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Abstract
LiDAR datasets for autonomous driving exhibit biases in properties such as point cloud
density, range, and object dimensions. As a result, object detection networks trained and
evaluated in different environments often experience performance degrada- tion. Domain
adaptation approaches assume access to unannotated samples from the test distribution to
address this problem. However, in the real world, the exact conditions of deployment and ac-
cess to samples representative of the test dataset may be unavailable while training. We argue
that the more realistic and challenging formulation is to require robustness in performance
to unseen target domains. We propose to address this problem in a two-pronged manner.
First, we leverage paired LiDAR-image data present in most autonomous driving datasets
to perform multimodal object detection. We suggest that working with multimodal features
by leveraging both images and LiDAR point clouds for scene understanding tasks results in
object detectors more robust to unseen domain shifts. Second, we train a 3D object detec-
tor to learn multimodal object features across different distributions and promote feature
invariance across these source domains to improve generalizability to unseen target domains.
To this end, we propose CLIX3D, a multimodal fusion and supervised contrastive learning
framework for 3D object detection that performs alignment of object features from same-
class samples of different domains while pushing the features from different classes apart. We
show that CLIX3Dyields state- of-the-art domain generalization performance under multiple
dataset shifts.
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Abstract

LiDAR datasets for autonomous driving exhibit biases in prop-
erties such as point cloud density, range, and object dimensions.
As a result, object detection networks trained and evaluated in
different environments often experience performance degrada-
tion. Domain adaptation approaches assume access to unanno-
tated samples from the test distribution to address this problem.
However, in the real world, the exact conditions of deployment
and access to samples representative of the test dataset may be
unavailable while training. We argue that the more realistic and
challenging formulation is to require robustness in performance
to unseen target domains. We propose to address this problem in
a two-pronged manner. First, we leverage paired LiDAR-image
data present in most autonomous driving datasets to perform
multimodal object detection. We suggest that working with mul-
timodal features by leveraging both images and LiDAR point
clouds for scene understanding tasks results in object detectors
more robust to unseen domain shifts. Second, we train a 3D
object detector to learn multimodal object features across dif-
ferent distributions and promote feature invariance across these
source domains to improve generalizability to unseen target
domains. To this end, we propose CLIX3D, a multimodal fusion
and supervised contrastive learning framework for 3D object
detection that performs alignment of object features from same-
class samples of different domains while pushing the features
from different classes apart. We show that CLIX3Dyields state-
of-the-art domain generalization performance under multiple
dataset shifts.

1. Introduction

LiDAR point clouds provide direct, albeit sparse, 3D geometric
information of a scene through accurate depth estimates, while
RGB images can provide high resolution 2D color and texture
information. Recent years have seen the release of several large
scale multimodal datasets containing registered LiDAR point
clouds and RGB images [7, 40, 13, 9, 19], which have aided
the development of numerous deep neural networks for solving
perception tasks for autonomous navigation such as segmen-

Figure 1. (Left) Overview of the contrastive learning framework of
CLIX3D. We use multi-source training and supervised contrastive
learning between region level features to improve robustness of 3D
LiDAR and LiDAR-image based object detection networks. (Middle-
left) Comparison of 3D detection precision performance of CLIX3D

against LiDAR-only detection and SOTA fusion methods. (Far-ight)
Comparison of CLIX3D’s robustness to unseen distributions with SOTA
domain generalization work.

tation [33, 58, 2] and object detection[48, 37, 39, 38, 26]. Until
recently, the best performing 3D object detectors operate only
on LiDAR point clouds [38, 37, 26, 39], despite the availability
of paired image-point cloud data in most autonomous driving
datasets [7, 13, 40, 19, 9]. The image and LiDAR modalities
offer complementary information while describing the same
underlying scene, making the multimodal fusion approach a
natural choice for training a detection network. Several recent
works have demonstrated the effectiveness of LiDAR-image
fusion for 3D scene understanding [28, 11, 31, 21], and outper-
formed LiDAR-only methods. In this work, we contribute to
this direction and propose a multi-stage LiDAR-image fusion
method for 3D object detection. In particular, we focus on
how multimodal object detection networks can be trained to
be robust when evaluated on scenes “in-the-wild” (see Fig. 1).

LiDAR point clouds collected from different environments
vary widely between one another in terms of point cloud density,
scene properties and object dimensions due to different modes of
capture, locations, weather conditions, etc. LiDAR scenes from
different datasets have large differences that are easily visible.

While the severity of the cross-dataset distribution gap is not



as large when dealing with images, changes in the time-of-day
and adverse weather during capture can result in datasets that
are biased to specific conditions. This becomes a problem when
performing scene understanding tasks in real-world scenarios,
where the conditions of capture at test time may differ from
the training dataset. The performance of neural network models
trained on data from a particular distribution drops when shown
samples from a different distribution [45]. Including image
information helps not only the baseline performance, but also in
training networks robust to distribution shifts. Images provide
dense color and texture information, while LiDAR point clouds
provide sparse but accurate depth measurements. Data from
both these modalities is prone to varying highly depending on
the environmental conditions. Images are particularly prone
to illumination changes, while LiDAR scenes are not. The
density and range of point cloud scenes are dependent on
the sensor specification, and tend to differ largely between
datasets, while the corresponding images are unaffected. This
can be observed in Fig. 2, where LiDAR-image pairs from
the Waymo Open Dataset [40], nuScenes [7] and KITTI [13]
are shown side-by-side to demonstrate the differing properties
of each modality in differing conditions. The complementary
nature of both the information and sources of domain shift
makes LiDAR-RGB fusion the natural choice to improve the
robustness of 3D object detection networks to distribution shift.
DeepFusion [28] briefly explores this capability by evaluating
their proposed LiDAR-RGB fusion pipeline on location-specific
domain shift within the same dataset. In contrast, we address
more challenging cross-dataset domain shifts and propose
object-level contrastive learning to build more robust detectors.

Most current works that address the problem of domain gaps
assume the existence of an unlabeled dataset that is representa-
tive of the domain used for evaluation (target domain). These
methods further adapt a source network using target samples
and at times labelled source samples to perform unsupervised
domain adaptation (UDA) [49, 35, 8, 46, 32, 50, 18, 17]. This
formulation can be unrealistic, as the target domain character-
istics are often unknown and can change dynamically. Addition-
ally, the adapted model is suitable only for the target domain it is
trained for, and must be re-trained for every new target distribu-
tion. In contrast, we formulate and propose a method to address
the domain generalization (DG) problem, which is a more
practical and challenging setting for the 3D object detection task
[6, 57]. In the DG setting, no information about the target do-
main(s) is available during training. The guiding principle of DG
is that training a model able to generalize over diverse source
domains can help generalize to unseen target distributions [4].

Gulrajani and Lopez-Paz [14] have shown that performing
empirical risk minimization across multiple diverse datasets re-
sults in generalizable models given enough data and an effective
model selection strategy. DG through domain-invariance has
also received significant attention for 2D images, especially for
image recognition [53], including methods based on contrastive

Figure 2. LiDAR and image examples from the KITTI [13], Waymo
[40], nuScenes [7] datasets in different environmental conditions (listed
at the beginning of each row). Images are particularly prone to illu-
mination conditions, while LiDAR scenes differ in density between
datasets. The first column shows the image scene, the second column
is a bird’s-eye-view (BEV) of the LiDAR scene and the last row shows
the LiDAR scene projected to the front image.

learning. However, extending these ideas to 3D object detection
is not straightforward due to relative complexity of the scene
compared to samples from image classification datasets, as well
as the more difficult task of performing denser predictions. We
suggest that this problem setting requires operating on more
local regions in the scene. We focus on individual objects in
a scene by utilizing region features provided by existing
object detection networks to enforce domain invariance in
the feature extraction backbones of 3D object detectors.

We thus propose to tackle performance degradation of
object detectors evaluated on unseen domains in a two-pronged
manner. First, we propose a multimodal fusion method for RGB
and LiDAR data to leverage complementary information across
modalities for increased robustness. Second, we design a novel
framework called Contrastive LiDAR+Image Cross-Domain
3D Object Detection – CLIX3D for training LiDAR and
LiDAR-RGB 3D object detectors to improve performance on
unseen domains by learning domain invariant representations of
objects in a scene. Fig. 1 shows an overview of the contrastive
training method. The features from object regions of each
scene are aligned in a common embedding space according to



category to train the network to learn properties of the object that
are invariant to domain specific conditions. We are the first to
propose a multi-source multimodal setting to address robustness
to unseen domains. CLIX3D outperforms multi-source training
and single-source DG on most domain shift scenarios.

1. We propose CLIX3D, a supervised contrastive learning
framework for learning domain-invariant features that are
suited for 3D object detection by operating on small regions
rather than at the global level.

2. By leveraging various autonomous driving datasets acquired
using different sensors under different conditions and
environments, we show that CLIX3D results in improved
domain generalization to unseen target domains.

3. We propose a new LiDAR-RGB fusion approach – MS-
Fusion – as a part of CLIX3D that improves same-domain
and cross-domain 3D detection performance, compared to
state-of-the-art (SOTA) fusion methods.

2. Related works

2.1. 3D object detection
There are fundamentally three main approaches to performing
purely LiDAR-based object detection with deep networks in
literature – (a) operating directly on the irregular point clouds
[51, 15], (b) first voxelizing or pillarizing the point clouds and
operating on the voxels [26, 47, 39, 12], and (c) projecting the
point clouds to 2D, e.g., bird’s-eye view (BEV) [30, 20]. Each
network may also be characterized as a single-stage or a two-
stage network. Single stage object detectors directly regress
and classify bounding box predictions from features whereas
two-stage object detectors use an additional refinement head
operating on region proposals. The SOTA single stage object de-
tector SE-SSD [56] uses IoU-based matching to align a student-
teacher network to perform soft filtering. VoxelRCNN [12]
proposes a novel region-of-interest pooling and box refinement
and outperforms previous point and voxel based methods. In
this work, we use VoxelRCNN as the base object detector due to
its superior performance as a two-stage object detector. (See Sec.
4.2) VoxelRCNN also takes less time to train than more recent
methods. PVRCNN, FocalsConv, and CaDNN take 5, 4, and 15
hours respectively to train on KITTI while VoxelRCNN takes
around 2 hours under the same settings. This is an important
factor when training on a large number of source samples.
LiDAR-image fusion: Several works seek to incorporate
image data to boost 3D object detection performance. Early
methods such as PointPainting [43] and PointAugmenting
[44] concatenate the input LiDAR point cloud with semantic
scores or deep features before being passed into the 3D network.
Current single-view, convolutional approaches improve on
these by performing fusion at the feature level mid-way through
the network. DeepFusion [28] performs fusion by aligning the
LiDAR and image scenes through inverting the LiDAR augmen-
tations before fusing at the feature level using a cross-attention

mechanism for feature selection. FocalsConv [11] proposes a
method for sparse convolutions with learned sparsity which they
leverage for LiDAR-image fusion. TransFusion [3] and LIFT
[54] are transformer based fusion approaches. BEVFusion [31]
leverages multi-view images to create bird’s-eye-view image
feature maps for fusion. In this work, we focus on single view
convolutional fusion approaches due to their compatibility with
existing LiDAR detectors and datasets.

2.2. Cross-domain transfer
A significant number of works in perception literature address
dealing with domain shift, by either adapting to specific targets,
or training robust networks.
Domain adaptation for 3D object detection: Recent works
that address unsuerpvised domain adaptation (UDA) for 3D ob-
ject detection include ST3D [49], ST3D++ [50], MLCNet [32],
and scalable pseudo-labeling [8]. However, these works use
a single source domain and assume access to annotated or
unannotated samples from the target domain that are used for
model adaptation. While Wang’s method [45] does not train
on target data, it uses the bounding box statistics of the target
dataset to resize predicted bounding boxes to perform adaptation.
Some works train with multiple source domains [52] or models
[42], but still operate in the UDA formulation. Zhang et al. [55]
show that multi-source training can aid in boosting detection
performance, but do not perform cross-dataset transfer.
Domain generalization: In contrast, in this paper, we study a re-
lated but novel setting for 3D object detection – multi-source DG
– where the target domain is completely unseen during training.
We show that multi-source and multimodal training from diverse
domains can lead to improved generalizability in 3D object de-
tection models. We design a supervised contrastive learning
method CLIX3D that can be used with LiDAR and LiDAR-
RGB detector architectures to lead to higher generalization
performance. Lehner et al. [27] recently propose 3D-VField, an
adversarial data augmentation strategy, for DG with point clouds.
However, they only show single-source DG and do not discuss
domain invariance. Several other works perform single source
DG [24] and DG for semantic segmentation [23, 36]Although
the idea of contrastive learning has been employed for DG in 2D
image recognition [53], it is not straightforward to apply such
ideas for 3D object detection from LiDAR point clouds and we
discuss the challenges in design and implementation in Sec. 3.

3. CLIX3D

We first describe the multi-stage LiDAR-image feature fusion
approach, followed by the supervised contrastive learning
framework for multi-source object detection.

3.1. LiDAR-image fusion
We design a multi-stage fusion module, called MSFusion,
for LiDAR and image data that are incorporated into existing
3D object detection networks to consider image information



during the feature extraction stage. Consider a LiDAR scene
and image pair {p,q} such that p ∈ Rg×3 and q ∈ Rh×w×3,
where g denotes the number of points in the LiDAR scene and
h×w denotes the spatial dimensions of the image. Let ϕ be a
convolution-based encoder for the image modality decomposed
into s stages {ϕi}si=1 andψ be a 3D feature extraction network
that processes point clouds decomposed into {ψi}si=1. The
image is passed to ϕ to obtain a set of feature maps Fϕi of
successively smaller feature dimensions from each stage. The
3D encoder consists of a series of 3D convolution blocks and
set abstraction layers that process a voxelized point cloud to
give 3D feature maps consisting of stacked voxel features.
The voxelized LiDAR scene is passed to ψ to obtain sets of
voxels that undergo successive set abstractions to give sets
of features with reducing spatial dimensions Fψi

. For each
stage pair {Fϕi

,Fψi
} we find the voxel feature to pixel feature

correspondence before performing deep feature fusion.
Finding voxel-pixel correspondence. Given the camera matrix,
each voxel may be projected to the image feature plane to obtain
pixel-voxel level correspondences. Since the number of points
that represent the scene are fewer than the number of pixels (m<
h×w), we assign a neighborhood of pixels of size k to each pro-
jected point, with the pixel location of the point as the center of
the neighborhood. Each LiDAR point now corresponds to a [k×
k] patch of the image. With reducing spatial dimensions of each
2D feature map, the camera intrinsics are scaled accordingly.
LiDAR augmentation reversal. The use of data augmentations
are standard practice in 3D LiDAR-only object detection net-
works, as they aid in performance [39, 12, 47]. However, these
augmentations are unique to the LiDAR modality and include
transformations such as rotation and scaling, which affect the
correspondence of points with pixels. To ensure that the 3D
encoder benefits from these augmentations and that accurate
voxel-pixel mapping takes place, we keep a record of each
augmentation type and degree of augmentation and perform
reversal in the voxel feature space before the fusion step.
Deep feature fusion. Consider the set of LiDAR-image feature
maps {Fϕi

, Fψi
}si=1. After applying the reverse augmen-

tation on the voxel feature maps and obtaining voxel-pixel
correspondences for each stage, each feature vector path is
average pooled, concatenated along the feature dimension and
passed to a projection layer that embeds the feature into the 3D
embedding space. The result is passed to the next stage of the
object detection network.

3.2. Multi-source 3D object detection

We now focus on the later stages of the object detection network.
The methodology for contrastive multi-source training applies
to both single and multimodal object detectors. For the purpose
of clarity, we consider LiDAR object detectors here. The task of
3D object detection is to localize and classify salient objects in
the scene. This is done by estimating location and dimensions of
a 3D bounding box that describe the position of each object, and

classifying it into one of the predefined classes. Let a point cloud
dataset of n samples be represented as D={pi,li}ni=1, where
pi is the LiDAR scene consisting of 3D points that describe
the scene, and li consists of object labels such that each object
in the scene is described with the label {x,y,z,dx,dy,dz,θ,c}
where {x,y,z} denote the center of the bounding box, and
{dx,dy,dz} denote the displacement of the bounding box edges
from the center to represent bounding box dimension, θ denotes
the orientation, and c denotes the class label.

Borrowing the notation from [1], we consider a set of LiDAR
point cloud datasets De consisting of ne labeled samples of c
object categories such that De={pei ,lei}

ne
i=1, where e∈Etr de-

notes the data acquisition environments of the training datasets.
We assume the occurrence of the same object categories across
training and evaluation datasets. We call the labeled datasets
seen during training as source datasets which are samples from
source domain distributions, and denote by ns= |Etr|, the num-
ber of source domains available for training. The goal of DG is
to train a network on these samples to perform well on unseen
environments from unknown distributions (i.e., target domains).
Region-level supervised contrastive learning. A LiDAR
scene contains some regions that provide little information,
due to the sparse nature of the point clouds. This makes global
scene-level comparisons of samples from different distributions
difficult beyond simplistic attributes such as point cloud density.
We propose to focus on meaningful regions in the LiDAR
scene, i.e., regions with objects of interest such as cars, bicycles,
and pedestrians. Point cloud objects from the scene belonging
to the same category tend to share geometric properties. A
point cloud of a car is identifiable as a car even in the absence
of visual attributes such as color and texture. Thus, we hope
to learn a universal representation of a LiDAR “Car” object
that is consistent across domains. We wish to train a network
to learn region features that capture this domain invariant
representation of each object category. From our multi-source
dataset with samples from different environments, we have
access to different data representations of the same object
category. By pushing together objects from the same category
and pulling apart objects from different categories, features
across domains are aligned in a common embedding space.
Feature selection. Anchor-based networks provide region pro-
posals for a given scene. These proposals consist of features cor-
responding to foreground as well as background regions. Given
the ground-truth bounding box information, we can identify the
most accurate proposals and use them for contrastive training.
Consider a batch of input point clouds from different source
domains {peji ,l

ej
i }bi=1 where j indexes the source domains and

b is the batch size. Let the RPN head be denoted by ϕrpn. After
feature extraction and region pooling, ϕrpn generates a set of
ROIs represented by features f and predicted bounding boxesB
which we denote by {{fejk ,B

ej
k }nr

k=1}
ns
j=1 for a given set of sam-

ples in a batch, where e denotes the environment/domain of the
sample, and nr and ns are the numbers of ROIs and domains,



Figure 3. Description of the proposed CLIX3D for generalizing 3D object detectors to unseen target domains. Samples from multiple diverse source
domains are used to train the object detectors. Following multi-stage deep feature fusion in the feature extraction backbone, supervised contrastive
learning is applied on ROI features obtained after the pooling step which encourages domain invariance. As illustrated on the right side, region
features that belong to the same class, but from different domains are encouraged to be closer together in feature space, while those that belong to
different classes are pushed apart.

respectively. Many region proposals are redundant or belong
to background areas, so we select the foreground ROIs closest
to the nearest ground truth label, and sample m background
proposals. We now have a subset of ROI features, ground truth
class labels c, and domain labels from samples across different
source distributions denoted by {{fejk ,c

ej
k }nr+m

k=1 }ns
j=1.

Supervised contrastive learning. We now have the region
features of objects across samples in the batch, which originate
from different domains. We enforce domain invariance in the
learned features by minimizing the distance between region
features of objects from the same category and maximizing the
distance between objects of different categories on ROIs prior
to being passed to further layers. Consider the set of region
features and corresponding category labels from scenes across
different source distributions {{fejk , c

ej
k }nr

k=1}
ns
j=1. To draw

an analogy to contrastive learning frameworks like [22], each
region from each LiDAR scene is treated as a training sample,
with the input batch consisting of N regions (samples). Each
sample has many positive pairs, decided by the number of sam-
ples sharing the same object category, and an arbitrary number
of negative pairs. Unlike [22], we do not have augmented views,
since we obtain samples directly in the features space. We now
show the way we perform contrastive learning which can handle
multiple positives. To enforce domain invariance, distances
between region features across LiDAR scenes are optimized
by comparing region features from two source domains.
Optimizing feature similarity: We use the cosine similarity
for the unit-normalized feature vectors computed using
sim= ⟨fe1,fe2⟩. Inspired by the multimodal self-supervised

contrastive learning method CLIP [34], we utilize binary cross
entropy (BCE) loss to optimize feature similarity. We modify
the formulation to handle multiple positive pairs and compute
the sum of BCE loss for sample pairs that are constructed for
a particular class across all object categories, such that:

Lcon=

Nc∑
i=1

1

|R(i)|
∑

j∈R(i);h∈R
k,l∈D(i)

−ωi{qiyjlog(s)+(1−yj)log(1−s)},

where s = σ(sim(fekj , f
el
h )), σ(·) denotes the softmax

operation, qi is the weight value for positive samples computed
by the ratio of number of negative and positive samples, R
denotes the indices of all foreground regions and sampled
background regions, and yj = 1(j = h) with 1(·) as the
indicator function, Nc denotes the number of classes, R(i)
and D(i) denote the regions of interest and their respective
domain labels. Optimizing these loss functions trains the
feature extraction and region proposal branches to produce
aligned feature representations for all regions in the batch
that belong to the same object category, including those from
different domains. These region features are then passed to a
bounding box regression branch that performs localization, and
a classification branch that categorizes each proposal.
Losses for object detection: In addition to the contrastive
loss, the network is supervised by the localization (Lloc) and
classification (Lcls) losses present in their original training
frameworks. The contrastive loss Lcon is added to the existing
RPN loss Lrpn and made to share a similar scale in value. The



final loss L below is used to train the network:

L=Lloc+Lcls+Lrpn+Lcon. (1)

4. Experiments
4.1. Datasets
In autonomous driving, the environment of data capture is
characterized by a variety of variables, including geographic
location, type of LiDAR sensor, position of the sensor, and
weather conditions. These vary between datasets, providing
a diverse set of training data with which to train a learning
algorithm. For the purpose of DG, we seek diverse datasets that
express different forms of distribution shift, e.g., from average
size of vehicles to point cloud density. For our experiments, we
choose four popular autonomous driving LiDAR-image datasets
for 3D object detection: Lyft [19], KITTI [13], Waymo Open
Dataset [40], and nuScenes [7]. In the supplement, we compare
various properties of these datasets. We construct our domain
shift scenarios to cover shifts from larger annotation-rich source
datasets to smaller annotation-poor datasets as well as the
reverse case. Due to their varying data formats, to train on
multiple datasets at a time, we convert all the datasets to the
format of KITTI for both training and evaluation.

4.2. Experimental setup
Domain shift scenarios. To demonstrate our DG method, we
explore cross-dataset distribution shift that covers a change in
location, time of day, weather conditions, and rates of LiDAR
return. We conduct transfer from multiple source datasets to
a single target dataset at a time in the form {S1,S2}−→T where
S denotes the source dataset and T denotes the target dataset.
In particular, we conduct experiments with the settings:
1. S1=Waymo,S2=nuScenes;T ∈{Lyft,KITTI}
2. S1=Lyft,S2=KITTI;T ∈{Waymo,nuScenes}

This covers a broad variety of types of cross-dataset shift,
including transferring to and from the smaller annotation-poor
datasets such as KITTI and between datasets with dense and
sparse point clouds. For baseline experiments, we also conduct
single-source domain transfer experiments. A network trained
on a particular source dataset setting may be evaluated on any
target distribution.
3D object detection networks: We demonstrate our mul-
timodal domain generalization framework primarily on
VoxelRCNN [12], which we choose due to its superior baseline
object detection performance, the symmetry of the 3D feature
extraction network to that of ResNet [16], and the existence of
a region proposal network, which we require to leverage region
features. We also demonstrate the pure-LiDAR approach on
Part-A2 for consistent comparison.
LiDAR network architecture: The 3D feature extraction back-
bone consists of 4 stages of sequential sparse 3D convolutional
blocks that produce feature maps of dimensions 16, 32, 64, and
128 with successively decreasing spatial dimensions. In terms

of voxel features, set abstraction at each stage results in sparser
voxels in scaled down ranges. This architecture may be observed
in several 3D object detector networks such as [38, 26, 5, 12].
Image network architecture: We leverage a ResNet-50
backbone [16] pre-trained for image segmentation on COCO
[29] under DeepLabv3 [10] as the 2D image extraction
backbone. This branch is trained end-to-end.
Baselines and oracle: We compare our multi-source contrastive
learning-based DG framework against single-source and
multi-source direct transfer baselines, in which a source-trained
model is directly evaluated on the target datasets. That is, in
“direct transfer,” the object detection networks are trained only
with the standard classification and bounding box regression
loss functions, without contrastive loss. We also compare
our method against the single-source DG work 3D-VField
for the backbone network Part-A2 which uses adversarial
data augmentation. As the implementation of 3D-VField has
not been made public, we compare our results against those
reported in the paper. We also provide the “oracle” results
for both LiDAR and LiDAR-image detectors, i.e., when both
source and target domains are the same, and trained using only
classification and bounding box regression losses in Table 1.
Evaluation metric: We evaluate the object detection networks
in average precision (AP) in the KITTI format. We report
performance on the object categories of “Car,” “Pedestrian,”
and “Cyclist” with respective 3D IoU thresholds of 0.7, 0.5, 0.5
for the KITTI, Lyft, and Waymo datasets and 0.5, 0.25, 0.25
for the nuScenes dataset, respectively. For a fair comparison
with the reported numbers of [27], we include evaluation results
on Waymo with the 3D IoU threshold 0.5 for the “moderate”
category in Table 3. Each object is further categorised in terms
of difficulty as “easy,” “moderate,” or “hard” based on the level
of occlusion, truncation, and distance from the camera. We
follow [13] for this evaluation convention.
Implementation details: We train the object detection networks
in our supervised contrastive learning framework on an equal
number of samples from each source dataset, and ensure that
an equal number of scenes from each dataset make up an input
batch. As the quality of the selected region features depends on
the proposal network, we pretrain the network for 30 epochs on
the source datasets without contrastive loss before training for
a further 30 epochs with the contrastive loss. We use standard
data augmentation methods for object detectors such as global
scaling, rotation, and ground-truth sampling. We train the
networks with a batch size of 32, Adam optimizer [25] and
cyclic learning rate scheduling. The initial learning rate is
0.01 with a weight decay of 0.01. For implementing the object
detectors, we follow the codebase OpenPCDet [41]. We train
each model on four 48GB NVIDIA A40 GPUs.

5. Results and discussion
We present and discuss the results of the MSFusion
method on each LiDAR-image dataset as well as the full



Dataset Modality Method
Car Pedestrian Cyclist

easy moderate hard easy moderate hard easy moderate hard

KITTI

L VoxelRCNN 92.36 82.74 80.04 65.85 58.67 52.35 88.05 69.53 64.92
L + I VoxelRCNN - DeepFusion* 92.19 82.59 80.06 60.56 52.82 46.63 84.79 62.70 58.61
L + I VoxelRCNN - FocalsConv 92.55 82.92 80.34 61.01 53.28 48.02 89.17 70.26 65.67
L + I VoxelRCNN - MSFusion (ours) 92.22 83.32 82.45 66.19 58.41 52.63 89.10 70.23 66.34

Waymo

L VoxelRCNN 76.19 74.59 72.17 57.89 58.25 57.88 65.79 66.36 66.26
L + I VoxelRCNN - DeepFusion* 76.41 74.82 72.51 56.67 56.40 56.05 64.97 65.80 63.29
L + I VoxelRCNN - FocalsConv 76.40 76.07 72.81 57.18 57.62 57.93 68.39 66.60 66.06
L + I VoxelRCNN - MSFusion (ours) 76.17 74.74 72.38 58.49 58.31 57.66 73.89 71.97 68.04

nuScenes

L VoxelRCNN 22.05 18.35 17.30 8.99 7.98 7.52 8.48 7.42 6.69
L + I VoxelRCNN - DeepFusion* 24.44 20.52 19.14 13.99 12.59 11.95 9.62 8.97 8.01
L + I VoxelRCNN - FocalsConv 20.74 17.46 16.28 8.59 7.80 7.49 11.55 10.69 9.47
L + I VoxelRCNN - MSFusion (ours) 25.69 21.50 20.41 9.45 8.58 8.55 12.28 11.44 10.01

Lyft

L VoxelRCNN 85.91 75.44 71.57 45.77 33.74 32.75 73.95 54.93 51.23
L + I VoxelRCNN - DeepFusion* 88.67 78.64 76.68 53.53 40.97 39.88 77.55 60.67 56.77
L + I VoxelRCNN - FocalsConv 88.99 79.26 77.29 56.59 40.86 40.10 78.91 62.87 58.84
L + I VoxelRCNN - MSFusion (ours) 89.11 79.86 78.00 55.53 43.19 42.27 78.56 62.51 59.15

Table 1. 3D average precision (AP) results of VoxelRCNN [12] trained on KITTI [13], Waymo [40], nuScenes [7], and Lyft [19]. Compares
performance of training the network with just LiDAR (L) or LiDAR and image (L+I) using DeepFusion [28] and FocalsConv [11] with the proposed
MSFusion approach. ∗ indicates the method is re-implemented by us. This table shows that (a) fusion of LiDAR and RGB inputs leads to improved
performance, and (b) the proposed fusion method outperforms the SOTA methods.

CLIX3Dramework evaluated on various domain shifts. We
point to the supplementary material for qualitative results.
LiDAR-RGB fusion. In Table 1 we compare the proposed
MSFusion method for fusing LiDAR and RGB with the
SOTA convolution-based multimodal object detectors that use
single view images, DeepFusion [28] and FocalsConv [11],
as well as the pure-LiDAR baseline for VoxelRCNN. In this
setting, the training and testing domains are the same, and we
convert each dataset to KITTI FOV format with standard splits.
We observe consistent improvement from the pure-LiDAR
baseline, particularly in the “hard” category of objects, which
are characterized by high occlusion, truncation, and larger
distances from the camera. We show that multi-stage fusion
of LiDAR-RGB features outperforms or matches the SOTA
in most cases. In cases where the proposed method does not
perform the best, it comes second with only a small margin.
Detection on unseen domains. We demonstrate our multimodal
framework for four domain shift scenarios. We compare our
method against direct transfer baselines and that of 3D-Vfield
[27]. By direct transfer, we mean that the network is trained
on the source dataset and evaluated on the target dataset with
no adaptation or changes to training. In Table 2 we show the
performance of VoxelRCNN [12] trained under the domain shift
listed in Sec. 4.2. We point out observations that are two-fold.
Firstly, introducing image information improves domain
transfer performance in most cases. Particularly for the “Cyclist”
category, we observe a large performance improvement when
evaluating on KITTI and Lyft. This supports the suggestion that
multimodal detectors are more robust to unseen distributions.
Secondly, training the object detector under the multi-source

contrastive framework also aids in improved robustness to
out-of-distribution samples. Compared to single source direct
transfer cases, we observe a significant performance improve-
ment in most cases when the network is trained under CLIX3D,
and this trend continues when applied to the multimodal
detector. This indicates that encouraging domain invariance
in a diverse training set can aid generalization. In Table 3,
we compare our LiDAR-only contrastive learning framework
on the detector Part-A2 with the domain generalization work
3D-Vfield [27]. Since the code is not publicly available, we
compare against the reported domain scenario and single
category. We outperform [27], but point out that their learnable
data augmentations may be incorporated into our framework.
Ablation study. We examine each component of the multimodal
multi-source contrastive learning framework and demonstrate
empirically the role they play in training a generalizable
object detection network. In Table 4, we compare the transfer
performance to the Lyft dataset under different modules of
the proposed framework. We find that adding the contrastive
objective aids in multi-source training.
Limitations. There are certain limitations with our approach.
We observe some inconsistent performance when training
with multiple sources. In the case of transferring to the
Waymo dataset, we observe that the multi-source trained model
performs worse than Lyft/Waymo direct in the “Car” category,
but outperforms all single-source networks in the “Pedestrian”
and “Cyclist” categories. This could be due to the fact that the
average size of cars in the Lyft dataset is closer than KITTI
to that of the Waymo dataset. We believe this problem can be
mitigated by training with more diverse source data, and point



Train / Test Modality Method
Car Pedestrian Cyclist

easy moderate hard easy moderate hard easy moderate hard

Waymo / KITTI L DT 16.12 14.95 14.43 60.39 53.01 47.89 67.51 57.40 51.96
L + I DT 6.33 5.98 5.48 57.26 50.69 45.93 67.75 62.91 58.11

nuScenes / KITTI L DT 3.05 2.89 2.58 34.03 28.92 25.93 7.05 4.60 4.50
L + I DT 12.51 8.92 7.41 31.31 25.87 23.52 28.56 16.45 15.84

Waymo + nuScenes / KITTI L CLIX3D 37.90 35.94 36.77 58.92 51.81 45.94 70.43 57.91 54.35
L + I CLIX3D 37.72 35.22 36.37 65.07 57.94 51.84 68.71 55.33 52.35

Waymo / Lyft L DT 60.08 41.99 41.62 38.43 23.80 23.55 41.95 22.17 20.08
L + I DT 59.33 42.31 41.95 37.25 21.88 21.86 46.71 25.99 23.39

nuScenes / Lyft L DT 22.67 13.77 14.12 7.55 3.98 4.23 7.15 3.84 3.21
L + I DT 36.15 23.74 23.96 7.07 4.67 4.51 11.07 5.80 5.08

Waymo + nuScenes / Lyft L CLIX3D 56.85 39.66 38.79 35.57 22.74 22.47 45.86 26.96 26.11
L + I CLIX3D 63.87 44.18 43.02 39.38 25.22 24.87 37.82 21.64 20.46

KITTI / Waymo L DT 14.10 14.53 13.89 32.56 33.16 31.32 30.46 27.46 24.51
L + I DT 18.62 18.63 17.67 22.60 23.48 23.66 36.35 35.44 32.46

Lyft / Waymo L DT 46.78 45.21 41.53 27.99 28.69 28.85 21.34 22.81 22.47
L + I DT 54.98 54.93 51.73 37.06 38.54 38.24 31.29 31.41 32.16

KITTI + Lyft / Waymo L CLIX3D 28.13 28.06 25.18 43.12 43.43 42.51 47.17 43.53 41.33
L + I CLIX3D 48.13 46.57 43.65 47.62 46.93 45.59 48.06 49.03 46.05

KITTI / nuScenes L DT 24.75 20.70 19.12 9.26 8.09 8.09 3.45 3.67 3.55
L + I DT 28.23 23.15 21.56 9.63 8.21 8.17 4.30 4.62 3.90

Lyft / nuScenes L DT 21.36 17.35 16.21 6.33 6.42 6.53 4.36 5.25 4.74
L + I DT 24.25 19.95 18.63 9.03 7.57 7.44 6.55 5.89 5.30

KITTI + Lyft / nuScenes L CLIX3D 25.02 20.60 19.41 5.63 5.49 4.32 3.44 3.62 2.96
L + I CLIX3D 31.06 25.41 24.09 4.82 4.79 4.82 7.10 6.80 6.07

Table 2. 3D average precision (AP) of unseen domain transfer to the Waymo, nuScenes, KITTI and Lyft datasets. DT = direct transfer, L=LiDAR,
I=Image. We show that multi-source training of multimodal detectors under CLIX3D’s contrastive learning framework results in improved robustness
to unseen domains.

Train / Test Method
AP

Car Pedestrian Cyclist

KITTI / Waymo DT 47.64 26.45 53.83
3D-Vfield [27] 56.80 - -

Lyft / Waymo DT 56.97 22.44 48.42

KITTI + Lyft / Waymo DT 65.34 32.41 67.78
CLIX3D 66.59 34.68 66.28

Table 3. 3D detection results for IoU thresholds {0.5,0.5,0.25} on Li-
DAR cross-domain experiments on Part-A2 [39]. DT = direct transfer.

Multi-source Multimodal Contrastive loss Car
easy moderate hard

✓ ✗ ✗ 59.11 40.53 39.53
✗ ✓ ✗ 59.95 41.39 40.55
✓ ✓ ✗ 62.07 43.08 41.79
✓ ✓ ✓ 63.87 44.18 43.02

Table 4. Ablation study for Waymo+nuScenes transfer to the Lyft
dataset with 3D precision values for the “Car” category. Single source
experiments indicate source is Waymo.

out that in the DG setting, it is not possible to choose a single
source that is closer in distribution to the target data, in which
case the multi-source training that performs better on average

is preferred. We also observe that the “Pedestrian” and “Cyclist”
categories of the nuScenes dataset are difficult to transfer to,
resulting in relatively lower precision values. This is due to the
sparse nature of objects from these categories in the considered
datasets, which we hope to explicitly address in future work.

6. Conclusion
For the problem of unseen domain shift in 3D object detection,
we show that MSFusion, our proposed LiDAR+RGB fusion
method, outperforms prior methods and that multimodal fusion
improves robustness when the target domains are unseen during
training. We further improve generalization by proposing
a multi-source training framework CLIX3D with simple yet
effective region-level contrastive learning, which promotes
invariance among features belonging to the same class across
domains and pushes features from different classes apart.
CLIX3D beats state-of-the-art methods in most cases under
many distribution shifts for multiple object classes and datasets.
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