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Abstract
3D object detection is crucial for autonomous driving, leveraging both LiDAR point clouds
for precise depth in- formation and camera images for rich semantic informa- tion. There-
fore, the multi-modal methods that combine both modalities offer more robust detection
results. However, efficiently fusing LiDAR points and images remains challenging due to the
domain gaps. In addition, the performance of many models is limited by the amount of
high quality labeled data, which is expensive to create. The recent advances in foundation
models, which use large-scale pre- training on different modalities, enable better multi-modal
fusion. Combining the prompt engineering techniques for efficient training, we propose the
Prompted Foundational 3D Detector (PF3Det), which integrates foundation model encoders
and soft prompts to enhance LiDAR-camera feature fusion. PF3Det achieves the state-of-
the-art results under limited training data, improving NDS by 1.19% and mAP by 2.42% on
the nuScenes dataset, demonstrating its efficiency in 3D detection.
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Abstract

3D object detection is crucial for autonomous driving,
leveraging both LiDAR point clouds for precise depth in-
formation and camera images for rich semantic informa-
tion. Therefore, the multi-modal methods that combine both
modalities offer more robust detection results. However, ef-
ficiently fusing LiDAR points and images remains challeng-
ing due to the domain gaps. In addition, the performance
of many models is limited by the amount of high quality la-
beled data, which is expensive to create. The recent ad-
vances in foundation models, which use large-scale pre-
training on different modalities, enable better multi-modal
fusion. Combining the prompt engineering techniques for
efficient training, we propose the Prompted Foundational
3D Detector (PF3Det), which integrates foundation model
encoders and soft prompts to enhance LiDAR-camera fea-
ture fusion. PF3Det achieves the state-of-the-art results
under limited training data, improving NDS by 1.19% and
mAP by 2.42% on the nuScenes dataset, demonstrating its
efficiency in 3D detection.

1. Introduction
3D object detection is an essential task in autonomous driv-
ing, involving the localization and classification of objects
in 3D space, which is different from 2D object detection
[36][37][58][59] that classifies and localizes the objects in
2D visual data. The LiDAR point clouds provide precise
depth information. Early LiDAR-only methods like Vox-
elNet [64] achieved promising results. However, the spar-
sity of point clouds makes it difficult to detect small or dis-
tant objects. In contrast, high-resolution images from cam-
eras provide rich semantic details, but camera-only data do
not have precise distance information, which is why they
usually do not match the performance of LiDAR-only ap-
proaches. Wang et al. [46] find that depth prediction error

⋆ This work was done when Kaidong Li was an intern at MERL.

Inputs

Original

Backbone

Foundation 

Encoder

Soft Prompts

Multi-Modal 

Features

3D 

Detector

 

Figure 1. The illustration of the PF3Det pipeline. The blue com-
ponents are the proposed modules.

contributes 20% to the overall error of camera-only models.
Therefore, the complementary strength of LiDAR and cam-
era makes multi-modal detection a more robust solution.

Since the LiDAR-based methods demonstrated stronger
performance compared to the camera-based ones, the main
stream approach is based on LiDAR detectors, and tries to
fuse additional information from the camera modality into
the LiDAR models. The main challenge of multi-modal de-
tection is how to fuse the two modalities efficiently. Some
multi-modal detectors try to establish point-to-pixel corre-
spondence and query rich camera features from 3D data
points [3, 30, 31]. However, the mismatched data den-
sities inevitably result in loss of 2D information. An-
other paradigm of visual LiDAR detectors first estimates
the depth of 2D data and then lifts the 2D pixels into the 3D
space [21, 32, 54]. These methods have improved the pre-
diction quality thanks to integrating more information from
the 2D data. However, lifting a 2D pixel into 3D requires
depth estimation, which is still prone to errors [46]. Also
the feature spaces from the two different modalities are not
aligned, thus diminishing the effect of the final feature maps
before detection.

Another challenge for existing methods is that they heav-
ily rely on extensive and high-quality annotations [12, 24,
34]. Labeling a single scene demands considerable efforts,



which makes large-scale labeling impractical for applica-
tions such as robotics and autonomous vehicles. Even with
existing dataset, Gao et al. [12] show the performance of the
state-of-the-art (SOTA) models are limited by the amount of
data. The situation is worse in industry, since many datasets
cannot be used for commercial purposes. Therefore, pro-
viding a data-efficient 3D detector is crucial.

In recent years, there has been significant progress in de-
veloping multi-modal foundation models, which are trained
on large-scale datasets and can be adapted for a wide range
of downstream tasks [1, 19, 23, 43, 51]. Their success
can be mainly attributed to the capability of large language
models (LLMs), which enables massive scaling up on data.
The training of LLMs on noisy web-scale data inspires the
training on other modalities [43]. These models like GPT-3
[4], with billions of parameters, have demonstrated impres-
sive performance in zero- and few-shot learning, achieving
strong results without requiring task-specific data or param-
eter updates. The success facilitates the training of vision
models to the feature space of LLMs. CLIP uses contrastive
pre-training with LLMs to generate a model with promis-
ing zero-shot classification and detection performance [43].
More modalities soon join the foundation model family,
e.g., ULIP [53] proposed a method to create language, im-
age, and point triplet data, and released a point encoder that
learns to encode a point cloud into a unified feature space
with CLIP. 3D-LLM [16] interacts with 3D scenes using
natural language. It is obvious the combined feature en-
coders can help to fuse features from different modalities
more efficiently.

To adapt a pre-trained network to downstream tasks,
prompt engineering is a promising research direction. The
foundation models have massive amount of parameters, ex-
ceeding billions of parameters [35]. It becomes impractical
to efficiently fine-tune a foundation model when the data
and computational resources are limited [2]. Soft prompts
are tensors, which can be fine-tuned during training while
keeping other model weights unchanged. It can adapt to dif-
ferent tasks without altering original weights, which helps
preserve the foundation models’ capabilities. VPT [20] in-
troduces a set of vision patches at different layers of a ViT-
based model [10].

Motivated by the capabilities of foundation models, we
proposed Prompted Foundational 3D Detector (PF3Det),
which is a visual LiDAR 3D detector as shown in Fig. 1.
It takes the encoder from a foundation model to help ex-
tract aligned feature maps from different modalities. The
multi-modal soft prompts are inserted at multiple levels to
assist the fusion of camera and LiDAR features. PF3Det
achieves the SOTA performance in efficient 3D detection.
According to our experiments, PF3Det increases nuScenes
detection score (NDS) by 1.19% and mAP by 2.42% on the
nuScenes dataset [5] under limited training data.

Our contributions can be summarized below:
• We propose PF3Det, a visual LiDAR 3D detection model

architecture that can efficiently learn to predict high-
quality 3D objects with a small amount of available data.

• To achieve efficient learning, our proposed PF3Det takes
multi-modal foundational features and bridges the modal-
ity domain gaps in the bird-eye-view (BEV) stage by in-
corporating the soft prompts for convolutional layers.

• Our proposed PF3Det achieves the SOTA performance
on the 3D object detection task under limited training
data. We run extensive experiments to explore different
settings and provide guidance on how to select model pa-
rameters.

2. Related work

2.1. 3D visual-LiDAR detection

3D visual-LiDAR detection [3, 29, 32, 52, 63] has become
increasingly popular in autonomous driving and advanced
robotics, taking advantages of the complementary strengths
of camera and LiDAR sensors. LiDAR provides precise
3D spatial awareness, while cameras provide rich color and
texture details. The sensor fusion techniques can be gen-
erally divided into three categories, early fusion, interme-
diate fusion, and late fusion. These categories are based
on when the camera and LiDAR features are fused. Early
fusion first extracts information from the 2D camera, then
adds the information to LiDAR data before LiDAR detec-
tors. Frustum PointNets [41] uses a 2D detector to gener-
ate 2D bounding box (bbox) proposals, and then those 2D
bboxes are used to produce frustum proposals to help 3D
point cloud segmentation. Du et al. [11] proposed simi-
lar frustum-based method, but in later stages, implemented
a model-fitting algorithm to refine point segmentation us-
ing generalized object models. PointPainting [45] first runs
pixel-level segmentation on 2D images, and passes pixel
labels to each points via pixel-to-point correlation. How-
ever, early fusion methods are usually sequential, which in-
creases latency [38]. Late fusion happens after image and
point branches generate their 2D and 3D bboxes separately,
which means that the image-based and point-based mod-
els can run in parallel. Pang et al. proposed CLOCS [39],
which converts 2D and 3D detection candidates into sparse
tensors and generates final results from the sparse tensors.
However, late fusion does not provide advanced integration
of the two modalities, losing the rich semantic features from
the other sensor. Intermediate fusion refers to any fusion
methods that happen at the stages anywhere between early
fusion and late fusion, e.g., at backbone stage [44, 49], at
proposal generation stage [7, 25], etc. This type of detec-
tors enables deeper integration of two modalities, generates
features with higher quality, and witnesses many SOTA 3D
detectors [21, 22, 55]. But one challenge is that the camera



and LiDAR sensor data are heterogeneous, and fusion will
even cause noises if it is not done properly. TransFusion [3]
proposed soft-association to better align the data of these
two sensors. MSMDFusion [21] designed two modules,
Multi-Depth Unprojection (MDU) and Gated, Modality-
Aware Convolution (GMA-Conv), to create alignment and
deep fusion between camera and LiDAR’s features.

2.2. Multi-modal large language models
Multi-modal Large Language Models (MLLMs) are de-
signed to achieve a comprehensive understanding across
various modalities, including audio [18], images [43], point
clouds [27, 53], etc. For visual data, Vision Transformers
[10][61][60] are usually employed as the visual encoders.
The key motivation is that integrating the language modality
can significantly enhance a model’s ability to interpret com-
plex interactions within diverse input modalities [28, 51].
One approach leverages contrastive learning to align repre-
sentations from different modalities to joint feature spaces
[43, 53]. Notable examples, such as CLIP [43] and ALIGN
[19], have demonstrated impressive zero-shot generaliza-
tion abilities, inspiring a range of applications. For instance,
PointCLIP [57] leverages CLIP for zero-shot 3D multi-view
classification. Another approach uses language as a tool for
interacting with other modalities, enabling versatile interac-
tions between human and deep learning models [53].

To the best of our knowledge, given the capability of
MLLMs, there is not yet an MLLM-assisted 3D visual Li-
DAR detection model even with the existence of the models
like Meta Transformer [62], which aligns a wide range of
modalities including 3D point clouds. However, all these
MLLMs only align indoor point clouds for simple objects,
which are more dense and consistent compared to LiDAR
3D scans. Empirically it is difficult to bridge the domain
gap between these 3D point data, which is the main reason
such methods do not exist yet.

2.3. Prompt engineering
Prompt engineering is a recent promising method to bridge
the domain gap between general foundation models and
downstream tasks [26]. This technique gains popularity
when large foundation models demonstrate their capability
to adapt to a wide range of applications [20]. Comparing
to regular fine-tuning, where the knowledge of the founda-
tion models is at the risk of catastrophic forgetting, prompt
engineering can keep the original foundation models un-
changed [50], and it is proven in many fields to be useful
[4, 17, 20, 26, 35, 40, 48]. Generally speaking, prompt en-
gineering can be divided into two categories, hard prompts
and soft prompts. Hard prompt tuning involves manually
engineered and human interpretable inputs, sometimes in
the form of texts [16, 42]. For example, instruction prompt-
ing uses explicit instructions to guide the models to gener-

ate desired response [16, 42]. This approach reduces ambi-
guity and enhances the model’s ability to produce accurate
and relevant results. In-context learning is often used where
rapid adaptation is needed [4, 9]. This method enables the
foundation models to generalize to specific tasks by show-
ing the models just a few examples or prompts, and chain-
of-thought prompting breaks down complex tasks into a se-
ries of simpler steps or instructions within the prompt, al-
lowing the model to process and solve each step sequen-
tially [48]. We refer the readers to these survey papers
[13, 26] for more details. This category of methods requires
careful crafted prompts and is usually labor-intensive [13].
Soft prompt tuning on the other hand uses learnable pa-
rameters [17, 26, 35]. It is a method that has emerged as
an effective way to fine-tune large language models (LLMs)
for specific tasks by modifying the input prompts rather than
adjusting the model’s parameters directly. This approach is
particularly beneficial when the computational resources or
labeled data are limited [13]. These prompt vectors can be
added directly to the input or to any model layers [20]. Dur-
ing fine-tuning, the pre-trained model will be frozen, and
only the prompt vectors are updated to achieve performance
improvements.

3. Prompted foundational 3D detector

We propose Prompted Foundational 3D Detector (PF3Det),
a prompted foundation-assisted 3D visual LiDAR detec-
tor. This method has two modules, a foundational branch,
which utilizes the features from a multi-modal foundation
model encoder to assist regular image features, and multi-
modal soft-prompt adapter, which accepts soft prompts in
the visual-LiDAR BEV layers to improve detection per-
formance. The inputs of our detector are LiDAR points
and their corresponding single- or multi-view images. Our
PF3Det outputs 3D detection bounding boxes. The input
images first go through a regular detector backbone and a
multi-modal foundational image encoder in parallel. Their
features are concatenated to produce combined image foun-
dational features. Then these image features and input point
clouds are fed into a MSMDFusion-based [21] fusion ar-
chitecture to generate multi-modal BEV features. The BEV
features are then integrated with the fine-tuned soft prompts
to produce the final adapted multi-modal features for the
3D bbox prediction. The overall model architecture is illus-
trated in Fig. 2.

3.1. Foundational branch

Regular image backbone can be formulated in Eq. 1, where
Li is the i-th layer, Wi is the linear projection at residual
connection to match dimensions, and xi is the i-th layer
output (x0 is the input images). The multi-scale features xi

will be fused with multi-scale point features.
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Figure 2. The architecture of our proposed PF3Det. The Foundational branch is added in parallel with the original image backbone.
Multi-modal soft-prompt adapter is inserted at the BEV feature level.

xi = Li(xi−1) +Wixi−1, i = 1, 2, ..., N (1)

Multi-modal foundation models have learnt to extract in-
puts from different modalities into unified feature spaces. It
can extract semantic-rich features to better capture object
relations. To help the model extract more high-level infor-
mation from the input images, we add another branch, the
foundational extractor F (·), to obtain the foundational fea-
ture vectors, v = F (x0), v ∈ Rd, where d is the dimension
of the feature vectors. Then the vectors v is concatenated to
the feature maps xN from the last layer of the regular im-
age backbone. Then the concatenated features are fed into a
feature pyramid networks (FPNs) [33] to produce the final
multi-scale image features.

3.2. Multi-modal soft-prompt adapter
By borrowing the features from the image encoder of a
foundation model directly, there will be inevitably some
domain gap between its feature vector and the 3D detec-
tion features. Therefore, we propose the multi-modal soft-
prompt adapter to integrate soft prompts into the detector
architecture.

The original detector’s architecture after multi-modal
BEV features FBEV can be formulated as Eq. 2. FBEV

is obtained by converting the point features, virtual point
features, and image features together into the BEV space.

FBEV is fed into a BEV fusion encoder, EFusion, which is
a combination of four different one-layer CNNs in parallel,
followed by another CNN layer to fuse the outputs together.
The fused features, FBEV Fused ∈ RC×H×W , then are used
to extract multi-scale BEV features, Fi

MSBfeat. (where i is
the scale index), through a BEV backbone BBEV and BEV
FPN detector PBEV .

FBEV Fused = EFusion(FBEV )

(Fi
BEV feat.) = BBEV (FBEV Fused)

(Fi
MSBfeat.) = PBEV (F

i
BEV feat.)

FBEV , FBEV Fused ∈ RC×H×W

(2)

Single-level prompts. The prompts are only added to
one single layer in the detector’s architecture, which re-
quires less computational resources and is faster to train.
Only the single-level prompts, PS ∈ RC0

p×H×W , are con-
catenated to the original BEV feature FBEV to produce a
(C0

p +C)×H×W BEV feature map. We modify the input
dimension of the BEV encoder EFusion to take the updated
BEV feature, denoted as ÊFusion.

The trainable soft prompts have the same spatial dimen-
sion as the feature space. The channel size C0

p is a hyper-
parameter depending on the task complexity. During the
training process, the weights of PS are relaxed, which will



learn the task-specific knowledge. The detailed formulation
is shown in Eq. 3, where ⊕ is the concatenation operation.

Multi-level prompts. Multi-level prompts are added at dif-
ferent levels of the detector. We proposed to add two levels
of soft prompts, at FBEV and FBEV Fused. The dimensions
of FBEV and FBEV Fused are both C × H × W . The de-
tailed formulation is summarized in Eq. 3, where ⊕ is the
concatenation operation.

FBEV Fused = ÊFusion(FBEV ⊕ PS)

(Fi
BEV feat.) = BBEV (Conv(FBEV Fused ⊕ PS2))

(3)

For the first level prompts, we use the same setting as the
single level prompts. For the second level at FBEV Fused,
the prompts, PS2, are concatenated to the fused BEV fea-
tures. Then a single layer CNN, Conv(·) is added to align
the dimension for original BEV backbone networks. In
summary, for the first level soft prompts, we modify the fol-
lowing layers to adapt to the changed channel size, while for
second level, a small convolutional layer is added to com-
press the additional channels.

4. Experiment

Using MSMDFusion [21] as our baseline, we carry out ex-
tensive experiments to compare the performance of our pro-
posed PF3Det and the baseline.

4.1. Dataset

The nuScenes dataset [5] is a comprehensive, large-scale
dataset for advancing autonomous driving research. It pro-
vides 1000 driving scenes of high-quality sensor data col-
lected from Boston, Pittsburgh, Las Vegas, and Singapore.
These scenes are captured in a variety of conditions, includ-
ing different times of day, varying weather scenarios, and
diverse traffic situations. They are divided into training,
validation, and testing sets, with 700, 150, and 150 scenes,
respectively. Each scene is 20 seconds, with each frame
containing one point cloud and six calibrated images.

The entire dataset has around 390k LiDAR point clouds
and 1.4M images, including approximately 1.4M bound-
ing boxes of 23 ground truth categories. The 3D detec-
tion performance for nuScenes is measured in mean Aver-
age Precision (mAP), and nuScenes detection score (NDS),
which is a combination of mAP and other metrics including
the quality of box location, size, orientation, etc. Follow-
ing MSMDFusion [21], we set the voxel size to (0.075m,
0.075m, 0.2m). To evaluate the model performance under
limited amount of training data, we randomly sample 5%
from the original nuScenes training set, and keep all data in
the validation and testing sets.

4.2. Implementation details
For the full version of PF3Det, we use the VoxelNet [64]
as the LiDAR backbone. For the image branch, the orig-
inal image backbone is a ResNet-50 [14] with FPN [33]
pre-trained on ImageNet segmentation task [8] in a Mask-
RCNN segmentation network [15]. We choose the image
encoder with ViT-L [10] as the backbone from CLIP [43]
for the foundational image encoder. The original backbone
Li(·) takes 448 × 800 images as input and produces four
feature maps at different scales. The foundation encoder
F (·) takes 224 × 224 images and produce a feature vector
of size Cffeat.. The foundational feature vector is expanded
to Cffeat. ·W ·H to match the last feature map of the orig-
inal backbone and concatenated to it.

For prompts, our final PF3Det uses 2-level prompts.
Two sets of prompt with size [100, 180, 180] and
[150, 180, 180] are concatenated to the BEV features and
fused BEV features, respectively.

Following the MSMDFusion [21] training strategy, at
stage 1, we train the LiDAR branch for 20 epochs using
the Transfusion [3]. At stage 2, the foundation model as-
sisted model and the prompted model are trained separately
with the LiDAR model for 6 epochs, using a learning rate
of 10−4. At stage 3, the weights from the two multi-modal
detectors are integrated, and we continue to train another 6
epochs with a learning rate of 10−5. At the inference time,
Test-Time Augmentation (TTA) or multi-model ensemble
are not used for efficiency.

4.3. Main results
Table 1 shows the results of our main experiments. We first
test different settings for each modules individually. The
best settings are combined to produce the final PF3Det.

From Table 1. We have three conclusions. (1) From Exp.
ID 1, 3 and 5 results, the proposed two modules, founda-
tion branch and multi-modal soft-prompt adapter, each can
improve visual LiDAR detector performance individually.
Furthermore, they can work jointly and further enhance the
overall performance from Exp. 6. (2) From the experiments
of the foundation features (Exp. ID 2 and 3), we can con-
clude that the output dimension of the foundation encoders
has to suit the original detector. Otherwise, it might reduce
the detection performance. CLIP [47] ResNet50 encoder
outputs the feature vectors of length 1024, but CLIP ViT-
L produces the features of length 768. The ResNet50 fea-
ture vectors have larger feature dimensions, which dilute the
original information. (3) The prompts require careful de-
sign to balance the parameter increase and NDS/mAP score
boost. One layer can achieve the majority of performance
gain, +0.67% NDS. Adding a second layer results in 2.5×
the number of prompt weights, but it only gives a 0.1% NDS
gain as shown in Exp. ID=5. More detailed analysis of each
module and results are shown in the following subsections.



Exp. ID Method Concat-FM FM Backbone Prompt Tuning Prompt Tuning Layers NDS mAP

1 MSMDFusion [21] ✗ N/A ✗ N/A 69.23 64.50

2 PF3Det ✓ ResNet50 [14] ✗ N/A 68.36 62.86
3 PF3Det ✓ ViT-L [10] ✗ N/A 70.21 66.15
4 PF3Det ✗ N/A ✓ 1 69.90 65.66
5 PF3Det ✗ N/A ✓ 2 70.00 66.69
6 PF3Det ✓ ViT-L [10] ✓ 2 70.42 66.92

Table 1. Overall experimental results on nuScenes validation dataset. MSMDFusion results are reproduced by training on 5% of nuScenes
dataset. When we experiment with the foundation model (FM), we use CLIP [47] with either ResNet50 or ViT-L as its backbone.
Acronyms: Exp.: experiment; Concat-FM: concatenation with FM features.
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Figure 3. Foundational Point Encoder. The point features are up-
sampled to match original feature dimensions.

4.4. Foundation feature assisted branch

We run foundation feature encoders from different multi-
modal foundation models. The results are summarized in
Table 2.
Foundation image encoder. As described in the previous
section, foundation image features are added to the image
branch as shown in Fig. 2. We tested the two backbones
provided by CLIP. The larger feature vector from ResNet50
[14] dilutes the original image features and decreases the
performance.
Foundation point encoder. We take the point encoder pro-
vided by ULIP [53], which is able to train a model that
can encode three modalities into a unified feature space.
The point encoder is based on the PointBERT [56]. Since
the features before BEV features in the LiDAR branch are
sparse, the foundation point features are integrated to multi-
modal BEV features, as shown in Fig. 3. To integrate
foundation point feature (fp feat.) vectors [Cfpfeat., 1, 1]
to BEV features [CBEV feat.,W,H], we try to 1) directly
repeat vector values to extend to size [Cfpfeat.,W,H], 2)
apply transpose convolution to upsample the vectors. The

original BEV features have a channel size of 256, which
is the same channel size as the foundation feature vectors.
To avoid overwhelming the original information, we add a
channel compression layer before concatenation to reduce
the foundation point features to size [Ccomp.fpfeat.,W,H].
The ablation study is shown in Table 2. We have three
conclusions: 1) The foundation image features work bet-
ter compared to the point features. 2) The upsampling lay-
ers work better compared to repeating feature vectors. 3)
Ccomp.fpfeat. = 50 has better performance. The reason
for conclusion 1 is the domain gap between the clean in-
door point clouds and outdoor LiDAR point clouds. The
point training data used for ULIP [53] is from ShapeNet
[6], which is clean and evenly sampled from the object sur-
face compared to the LiDAR points which are highly sparse
and uneven.

4.5. Multi-modal soft-prompt adapter
We run experiments to search for the optimal prompt struc-
tures. The soft prompts are added after the stage of multi-
modal BEV features. This allow maximum effect on both
the camera and LiDAR modalities. Most of the soft prompts
are added to the attention-based networks [20], allowing
easy additional prompt patch. However, the BEV fea-
ture part of our 3D detector does not have attention-based
structures. We design soft prompts specifically for the
convolution-based networks. The visual LiDAR 3D detec-
tion is a complicated task, and the difficulty to fuse the two
modalities is non-trivial. Thus we make all the layers af-
ter FBEV learnable and the layers before it to be frozen, as
shown in Fig. 2.

Single-level prompts. First we run experiment to verify
the effectiveness of the soft prompts on our foundational
encoder assisted networks. Only one layer of soft prompts
PS are added to the feature layer of multi-modal BEV fea-
tures FBEV . The structure is shown in Fig. 4 without other
prompts (PS2, PS3, PS4).

The multi-modal BEV features FBEV have the dimen-



Foundation Model Modality Foundation Model Backbone Channel Size Upsample NDS mAP

CLIP [43] image ViT-L [10] 768 ✗ 70.21 66.15
CLIP [43] image ResNet50 [14] 1024 ✗ 68.36 62.86

ULIP [53] point cloud PointBERT [56] 50 ✗ 68.42 64.33
ULIP [53] point cloud PointBERT [56] 100 ✗ 67.89 63.66
ULIP [53] point cloud PointBERT [56] 50 ✓ 69.50 65.53
ULIP [53] point cloud PointBERT [56] 100 ✓ 69.35 65.74

Table 2. Ablation Study with different foundation feature (FM) modality encoders. The column Channel Size stands for foundation feature
channel size. The column Upsample indicates whether upsampling convolutions are used.
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sion of [256, 180, 180], where 256 is the BEV feature chan-
nel size, and 180 is the BEV width and height. The dimen-
sion of the single-level prompt PS is set to [CPS

, 180, 180]
to match the width and height dimension of FBEV . Then
PS is concatenated to FBEV to produce a tensor of size
[256 + CPS

, 180, 180]. The next network layer is a BEV
fusion network, as shown in Fig. 4. Their input dimensions
are adjusted accordingly.

The results of different prompt channel sizes are shown
in Table 3. The performance of the detector increases as
CPS

increases when CPS
<= 100. The best performance

is achieved when the single prompt channel size CPS
=

100. As CPS
increases further, the added prompts start to

overwhelm the original BEV features, which has a size of
256. The detector performance saturates and starts to drop,
but we observe that the over-sized prompts do not degrade
the performance significantly.

Multi-level prompts. From the prior experiments, we ver-
ify that using soft prompts can improve the visual LiDAR
3D detection performance. Further explorations were car-
ried out for multi-level prompts. In total, three levels with
four sets of soft prompts, denoted as PS , PS2, P 1

S3, and
P 2
S3, were tested. We show the full architecture in Fig. 4.

For PS , we follow the single-level prompt setup. The
second level soft prompts, PS2, is also set to match the

width and height dimension of FBEV Fused. Then it is con-
catenated to the fused BEV features of size [256, 180, 180],
to create the combined size of [256 + CPS2

, 180, 180]. The
channel dimension is compressed to the original 256 by a
channel align layer Conv(·), instead of modifying the fol-
lowing BEV backbone layers. The third level of prompts
P i
S3 are added to the backbone BEV features, F i

BEV feat.,
after the BEV backbone. As the other prompts, they are
concatenated to their corresponding multi-scale BEV fea-
tures to create features of size [128 + CP 1

S3
, 180, 180] and

[256+CP 2
S3
, 90, 90]. Like the single level prompts, a modi-

fied FPN P̂BEV (·) is used to adapt the changed dimensions.
The entire structure shown in Fig. 4 is set to be trainable.

The experimental results are shown in Table 3. We run
the multi-level prompts with two different settings. In the
multi-level prompts reloaded section, the models first load
the weights from the trained model corresponding to single-
level prompts. Only the second level prompts are randomly
initialized. The best performance is achieve at CPS2

= 50.
When the channel size of PS2 increases to 150, the perfor-
mance sees a slight decrease, but remains at the same level.
The first significant drop occurs when the channel size in-
creases to 200, but compared to the single level prompts,
they all have slight performance drop.

Another set of experiments in multi-level prompts loads
the TransFusion [3] pre-trained weights as MSMDFusion



Method Channel NDS mAP

MSMDFusion [21] - 69.23 64.50

PF3Det
Single-Level

Prompts

10 69.22 64.63

50 69.68 65.27

100 69.90 65.66

150 69.47 65.16

200 69.70 65.37

500 69.79 65.53

1000 69.83 65.61

PF3Det
Multi-Level

Prompts Reloaded

[100, 200, -, -] 69.68 65.94

[100, 150, -, -] 69.76 65.89

[100, 100, -, -] 69.76 65.88

[100, 50, -, -] 69.87 66.14

PF3Det
Multi-Level

Prompts

[100, 150, -, -] 70.00 66.69

[100, 100, -, -] 68.97 64.50

[100, 50, -, -] 69.38 64.94

[150, 75, 38, 75] 67.66 64.20

[50, 25, 12, 25] 67.45 64.07

Table 3. Detection metrics on different prompt setups. The
column Channel indicates the number of channels for each soft
prompts. Multi-level prompts reloaded here means the final model
is first loaded from a pre-trained single level prompted model and
then goes through the training process. Other models in the table
are trained from TransFusion [3] pre-trained weights. The results
are reported in %.

[21]. So all prompts are randomly initialized. For two level
prompts, the best combination is when CPS

= 100 and
CPS2

= 150. Further experiments were carried out to test
four levels of prompts. But they all decrease the detection
performance significantly by about 1.8%. One of the chan-
nel sizes, [50, 25, 12, 25], has less prompt weights in total,
compared to the best prompt channel sizes [100, 150,−,−],
so the four prompts are not overwhelming the original de-
tector. The decrease indicates that the prompts at later lay-
ers, e.g., multi-scale BEV feature layers, affect the detection
performance negatively.

5. Conclusion

In this paper, we proposed PF3Det, a novel foundation fea-
ture assisted, prompted visual LiDAR 3D detector. Our pro-
posed modules integrate foundation features learned from
multi-modality pre-training and further bridge domain and

modality gaps by inserting soft prompts. Extensive experi-
ments support that our PF3Det achieves the state-of-the-art
results under limited amount of training data.
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