluster at time t as
Xt := (X1,t, · · · , XN,t) ∈ NN , where Xn,t is the number
of outstanding data packets stored at sensor n ∈ N . To
guarantee the stability of the Markov chain, we assume
Xn,t ∈ [0, Xmax], where Xmax is the queue capacity, i.e.,
the maximum number of packets can be buffered by an
agriculture sensor.

Actions: At each time slot t, the UAV makes a decision
regarding whether or not to serve a sensor. Denote Un,t

as action for sensor n with Un,t = 1 indicating sensor
n being served and Un,t = 0 indicating otherwise. Let
Ut := (U1,t, · · · , UN,t) be the vector of decisions for the
sensor cluster. The capacity constraint of the UAV implies
that Ut must satisfy the following constraint

N∑
n=1

Un,t ≤ C, ∀t. (1)

We aim to design a policy π : Xt 7→ UN = {0, 1}N maps
the state Xt of the sensor cluster to decisions Ut = π(Xt).

Transition Kernel: The state of the n-th agriculture
sensor queue can change from Xn,t to either Xn,t + 1 or
Xn,t−1 or keep unchanged from time t to t+1. Depending
on the packet generation probability pn, action Un,t and
successful packet transmission probability qn of agriculture
sensor n, the detailed transitions are as follows

Xn,t+1 =


Xn,t + 1, w.p. pn(1− Un,t) + pnUn,t(1− qn),

Xn,t, w.p. pnUn,tqn + (1− pn)(1− Un,t)

+(1− pn)Un,t(1− qn),

Xn,t − 1, w.p. (1− pn)Un,tqn.

(2)

It is straightforward to verify that the summation of the
probability for three scenarios equals 1.

Data Packet Delivery Problem: Little’s Law indicates
that minimizing average latency is equivalent to minimiz-
ing average number of outstanding data packets [13]. Let
Cn,t(Xn,t, Un,t) := Xn,t be the instantaneous cost incurred
by sensor n at time t, the cumulative cost incurred by the
sensor cluster is given by

Ct(Xt,Ut) =

N∑
n=1

Cn,t(Xn,t, Un,t) =

N∑
n=1

Xn,t. (3)



Our objective is to derive a policy π to solve following MDP:

min
π∈Π

Cπ := lim sup
T→∞

N∑
n=1

1

T
Eπ

[
T∑

t=0

Xn,t

]
,

s.t.
N∑

n=1

Un,t ≤ C, ∀t. (4)

The problem (4) is an infinite-horizon average-cost problem
and can be solved via existing methods such as the relative
value iteration [14].

B. Data Routing in the Second-Tier UAV Mesh Network

UAV mesh routing is primary focus of this work. At any
time t, the UAV mesh network is structured as an undirected
graph G := (K̃, E(t)), where K̃ = K ∪ {CS} is the UAV
mesh network node set and E(t) is the link set. A link
(k, j) exists between node k and node j only when they can
directly communicate and we denote Nk := {j|(k, j) exists}
as the neighbor set of node k. The links between UAVs
are bidirectional, while the links between UAVs and the
CS are one-directional, indicating no data flow from CS to
UAVs. The goal of each UAV k is to find a routing policy
πk to minimize average latency, i.e., to maximize expected
accumulated reward from RL perspective. Similarly, we
formulate this UAV mesh network routing problem as an
MDP as shown in Fig. 5.

Fig. 5: MDP formulation of routing in UAV mesh network

States: We denote the state of UAV mesh network as
St := (S1,t, · · · , SK,t) ∈ NK , where Sk,t is the state of
UAV k ∈ K, representing the queue length (≤ Smax) and
the hop observed (HO). An UAV sets HO = 1 if the CS is
its neighbor and HO = 1+ the minimal HO otherwise. The
HO provides UAVs a reference for next-hop router selection.

Observation space: To reduce communication overhead
and computational complexity, UAVs share their states with
neighbors only, i.e., a UAV has local state observations only.
Denote the observation of the UAV k as

Ok,t := Sk,t ∪ {Sj,t|j ∈ Nk},

where Sj,t is an empty set if the neighbor j is the CS. The
global state St of the environment is the joint observations,
i.e., St = ∪K

k=1Ok,t.

Actions: At each time slot t, a UAV k has to make a
decision regarding which neighbor node j it should select
as next-hop router. Denote Ak,t as the action for UAV k,
where Ak,t = j indicates neighbor node j is chosen. Let
At := (A1,t, · · · , AK,t) be the vector consisting of decisions
for all K UAVs at time slot t.

Reward Function. RL can transform optimization prob-
lems into maximizing the expected cumulative reward prob-
lems through appropriate reward function design. To design
reward functions for the routing problem in the UAV mesh
network, there are several key aspects to be considered.

• Queue Length: The queue length Sk,t reflects the
number of outstanding data packets waiting to be trans-
mitted at the UAV k. A lower value of Sk,t indicates
lower latency, and hence we penalize the queue length
when designing reward function.

• End-to-End Delay: This is quantified by the transmis-
sion time Tk,j from node k to node j. The end-to-
end delay is a critical metric in network performance,
reflecting the time taken for a packet to travel across the
network from node k to node j. A higher value of Tk,j

indicates slower packet travel, i.e., negative contribution
to the reward function.

• Packet Delivery Success/Failure: This is indicated by
an ACK signal 1(ACK), which is a binary indicator
with 1 representing successful packet delivery and 0
indicating failure. Successful delivery would increase
the reward, while failure would decrease the reward. To
use ACK mechanism, a UAV acknowledges transmitter
when it successfully receives a data packet from a
neighbor. Each UAV starts a timer to wait for the ACK
when it transmits a data packet. If the timer expires
without receiving ACK, the transmission is considered
as failure. Otherwise, the transmission succeeds.

• Congestion: Congestion is inferred from the case that
UAV’s buffer length approaches the maximum value
Smax, denoted by the signal 1(congestion). Conges-
tion can lead to packet delay and even packet loss. Thus,
the reward function should be designed to penalize
congestion.

• Destination Arrival: In the UAV mesh network rout-
ing, the destination of all data packets is the CS.
Therefore, destination arrival is denoted by 1(CS) with
binary value 1 or 0, indicating whether a packet has
arrived at CS. 1(CS) = 1 indicates a data packet has
arrived at CS and thus would positively contribute to
the reward. On the other hand, 1(CS) = 0 indicates a
data packet has not arrived at CS and therefore, would
contribute negatively to the reward.

Provided all the key factors, we propose a novel reward
function as

R(Sk,t, Ak,t) : = −α · Sk,t − β · 1(ACK) · Tk,Ak,t

− κ · (1− 1(ACK))

− η · 1(congestion) + µ · 1(CS),



where α, β, η, κ and µ are positive weight scalars. In the
considered routing settings, each UAV aims to maximize its
individual reward at the expense of the other UAVs. This is
typical in game-theoretic scenarios. For competitive MARL,
the objective of each UAV k can be written as

max
πk

Eπk

[
T∑

t=0

γtR(St, Ak,t, A−k,t)

]
, (5)

where A−k,t denotes the actions of all UAVs other than UAV
k. Notice that the optimal policy of UAV k relies on the
global state information St and actions of other UAVs, which
might be impractical to obtain by UAV k in the multi-hop
networks. We propose a MARL solution that only requires
partial local observations, i.e., the states of the neighbors.

V. PROPOSED ATTENTION-GUIDED MARL METHOD

Due to space limitation and the fact that the data packet
scheduling problem in (4) can be solved by existing methods,
we focus on solving the UAV mesh network routing problem
(5) in this section, which is a multi-agent cooperative RL
task that can be solved using multi-agent DDPG (MADDPG)
framework [15], which is a actor-critic approach, where the
“actor” is a policy network that decides the best action to
take, while the “critic” is a value network that evaluates the
action taken by the actor.

However, conventional MADDPG framework often grap-
ples with significant drawbacks. The primary challenge is the
substantial communication overhead due to the constant need
for information exchange among UAVs, which strains net-
work resources, especially in bandwidth-limited multi-hop
scenarios. Another challenge is computational complexity
due to the excessive states shared across the network. It is
possible that the states of UAVs far away from each other
may not contribute positively. Furthermore, these traditional
methods typically depend on a central controller for coordi-
nation, creating a bottleneck in terms of computational load
and posing a risk as a single point of failure, particularly as
the network scales. This centralized approach also struggles
with adaptability in dynamic environments, limiting the
overall efficiency and robustness of the system.

To overcome these limitations, we propose the Focus
Coordination: attention-guided Multi-Agent DDPG (FC-
MADDPG) algorithm 1. Our approach innovatively inte-
grates a query-key-value attention mechanism, allowing each
UAV to autonomously determine the relevance of informa-
tion from neighboring UAV agents, thus significantly reduc-
ing unnecessary communication overhead. FC-MADDPG
algorithm also applies Gumbel-Softmax technique to ap-
proximate the gradient of discrete stochastic policies. In
addition, by decentralizing the decision-making process,
FC-MADDPG algorithm eliminates the need of a central
controller, enhancing the scalability and resilience of UAV
networks. This attention-based model is adept at adapting
to changing environments and network topologies, ensuring
that UAVs focus on processing the most pertinent informa-
tion. FC-MADDPG algorithm, therefore, presents a robust,

efficient, and scalable solution, bypassing the drawbacks of
conventional methods and offering a significant advancement
in managing the large sparse UAV networks.

Algorithm 1 FC-MADDPG

1: Initialization:
2: for each UAV agent k in the mesh network do
3: Initialize an actor network πk(θk) with weights θk

for policy representation, and a critic network Qk(ωk)
with weights ωk for value estimation;

4: Copy the initial weights to target networks π′
k(θ

′
k),

Q′
k(ω

′
k);

5: Prepare a local replay buffer Bk initialized to empty;
6: end for
7: For each episode:
8: Reset the environment and receive the initial obser-

vation for each agent; //Initial Observations
9: for each agent k do

10: Select action Ak using actor network πk based on
the current state;

11: Apply actions, observe new state, rewards, and
check episode end; //Environment Interaction

12: Store transition tuple

({Oj , j ∈ Nk}, Ak, rk, {O′
j , j ∈ Nk})

in Bk; //Storing Experiences
13: Update critic Qk by minimizing the loss between

predictions and target values;
14: Update actor πk using the sampled policy gradient;
15: Update target networks π′

k, Q′
k with a mix of target

and main network weights; //Target Networks Update
16: end for
17: End of Episode Handling:
18: Reset the environment for the next episode if the

terminal state is reached
19: Output:
20: A set of optimized policies for each UAV ensuring

efficient routing and network performance

At the beginning of each episode, each UAV agent k
prepares its initial observation Ok. At each training step,
each agent k receives the observations Oj and actions Aj

from its neighbor j,∀j ∈ Nk.
The critic network Qk is updated to consider the effective

state and action:

Qk({Oj , Aj ,∀j ∈ Nk};ωk), (6)

where ωk are the parameters of the critic network. In partic-
ular, inside the critic network, agent k leverages the attention
mechanism to compute a weighted sum of observations and
actions from each neighboring agent j. The output of the
attention layer of agent k is denoted as:

ck = Attention({[Oj , Aj ],∀j ∈ Nk};Wq,Wu,Wv), (7)

where Wq,Wu,Wv are the parameters of attention model.



Similarly, the actor-network πk is updated based on both
the effective output of the Attention module and local
observation {Oj ,∀j ∈ Nk}:

πk({Oj ,∀j ∈ Nk}; θk), (8)

where θk are the parameters of the actor-network.
The agent k then selects action Ak using actor-network

πk and adds Gumbel exploration noise to encourage policy
exploration. After applying action, agent k gets the new
state observations and rewards. It stores the transition tuple
({Oj , j ∈ Nk}, Ak, rk, {O′

j , j ∈ Nk}) in the replay buffer
Bk, from which a mini-batch of transitions is randomly
sampled for the critic Qk, the actor πk, and the target
networks π′

k and Q′
k updating. More specifically, update Qk

by minimizing the loss between its predictions and the target
values, update πk using the sampled policy gradient, and
update π′

k and Q′
k with a mix of target and main network

weights. The optimized policies ensure efficient routing and
robust mesh network performance.

VI. EXPERIMENTS

This section presents performance evaluation of our pro-
posed FC-MADDPG algorithm and observes interesting
insights. We compare our algorithm with four benchmark
algorithms 1: (1) The Deep Q-Network (DQN) algorithm; (2)
The centralized MADDPG algorithm; (3) The independent
MADDPG algorithm in which UAV agents do not share state
information, and (4) Random Policy in which each UAV
agent randomly selects a neighbor as next hop router.

We simulated algorithms under two distinct UAV mesh
network topologies. In the simulation, each UAV functions
as a routing agent, is equipped with a buffer of capacity 10
packets and is responsible to deliver 25 data packets. Packet
arrival at each UAV is modeled to follow an exponential
distribution, introducing stochastic elements to the arrival
times, thus emulating realistic network traffic conditions.
Congestion occurs when the number of packets surpasses
the buffer’s capacity. The simulation episode concludes
once all packets have been successfully relayed to their
respective destination nodes, signifying the completion of
a data transmission cycle within the UAV mesh network.

A. Topology with 11 Nodes

The 11-node topology used in Fig. 6 is inspired by the
well known Abilene Core Topology. The 11 nodes are
deployed within 1 km by 1 km area. This configuration
provides a real-world scenario and a baseline scenario for
performance assessment.

Fig. 7 shows the number of time steps required to transmit
all data packets to the CS and Fig. 8 tracks the accumu-
lated reward, conceptualized as negative cost, to evaluate

1The selected benchmarks are highly representative. DQN represents
a single-agent DRL algorithm, the centralized MADDPG represents a
setting with a central controller, and independent MADDPG represents
each agent training independently. These algorithms broadly encompass
the characteristics of all existing benchmarks [8]–[10].

Fig. 6: Topology of a UAV mesh network with 11 nodes

Fig. 7: TX time step Fig. 8: Accumulated reward

overall performance. With each time step, it denotes one
packet transmission from each UAV node to CS through
the next-hop router. The results indicate that the centralized
MADDPG achieves the best performance due to its access
to global information and small network topology. Our FC-
MADDPG outperforms the rest of algorithms. Notably, the
DQN exhibits a performance comparable to random policy,
suggesting that DQN is not applicable to complex systems
with heterogeneous action space. Specifically, the proposed
FC-MADDPG takes 426 transmission steps to deliver all
packets to the CS. The centralized MADDPG takes 364
steps, which is around 85% of FC-MADDPG transmission
steps. Independent DDPG takes 536 steps, which is around
126% of FC-MADDPG transmission steps. DQN requires
684 transmission steps, which is around 160% of FC-
MADDPG transmission steps. This comparison highlights
the effectiveness of the proposed FC-MADDPG algorithm
in managing multi-hop UAV routing for emerging smart
agriculture applications. Fig. 8 shows that the rewards for
five algorithms follow same pattern as the transmission steps.

B. Topology with 30 Nodes

To demonstrate the scalability and effectiveness of the
proposed FC-MADDPG algorithm in more complex and
demanding network environments, we constructed a complex
scenario featuring a large topology with 30 UAV nodes as
illustrated in Fig. 9. Specifically, nodes 10 and 29 serve as
critical junctions within the network, providing the essential
links connecting the entire UAV mesh to the CS. We keep
same setting as that in the 11-node topology.

Fig. 10 and Fig. 11 demonstrate the transmission duration
and accumulated reward, respectively. Notably, the central-
ized MADDPG does not yield the best result. Its use of
global information appears to be excessive in large topol-
ogy, leading to inefficiency. In contrast, the proposed FC-
MADDPG demonstrates superior performance by outshining
all benchmark algorithms. This improvement is attributed to
its ability to focus on pertinent information from neighboring



Fig. 9: Topology of UAV mesh network with 30 nodes

Fig. 10: Transmission time
step

Fig. 11: Accumulated re-
ward

nodes, reducing the unnecessary processing of non-pertinent
data. Once again, the DQN exhibits performance akin to
random policy. Specifically, FC-MADDPG takes 712 trans-
mission steps to deliver all packets to the CS. The centralized
MADDPG requires 874 steps, which is around 123% of
FC-MADDPG transmission steps. The independent DDPG
takes 917 steps, which is around 129% of FC-MADDPG
transmission steps. DQN requires 3684 transmission steps,
which is around 517% of FC-MADDPG transmission steps.
The FC-MADDPG also outperforms benchmark algorithms
in terms of the accumulated reward. Specifically, the ac-
cumulated rewards for centralized MADDPG, independent
DDPG, FC-MADDPG, DQN and random policy are -36631,
-41665, -35233, -90159 and -92404, respectively, which
indicates that our FC-MADDPG is more reliable than the
benchmarks in large agriculture networks. These findings
underscore the effectiveness of the proposed FC-MADDPG
algorithm in managing network resources and optimizing
data transmissions in UAV-aided agriculture networks.

VII. CONCLUSION AND FUTURE DIRECTION

This study introduces an innovative UAV assisted agri-
cultural network model designed to ensure reliable and
efficient data transmission from agricultural sensors to cloud
servers. Numerical results demonstrate the superiority of the
proposed FC-MADDPG algorithm in enhancing data trans-
mission reliability and efficiency while minimizing commu-
nication overhead, marking a significant advancement for
emerging smart agriculture practices. However, a key limita-
tion is the lack of optimization for the UAVs’ movement pat-
terns. In real-world scenarios, controlling UAV trajectories
to maximize overall network utility is crucial. Incorporating
trajectory optimization would enhance the proposed two-tier
smart agriculture architecture, making it more practical and
effective—a promising direction for future research.
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