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Abstract— Distinct from existing works on millimeter wave
Wi-Fi sensing in a monostatic or bistatic setting, in this paper
we present a complete framework for multistatic sensing with
unsynchronized receivers using IEEE 802.11bf signals. Based on
the channel estimates from the active sensing procedure, each
receiver extracts the line-of-sight and the target-reflected paths,
and reports the time-difference-of-arrivals to a central server,
which localizes and potentially tracks the target. We simulate
the system using the QD channel simulator and the ISAC-
PLM software package from NIST, and present the measurement
accuracy at each receiver and the localization accuracy at the
central server. Numerical results show promising localization
performance at reasonable signal-to-noise ratio (SNR) levels.

Index Terms— Wi-Fi, IEEE 802.11bf, active sensing, multi-
static, NIST, ISAC-PLM, QD channel simulator

I. INTRODUCTION

With the massive deployment of Wi-Fi devices and antici-
pated market growth, enabling sensing functionalities to future
Wi-Fi technologies has attracted interest from academia and
industry. Wi-Fi sensing can be categorized into sub-7-GHz Wi-
Fi sensing [1] and directional multi-gigabit (DMG) Wi-Fi sens-
ing at frequencies above 45 GHz [2]–[5]. As a unique feature
of IEEE 802.11ad/ay, DMG beam training is usually initiated
by the access point (AP) during the beacon transmission
interval (BTI), where directional frames are transmitted over
sector-level beampatterns to probe the environment. In addition
to DMG passive sensing, IEEE 802.11bf standard introduces
an active sensing procedure defined along the beam refinement
protocol (BRP) inserted at the end of data transmission [5].

There are a large body of recent works of DMG sensing
in [6]–[11] for outdoor automotive applications and in [12]–
[15] for indoor monitoring applications. This paper studies
indoor sensing with IEEE 802.11bf signals, which can find
applications in smart factories, smart hospitals, and smart
homes. This work has the following distinctions. First, existing
works adopt either a monostatic setting where a full-duplex
operation at the co-located transmitter and receiver [6]–[14],
or a bi-static setting with one transmitter and one receiver
[15]. This work considers a multistatic setting with one active
transmitter and multiple unsynchronized receivers. Second,
this work focuses on active sensing with the BRP procedure,
while [6]–[13], [15] have focused on the dual use of the
preamble in the beacon transmission or the data transmission.

The contributions of the work are as follows. First, we
develop the procedure of multistatic sensing with unsynchro-
nized receivers. For each packet, each receiver retrieves the

Fig. 1. The indoor system with one transmitter and multiple unsynchronized
receivers (7 receivers used in simulation study).

channel state information (CSI) corresponding to different
beams. Within a coherent processing interval, the receiver
performs two signal processing tasks: (1) identifying the line-
of-sight (LoS) path between the transmitter and the receiver,
and (2) identifying the reflected path from the target. The time
difference of the LoS path and the target path is evaluated
and reported to a central server for the localization and
tracking of the target. Second, we carry out a simulation study
based on the Quasi-Deterministic (QD) channel realization
software [16] and the “Integrated Sensing and Communication
Physical Layer Model (ISAC-PLM)” package [17], developed
by the National Institute of Standards and Technology (NIST).
We evaluate the measurement accuracy at each receiver and
the localization accuracy at the central server. Numerical
results show that satisfactory localization performance can
be achieved at reasonable signal to noise ratio (SNR) levels.
Third, our findings highlight the challenges of the proposed
approach for practical applications, where receiver placement
and dynamic receiver selection will play significant roles in
meeting the accuracy requirements.

The rest of this paper is organized as follows. Section II
describes the multistatic sensing system setup. Section III
addresses the extraction of measurements at each receiver.
Section IV presents the localization algorithm at a central
server. Section V contains simulation results, and finally
Section VI provides a summary of the findings and outlines
future research directions.

II. SYSTEM SETUP FOR MULTISTATIC SENSING

The system is illustrated in Fig. 1, with one transmitter,
one moving target, and multiple receiver nodes. The receivers



Fig. 2. Defining packet configuration

are positioned at different locations within the room. The
monitored target is a point target that resembles the human
spine. There are different types of reflected signals from
transmitter to the target and the receiver, as follows:

• Direct path: the signal along the line-of-sight (LoS) path
from the transmitter to a receiver.

• Reflection paths from environment: the reflected signals
from the transmitter to a receiver after bouncing off the
walls, the ground, or the ceiling.

• First order reflection from target: the reflected signal
to a receiver after it bounces off the target.

• Second order reflection from target: the signals that are
reflected off both the target and the environment before
arriving at the receiver.

The signals along the direct path and the first order reflection
off the target provide valuable information for sensing.

Active sensing involves transmitting dedicated sensing
packets containing pilot sequences to perform sensing tasks.
The IEEE 802.11bf beam refinement protocol (BRP) packets
incorporate training (TRN) fields comprising TRN sequences,
typically consisting of complementary Golay sequences. These
TRNs may be utilized to conduct rapid angular scans covering
various directions [5]. The TRN fields consist of multiple
units, with each unit containing the direction of a different
beamforming configuration, as defined in a codebook [17].

As shown in Fig. 2, there is one packet transmitted for every
pulse repetition interval (PRI). Within each TRN segment,
there are Nbeams beamforming directions. The receivers will
extract the channel estimates corresponding to each beam
direction of each packet and offer measurements useful for
localization.

III. EXTRACTING MEASUREMENTS AT EACH RECEIVER

At the i-th packet, there are Nbeams beamforming config-
urations. Assume that there are L taps in the discrete-time
baseband channel. The baseband samples at each receiver
corresponding to the bth beam of the ith packet is

y[n; i, b] =

L−1∑
l=0

hl[i, b]x[n− l] + w[n; i, b], (1)

where x[n] is the known Golay sequence of length 128 in
the TRN subfield, {hl[i, b]}Ll=0 are the channel taps of the

baseband channel, and w[n; i, b] is additive white Gaussian
noise. The complex gain of each tap is estimated via the cross-
correlation method as

ĥl[i, b] =

127∑
n=0

x∗[n]y[n+ l; i, b], (2)

where (·)∗ stands for conjugate. Now collect the estimated
channel coefficients into a vector as

h[i, b] = [ĥ1[i, b], . . . , ĥL[i, b]]
T . (3)

For each packet, we will have Nbeams channel vectors as

{h[i, b]}, b = 1, . . . , Nbeams. (4)

In the numerical study, there are L = 65 channel taps and
Nbeams = 25 beams derived from each packet reception.

To present a simple processing framework, we assume that
within the coherence processing interval (CPI), the background
channels stay static. Each CPI has Ncpi packets. We next
present the methods used to extract the LoS path and the target
path.

A. Direct Path Detection

Define the CIR averaged over the packets within one CPI
on each beam as

h[b] =
1

Ncpi

Ncpi∑
i=1

h[i, b]. (5)

The LoS path is identified through

l̂los = argmax
l

Nbeams∑
b=1

∣∣hl[b]
∣∣2 . (6)

This method is based on the assumption that the LOS path is
the strongest path, if averaged over all beam directions.

B. Target Path Detection

The first step is to remove the “clutter” that contains all
the static background of the channel, and then find the peak
of the remaining paths. Usually the target response is orders
of magnitude weaker than the clutter and so can be hard to
detect.

1) Clutter Removal: Let us view the average of the channel
as the clutter. The channel estimates after removing the static
paths are

h̃[i, b] = h[i, b]− h[b]. (7)

2) Finding the peak: The ISAC-PLM software has provided
algorithms to find the target path. Along with its principle, we
present a simplified processing algorithm for the study in this
paper. Corresponding to each tap l and each beam b, we define
a vector that contains the tap values from Ncpi packets as

[h̃l[1, b], . . . , h̃l[Ncpi, b]]
T . (8)



The time variation can be evaluated on a grid of Doppler
frequencies with step size ∆f :

ξl[b,m] =

Ncpi∑
i=1

h̃l[i, b]e
−j2πim∆f . (9)

The operation in (9) can be done via zero padding the vector
in (8) to length Nfft and applying the Fourier transform. A
FFT of size 64 is used in this study with Ncpi = 32.

Summarizing the information from all the beams, the re-
ceiver identifies the target path as:

(l̂tgt, m̂) = argmax
l,m

Nbeams∑
b=1

|ξl[b,m]|2. (10)

C. The Measurement

The time difference between the direct and target paths is
∆τ = (l̂tgt − l̂los)/fs, where fs is the sampling rate. The time
measurement is converted to a range estimate in meters as

z = c∆τ , (11)

where c is the speed of light. The Doppler estimates m̂∆f

could be useful when a tracking algorithm is used, which is
not pursued in this study.

IV. LOCALIZATION AT CENTRAL SERVER

The measurements from all the receivers will be collected
by a central server to carry out the localization task. Let us
focus on the localization task within one CPI.

Let zu denote the estimate from the uth receiver. Set the
locations of the transmitter and the uth receiver at:

ptx = [xtx, ytx, ztx]
T , prx,u = [xrx,u, yrx,u, zrx,u]

T . (12)

Assume that the target at the current CPI is at

θ = [θx, θy, θz]
T . (13)

The range measurements can be expressed by:

zu = ∥ptx − θ∥+ ∥θ − prx,u∥ − ∥ptx − prx,u∥+ wu. (14)

Note that the noise might not be Gaussian distributed. A grid
search is carried out to calculate the target position as

θ̂ = argmin
θ

(15)

Nr∑
u=1

(
zu − (∥ptx − θ∥+ ∥θ − prx,u∥ − ∥ptx − prx,u∥)

)2
,

where Nr is the number of receivers. There would be one
position estimate at each CPI. The position estimates across
multiple CPIs will form a track of the target.

TABLE I
NODE POSITIONS

position in [x, y, z]
Tx [3, 0, 2.8]

Rx1 [−3.9, 0, 2.8]
Rx2 [0,−3.4, 2.8]
Rx3 [0, 3.4, 2.8]
Rx4 [3,−3, 2.8]
Rx5 [3, 3.4, 2.8]
Rx6 [0, 0, 3]
Rx7 [0, 3, 2.9]

TABLE II
PHYSICAL PARAMETERS

Parameters Values
fs 1.75 GHz
fc 60 GHz

Training length 9
Physical SC

nTimeSamples 2680
codebook 2× 2

PRI 0.5 ms
CPI 32

Total simulation time 1.34 sec

V. SIMULATION STUDY

The QD channel realization software in [16] allows a user
to create scenarios with different environment settings. The
inputs to the software include: three-dimensional (3D) envi-
ronment geometry, target positions over time, node positions
and rotations, and antenna positions and orientations. Via the
geometric ray tracing technique, the software generates multi-
path components (MPCs) at each simulation step, specifying
the values of path delay, gain, phase, AoA (angle of depar-
ture), AoD (angle of arrival) in both elevation and azimuth
directions. In this paper, we present a human target as a point
target, where the point target represents the human spine. One
transmitter and seven receivers are placed in different locations
of the room with their coordinates listed in Table I. The target
is moving on a straight line with a moving speed of 1 m/s.

The ISAC-PLM software [17] uses the MATLAB Wlan-
Toolbox with modifications to generate and process the IEEE
802.11bf signals. The QD output provides the necessary details
on the communication channel, while the user can configure
other system parameters. Table II lists some key parameters
used in this work, where the physical layer adopts single
carrier (SC) transmission, and the sampling frequency and
the carrier frequency are denoted by fs and fc respectively.
For a 2× 2 antenna array, the codebook contains 25 antenna
wave vector (AWVs) with 5 different azimuth and 5 different
elevation angles [17]. The training length refers to the number
of TRN units used in the BRP, and is chosen in order to cover
the full codebook. We record the channel estimates at the
receiver from the ISAC-PLM software to test our algorithms.

A. Measurement Accuracy at Individual Receivers

We first evaluate the accuracy of extracting the range
estimate from each receiver using root mean square er-
ror (RMSE) over 20 Monte Carlo runs: RMSE(z, ẑ) =√

1
MC

∑MC
j=1(zj − ẑj)2, where zj and ẑj represent the true

range and the estimated range value in meters respectively, for
the jth Monte Carlo run. A summary of the results for seven
receivers at three different SNR levels are presented in Table
III. Fig. 3 shows the scatter plots of the range estimates for
each receiver at 20 dB. The estimates have high variations for
receivers 1 and 5 whereas they linger around the same point
for the remaining receivers. The estimates at receiver 3 has
a large bias but with small variations. Receiver 7 was placed
next to receiver 3 with 10 cm change in height. This minor



TABLE III
RMSE VALUES FOR DIFFERENT SNR LEVELS AND RECEIVERS.

SNR[dB] Rx 1 Rx 2 Rx 3 Rx 4 Rx 5 Rx 6 Rx 7
20 3.741 0.143 1.562 0.119 1.017 0.044 0.163
30 0.041 0.143 1.562 0.052 0.222 0.044 0.163
50 0.041 0.143 1.562 0.027 0.222 0.044 0.136

Fig. 3. Scatters of range estimates against the ground truth, SNR = 20 dB

change allowed the measurements at receiver 7 to increase the
accuracy by 91% compared to receiver 3. This highlights the
fact that the range estimation accuracy is geometry dependent.

The accuracy improves when the SNR increases from 20
dB to 30 dB. However, further increasing SNR to 50 dB does
not help, which likely is due to the finite-grid search.

B. Localization Accuracy

The central receiver carries out the localization task, based
on the range estimates at SNR of 30 dB. Two scenarios with
different receiver selections are summarized in Table IV. If the
estimates collected from all the receivers are used, the error
values in Scenario B increases significantly with an error over
one meter. Much smaller error is achieved in Scenario A using
the range estimates of six out of seven receivers.

Fig. 4 shows the true track and the estimated track based on
the receivers in Scenario A, with a zoomed picture of the track
shown in in Fig. 5. One can see that the estimated track does go
off the true track in certain points, however, the track is clearly
retrieved, with errors as small as 0.7 cm and a maximum of
18 cm. The results in Table IV and Fig. 4 indicate that the
target’s track can be retrieved with good results, however, the
estimates from different receivers need to censored.

VI. CONCLUSION

In this paper, we presented a complete process of indoor
localization with IEEE 802.bf signals in a multistatic setting
with unsynchronized receivers. We identified the major signal
processing tasks, and carried out a simulation study based on
the QD channel simulator and the ISAC-PLM software pack-
age from NIST. The numerical study verifies the feasibility of

TABLE IV
MAXIMUM AND MINIMUM ERROR VALUES ALONG THE TRACK

Rx Used Max Error Min Error
Scenario A Rx 3 is excluded 0.1834 m 0.0078 m
Scenario B All Rxs are used 1.3955 m 0.4701 m

Fig. 4. The true track and the estimated track based on six out of seven
receivers in Scenario A. The blue dot marks the location of the transmitter.
The active receivers are shown in green squares and the inactive receiver is
shown in a red square.

Fig. 5. The two-dimensional view of Fig. 4 that compares the estimated
track against the ground truth.

accurate localization of the proposed approach and highlights
the challenges. In particular, the range estimation accuracy is
geometry dependent; hence, receiver placement and dynamic
receiver selection will play significant roles in meeting the
localization accuracy requirements.

Other future works will include: (1) study of an extended
target (e.g., human) instead of a point target; (2) development
of tracking algorithms that can manage to effectively fuse
unreliable measurements from different receivers.
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