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Abstract

Audio-Visual Video Parsing (AVVP) entails the challeng-
ing task of localizing both uni-modal events (i.e., those oc-
curring exclusively in either the visual or acoustic modal-
ity of a video) and multi-modal events (i.e., those occur-
ring in both modalities concurrently). Moreover, the pro-
hibitive cost of annotating training data with the class la-
bels of all these events, along with their start and end
times, imposes constraints on the scalability of AVVP tech-
niques unless they can be trained in a weakly-supervised
setting, where only modality-agnostic, video-level labels
are available in the training data. To this end, recently pro-
posed approaches seek to generate segment-level pseudo-
labels to better guide model training. However, the ab-
sence of inter-segment dependencies when generating these
pseudo-labels and the general bias towards predicting la-
bels that are absent in a segment limit their performance.
This work proposes a novel approach towards overcom-
ing these weaknesses called Uncertainty-weighted Weakly-
supervised Audio-visual Video Parsing (UWAV). Addition-
ally, our innovative approach factors in the uncertainty as-
sociated with these estimated pseudo-labels and incorpo-
rates a feature mixup based training regularization for im-
proved training. Empirical results show that UWAV outper-
forms state-of-the-art methods for the AVVP task on mul-
tiple metrics, across two different datasets, attesting to its
effectiveness and generalizability.

1. Introduction

Events that occur in the real world, often leave their imprint
on the acoustic and visual modalities. Humans rely heavily
on the synergy between their senses of sight and hearing to
interpret such events. Audio-visual learning, which seeks
to equip machines with a similar synergy, has emerged as
one of the most important research areas within the multi-
modal machine learning community. It aims to leverage
both these senses (modalities) jointly, to enhance machine
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Figure 1. A weakly-supervised AVVP task example. Events,
considered in this task, might be unimodal or multimodal. Even
multimodal events, may not be temporally aligned in the audio
and visual modalities, e.g. the cello might only be visible in the
first few seconds but might produce music, throughout the video.

perception and understanding of real-world events. Various
audio-visual learning tasks have been studied towards this
end, including audio-visual segmentation [19, 49], sound
source localization [24, 32], audio-visual event localiza-
tion [29, 34], and audio-visual sound separation [3, 7, 43].
However, many of these tasks assume that audio and visual
streams would always be temporally aligned. This assump-
tion often fails in real-world scenarios, where the sonic and
visual imprints of events may not perfectly overlap. For
instance, one might hear an emergency siren approaching
from a distance before it appears in the field of view.

In this work, in order to better understand the events
occurring in a video, we explore the task of Audio-Visual
Video Parsing (AVVP) [35]. Its goal is to recognize and lo-
calize all audio, visual, and audio-visual events occurring in
the video. See Figure 1 for an example of this task. The task
setup is to perform this prediction for every one-second seg-
ment of a video. This task poses two principal challenges,
from a machine learning standpoint: (i) The audio and vi-
sual events, that occur, might not be temporally aligned,



e.g. if an event becomes audible before its source enters
the camera field of view, or the sound source is not visi-
ble at all, and (ii) due to the high costs of annotating video
segments with per-segment labels, only modality-agnostic,
video-level labels are provided during training, i.e., these
labels specify which events occur in a video but lack details
about the segments or the modality in which they occur.

Prior works in the area can be grouped into two orthog-
onal research directions. The first focuses on enhancing
model architectures [23, 45, 51]. Despite advancements in
this direction, the absence of fine-grained labels to guide
the model during training continues to pose an impediment
towards the generalizability of such models. As a result,
recent approaches have focused on the second direction
of research which aims at generating richer pseudo-labels
for improved training, either at the video-level [8, 39] or
segment-level [9, 17, 26, 50]. In particular, Rachavarapu
et al. [26] propose prototype-based pseudo-labeling (PPL),
which seeks to train a pseudo-label generation module in
conjunction with a core inference module. However, due to
the lack of sufficient training data, this method struggles to
generalize. On the other hand, VPLAN [50], VALOR [17],
and LSLD [9] leverage large-scale pre-trained foundation
models, such as CLIP [28] and CLAP [40], along with
ground-truth video-level labels to generate segment-level
pseudo-labels for each of the two modalities. Audio/Visual
segments (e.g. the audio corresponding to the segment in
question and the visual frame at the center of the segment)
are fed into CLAP/CLIP, one segment at a time, to gener-
ate these pseudo-labels. Despite the significant improve-
ment that these pseudo-label generation methods achieved,
the correctness of the generated labels is still limited, con-
strained primarily by the lack of understanding of inter-
segment dynamics. For instance, if a crowd is cheering in a
segment of the video, it is more likely that the crowd might
also be clapping right before or after.

To address the oversight of inter-segment dependen-
cies and other shortcomings in existing pseudo-label
generation methods, we introduce a novel, uncertainty-
based, weakly-supervised, video parsing model called
UWAV (Uncertainty-weighted Weakly-supervised Audio-
visual Video Parsing), capable of generating improved
segment-level pseudo-labels for better training of the in-
ference module. We resort to transformer modules [38] to
equip UWAV with the ability to capture temporal relation-
ships between segments and pre-train it on a large-scale,
supervised audio-visual event localization dataset [12].
Subsequently, this pre-trained model is used to generate
segment-level pseudo-labels for each modality on a target,
small-scale dataset which only provides weak (i.e., video-
level) supervision. Such a design permits a more holis-
tic understanding of the video, resulting in more accurate
pseudo-labels. Additionally, UWAV factors in the uncer-

tainty associated with these estimated pseudo-labels in its
optimization. That uncertainty is the result of the shift
in the domain of the target dataset, insufficient model ca-
pacity, etc. and is computed at training time as the con-
fidence scores associated with these labels. To further
enhance the model’s ability to learn in this small-scale,
weakly-supervised data regime, we also employ a feature
mixup strategy. This approach adds more regularization
constraints by training on mixed segment features alongside
interpolated pseudo-labels, which not only lessens the in-
fluence of noise but also enriches the training data, thereby
reducing overfitting. Moreover, UWAV addresses a criti-
cal class imbalance issue in the pseudo-label enriched train-
ing data, viz. most event classes in any given segment of
a video are absent/negative (i.e., they do not occur), while
only a handful of them do. This creates a natural bias in the
training set, making it difficult to learn the positive events.
To counter this, we propose a class-frequency aware re-
weighting strategy that lays greater emphasis on the accu-
rate classification and localization of positive events. By
incorporating these components into its design, our pro-
posed method (UWAV) outperforms competing state-of-
the-art approaches across two different datasets, viz. Look,
Listen, and Parse (LLP) [35] and the Audio-Visual Event
Localization (AVE) [34], on multiple evaluation metrics.

In summary, our contributions are the following:
• We introduce a novel, weakly-supervised method called

UWAV, capable of synthesizing temporally coherent
pseudo-labels for the AVVP task.

• To the best of our knowledge, ours is the first method for
the AVVP task, which factors in the uncertainty associ-
ated with the estimated pseudo-labels while also regular-
izing it with a feature mixup strategy.

• UWAV outperforms competing state-of-the-art ap-
proaches for the AVVP task, across two different datasets
on multiple metrics which attest to its generalizability.

2. Related Works
Audio-Visual Learning: Audio-visual learning has
emerged as an area of active research, aiming to develop
models that synergistically integrate information from both
audio and visual modalities for improved perception and
understanding. Towards this end, various audio-visual
tasks have been explored by the community so far, such as
audio-visual segmentation [19, 22, 42, 49], sound source
localization [15, 16, 24, 32], event localization [29, 34, 48],
navigation [4–6, 21, 44, 46], generation [25, 30, 41],
question answering [11, 18, 33, 47], and sound source
separation [2, 7, 36, 43]. In this work, we focus on the
task of audio-visual video parsing (AVVP) where the
goal is to temporally localize events occurring in a video.
Unlike many other audio-visual learning tasks, AVVP
does not assume that events are always aligned across



modalities. Some events could be exclusively uni-modal
while others may have an audio-visual signature, which
requires complex reasoning.

Audio-Visual Video Parsing (AVVP): To address the
challenges of the AVVP task [17, 26, 35], Tian et al.
[35] proposed a Hybrid Attention Network (HAN) and a
learnable Multi-modal Multiple Instance Learning (MMIL)
pooling module. The HAN model facilitates the exchange
of information within and across modalities using self-
attention and cross-attention layers, while the MMIL pool-
ing module aggregates segment-level event probabilities
from both modalities to produce video-level probabilities.
Building on this foundation, recent works advanced the field
from the following two perspectives. The first group of
studies [23, 45, 51] focuses on enhancing model architec-
tures. In particular, Mo and Tian [23] proposed the Multi-
modal Grouping Network (MGN) to explicitly group se-
mantically similar features within each modality to improve
the reasoning process, while Yu et al. [45] proposed the
Multi-modal Pyramid Attentional Network (MM-Pyramid)
to capture events of varying durations by extracting features
at multiple temporal scales. Our proposed method is orthog-
onal to this line of research and can be integrated with any
of these backbones.

The second direction focuses on generating pseudo-
labels for improved training, either at the video-level [8,
39] or the segment-level [9, 17, 26, 50]. VPLAN [50],
VALOR [17], and LSLD [9] utilize pre-trained CLIP [28]
and CLAP [40] along with ground-truth video-level labels
to predict pseudo-labels for each modality on a per-segment
basis. In contrast, PPL [26] uses the HAN model itself to
generate pseudo-labels by constructing prototype features
for each class and assigning labels to each segment based on
the similarity between its feature and the prototype features.
While these pseudo-label generation methods have substan-
tially improved model performance on the AVVP task, they
still exhibit some limitations. For instance, to derive accu-
rate pseudo-labels, PPL might require a large enough train-
ing set to learn good prototype features, which might pose
challenges when applied to smaller datasets. Our proposed
method overcomes this problem. On the other hand, meth-
ods that leverage CLIP and CLAP to generate pseudo-labels
often ignore temporal relationships between segments or
the uncertainty associated with these labels. Our work also
seeks to plug this void.

3. Preliminaries
Problem Formulation: The AVVP task [35] aims to lo-
calize all visible and/or audible events in each one-second
segment of a video. Specifically, an audible video is split
into T one-second segments, denoted as {Vt, At}Tt=1. Each
segment is annotated with a pair of ground-truth labels

yvt ∈ {0, 1}C , yat ∈ {0, 1}C , where yvt denotes visual
events, yat denotes audio events, and C denotes the total
number of events in the pre-defined event set of the data.
However, owing to the weakly-supervised nature of the task
setup (yvt , y

a
t ) are unavailable during training. Instead, only

the modality-agnostic, video-level labels y ∈ {0, 1}C are
available, where 1 indicates the presence of an event at any
time (either in the audio or visual stream or both) while 0
indicates an event’s absence in the video.

Pseudo-Label Based AVVP Framework: The Hybrid
Attention Network (HAN) [35] is a commonly used model
for the AVVP task. The model works by first utilizing
pre-trained visual and audio backbones to extract features
from the visual and audio segments respectively, which are
then projected to two d-dimensional feature spaces. The re-
sulting visual segment-level features are denoted by F v =
{fv

t }Tt=1 ∈ RT×d, while the audio segment-level features
are denoted by F a = {fa

t }Tt=1 ∈ RT×d. These features are
provided as input to the HAN model. In the model, informa-
tion across segments within a modality and across modali-
ties is exchanged through self-attention and cross-attention
layers, as shown below:

f̃v
t = fv

t + Attn(fv
t , F

v, F v)︸ ︷︷ ︸
Self-Attention

+Attn(fv
t , F

a, F a)︸ ︷︷ ︸
Cross-Attention

, (1)

f̃a
t = fa

t + Attn(fa
t , F

a, F a)︸ ︷︷ ︸
Self-Attention

+Attn(fa
t , F

v, F v)︸ ︷︷ ︸
Cross-Attention

, (2)

where Attn(Q,K, V ) denotes the standard multi-head at-
tention mechanism [38]. Finally a classifier, shared across
both modalities, transforms the visual segment-level fea-
tures F̃ v = {f̃v

t }Tt=1 ∈ RT×d (resp. audio segment-level
features F̃ a = {f̃a

t }Tt=1) into visual segment-level log-
its {zvt }Tt=1 ∈ RT×C (resp. audio segment-level logits
{zat }Tt=1). Segment-level probabilities {pvt }Tt=1, {pat }Tt=1 ∈
RT×C are then obtained by applying the sigmoid function
on {zvt }Tt=1 and {zat }Tt=1.

Since, only video-level labels y are available during
training, Tian et al. [35] introduce an attentive MMIL pool-
ing module to learn to predict video-level probabilities p ∈
RC :

W v,a
modal = Softmaxmodal(FCmodal(F̃

v,a)), (3)

W v,a
time = Softmaxtime(FCtime(F̃

v,a)), (4)

where FCmodal and FCtime are two learnable fully-
connected layers, F̃ v,a = Stack(F̃ v, F̃ a) ∈ R2×T×d de-
notes the stacked visual and audio features along the first
dimension, Softmaxmodal(·) denotes the softmax opera-
tion along the modality dimension (i.e., across v, a), while
Softmaxtime(·) denotes the softmax operation along the



Classifier

Visual
Temporal-aware

Transformer (VTT)

...

... inner
product

Audio
Temporal-aware

Transformer (ATT)

inner
product ...

...
CLIP Feats. CLAP Feats.

Stage 1:Training the pseudo label
models on larger dataset

element-wise
product

MMIL Pooling

HAN

Classifier

... ...
Visual Feats.

Stage 2: Uncertainty-weighted
training on target dataset

Audio Feats.

VTT

...
CLIP Feats.

ATT

...
CLAP Feats.

Feature Mixup

inner
product ... inner

product...

... ...

Figure 2. UWAV framework: In stage 1, pseudo-label generation modules are equipped with the ability to capture temporal relationships
between segments by pre-training on a large-scale, supervised, audio-visual event localization dataset. In stage 2, temporally coherent,
uncertainty-weighted pseudo-labels, derived from the pre-trained pseudo-label generation module, are used to guide the learning of the
inference model (HAN) aided by a class-balanced loss re-weighting and uncertainty-weighted feature mixup strategy. Note that we use the
feature mixup strategy in both modalities while we only show the breakdown of the mixup operation for the audio modality.

temporal dimension (i.e., across 1, . . . , T ). Video-level
probabilities p ∈ RC are then obtained via:

p =
∑

m={v,a}

T∑
t=1

Wm,t
modal ⊙Wm,t

time ⊙ pmt , (5)

where ⊙ denotes the element-wise product. The HAN
model is then optimized with the binary cross-entropy
(BCE) loss between the estimated video-level probabilities
p and video-level labels y: Lvideo = BCE(p, y).

4. Proposed Approach
In this section, we detail our proposed approach (UWAV).
At a high level, UWAV works by generating better segment-
level pseudo-labels to improve the training of a multi-modal
transformer-based inference module, e.g. HAN. Moreover,
UWAV factors in the uncertainty associated with these
pseudo-labels, addresses the imbalance in the training data,
and introduces self-supervised regularization constraints,
which all lead to better performance. Figure 2 shows an
overview of our proposed framework.

4.1. Temporally-Coherent Pseudo-Label Synthesis

One major issue that plagues prior works, based on pseudo-
label generation [9, 17, 50], is that they do not capture
the temporal dependencies between neighboring segments
when generating the pseudo-labels. That is, the generated
pseudo-labels are not temporally coherent. To plug this
void, we propose to incorporate transformer modules [38]
into the pseudo-label generation pipeline, which maps
CLIP/CLAP encodings of a segment’s visual frame/audio
to pseudo-labels. Specifically, two separate transformers
are introduced, one each for the visual/audio pseudo-label
synthesis modules.

Pre-Training: Training transformers often requires suffi-
ciently large training data while datasets commonly used
for the weakly-supervised AVVP task are relatively small.
To mitigate this challenge, we propose to first pre-train
the transformer-equipped pseudo-label generation module
on a large-scale, supervised, audio-visual event localization
dataset – the UnAV [12] dataset. Specifically, given an au-
dible video of duration T ′ seconds from the pre-training
dataset, we split the video into T ′ one-second segments
{V ′

t , A
′
t}T

′

t=1, with corresponding audio-visual event labels
yavt

′ ∈ {0, 1}C′
, where 1 indicates the presence of an event

in both modalities and 0 its absence in at least one modal-
ity, while C ′ denotes the total number of event classes in the
pre-training dataset. Next, the video frame at the temporal
center of the visual segment is transformed into visual fea-
tures Gv

0
′ = {gv0,t′}T

′

t=1 ∈ RT ′×d1 with CLIP’s [28] image
encoder. These features are then fed into the corresponding
transformer of the visual stream, consisting of L encoder
blocks, each block containing a self-attention layer, Layer-
Norm [1] (LN), and a 2-layer feed-forward network (FFN):

G̃v
l
′ = LN(Gv

l
′ + Attn(Gv

l
′, Gv

l
′, Gv

l
′)), (6)

Gv
l+1

′ = LN(G̃v
l
′ + FFN(G̃v

l
′)). (7)

Concurrently, we convert each event category label in the
pre-training dataset into a textual event feature eCLIP

c
′ ∈ Rd1

by filling in the pre-defined caption template: “A photo of
<EVENT NAME>” with the corresponding event name
and passing it to CLIP’s text encoder. Equipped with the
visual segment-level features Gv

L
′ = {gvL,t

′}T ′

t=1 ∈ RT ′×d1

and the textual event features ECLIP′ = {eCLIP
c

′}C′

c=1 ∈
RC′×d1 , we derive visual segment-level logits ẑvt

′ ∈ RC′

and probabilities p̂vt
′ as follows:

p̂vt
′ = Sigmoid(ẑvt

′), ẑvt
′ = ECLIP′ · gvL,t

′⊤. (8)



Similar operations are performed in the audio pseudo-
label generation pipeline. The raw waveforms correspond-
ing to the 1-second audio segments are transformed into au-
dio features Ga

0
′ ∈ RT ′×d2 with CLAP’s [12] audio encoder

and fed into the corresponding transformer consisting of L
encoder blocks. Correspondingly, the textual event features
ECLAP′ ∈ RC′×d2 are generated with the caption template:
“This is the sound of <EVENT NAME>” by passing it
through CLAP’s text encoder. Audio segment-level logits
ẑat

′ ∈ RC′
and probabilities p̂at

′ can then be derived in the
same manner: p̂at

′ = Sigmoid(ẑat
′), ẑat

′ = ECLAP′ · gat ′⊤.
Since the events occurring in the pre-training dataset

(UnAV) are audio-visual, we multiply the segment-level vi-
sual and audio event probabilities to enforce the predicted
labels to be multi-modal in nature: {p̂avt ′}T ′

t=1 ∈ RT ′×C′
.

This network is then trained with the binary cross-entropy
(BCE) loss:

Ltemp = BCE(p̂avt
′, yavt

′), p̂avt
′ = p̂vt

′ ⊙ p̂at
′. (9)

Pseudo-Label Generation on Target Dataset: With the
pre-trained pseudo-label generation modules in place, we
proceed to employ them for the pseudo-label generation
process in the target dataset for the AVVP task. Specifically,
the center frame of each of the visual segments {Vt}Tt=1 of
the target dataset are passed into CLIP’s image encoder,
whose output is passed into the pre-trained visual trans-
former to generate segment features Gv

L = {gvL,t}Tt=1 ∈
RT×d1 . At the same time, the caption template: “A photo of
<EVENT NAME>” is used to obtain textual features cor-
responding to each of the event classes in the target dataset
for the AVVP task: ECLIP ∈ RC×d1 . Segment-level visual
logits ẑvt ∈ RC can be derived by computing their inner
product. We also pre-define class-wise visual thresholds
θv ∈ RC to transform segment-level visual logits into bi-
nary pseudo-labels ŷvt ∈ RC :

ŷvt = 1{ẑv
t >θv} ⊙ y, ẑvt = ECLIP · gvL,t

⊤, (10)

where y denotes the ground-truth video-level labels, 1{·} is
the indicator function which returns a value of 1 when the
condition is true otherwise 0, and ⊙ denotes the element-
wise product operation. The ⊙ operation zeroes out the
predictions of event classes absent in the video-level label.

A similar pseudo-label generation process is employed
on the acoustic side. Raw waveforms of audio segments are
first fed into CLAP’s audio encoder and then into the pre-
trained audio transformer. The event names of the classes
in the target dataset for the AVVP task are filled in the cap-
tion template: “This is the sound of <EVENT NAME>” to
generate textual event features: ECLAP ∈ RC×d1 . Segment-
level audio logits ẑat ∈ RC and binary pseudo-labels ŷat ∈
RC are then derived using class-wise thresholds θa ∈ RC .

With binary segment-level pseudo-labels for both modal-
ities ŷvt , ŷ

a
t and the predicted probabilities from the infer-

ence module (HAN) p̂vt , p̂
a
t in place, the inference module

can be trained using the binary cross-entropy loss as shown:

Lhard = BCE(pvt , ŷ
v
t ) + BCE(pat , ŷ

a
t ). (11)

4.2. Training with Pseudo-Label Uncertainty

While pseudo-labels do provide additional supervision for
better training of the inference module, they could po-
tentially be noisy, leading to occasionally incorrect train-
ing signals. To ameliorate this problem, we propose an
uncertainty-weighted pseudo-label training scheme to im-
prove the robustness of the learning process. Instead of sim-
ply training with the binary pseudo-labels ŷvt , ŷ

a
t , we lever-

age the confidence of the pseudo-label estimation module
(associated with the predicted pseudo-label) to weigh the
training signal for the inference module. This confidence
score serves as a measure of the pseudo-label generation
module’s uncertainty of its prediction. This may be repre-
sented as:

p̂vt =Sigmoid(ẑvt −θv)⊙ y; p̂at =Sigmoid(ẑat −θa)⊙ y.
(12)

In other words, considering the visual pseudo-label genera-
tion pipeline as an example, the farther the logit ẑvt is from
the threshold θv , whether much lower or higher, the more
confident the pseudo-label generation module is about the
label it predicts (either approaching 0 or 1). Conversely,
the closer the logit is to the threshold, the less the cer-
tainty about the correctness of the pseudo-labels (probabil-
ities closer to 0.5). An analogous explanation also holds
for the audio pseudo-labels. With the uncertainty-weighted
pseudo-labels in place, the inference module (HAN) can
be trained with the following uncertainty-weighted pseudo-
label loss:

Lsoft = BCE(pvt , p̂
v
t ) + BCE(pat , p̂

a
t ). (13)

4.3. Uncertainty-weighted Feature Mixup

Due to the lack of full supervision for the weakly-
supervised AVVP task, we explore the efficacy of additional
regularization via self-supervision to help the models gener-
alize better. Towards this end, prior pseudo-label generation
approaches [26, 39] often employ contrastive learning as a
tool to better train the inference module. However, due to
the inherent noise in the estimated pseudo-labels, positive
samples and negative samples may be mislabeled, decreas-
ing the effectiveness of the self-supervisory training. As
an alternative, in this work, we explore the effectiveness
of feature mixing, as a self-supervisory training signal for
additional regularization. In this setting, we mixup the esti-
mated features of any two segments, additively, and train the
model to predict the union of the labels of the two segments.
However, since the labels in our setting are noisy, the mixed
feature is assigned a label derived from a weighted sum of



the uncertainty-weighted pseudo-labels of each of the two
segment features. This is illustrated below:

f̄v
ti,tj = λf̃v

ti+(1−λ)f̃v
tj , p̄vti,tj = λp̂vti+(1−λ)p̂vtj (14)

f̄a
ti,tj = λf̃a

ti+(1−λ)f̃a
tj , p̄ati,tj = λp̂ati+(1−λ)p̂atj , (15)

where λ ∼ Beta(α, α) and α is a hyper-parameter control-
ling the Beta distribution, and ti and tj indicate two segment
indices in a batch of video segments.

After mixing the uni-modal segment-level features, we
pass them through the classifier of the inference mod-
ule and apply the sigmoid function to the output, obtain-
ing mixed segment-level event probabilities pmix−v

t and
pmix−a
t . These are used to train the inference model with

the uncertainty-aware mixup loss, as shown below:

Lmix = BCE(pmix−v
t , p̄vt ) + BCE(pmix−a

t , p̄at ). (16)

4.4. Class-balanced Loss Re-weighting

Besides the aforementioned challenges of the AVVP task,
most of the events in the event set are absent in the pseudo-
labels of any (segment of a) video (i.e., most event classes
are negative events) and only a few events are present (i.e.,
positive events are much fewer in number). As a result, the
model is dominated by the loss from the negative events.
When trained without factoring in this bias, the classifier
tends to overfit the negative labels and ignore the positive
ones. To address this class imbalance issue, we introduce
a class-balanced loss re-weighting strategy to re-balance
the importance of the losses from the negative and posi-
tive events for the uncertainty-weighted pseudo-label loss.
Specifically, the loss from the positive events is multiplied
by a weight proportional to the frequency of the segments
with the negative events in the pseudo-labels, while the loss
from the negative events is multiplied by a weight propor-
tional to the frequency of the segments with the positive
events in the pseudo-labels, as shown below:

Lw−soft =
∑

m∈{v,a}

wm
pos · y · BCE(pmt , p̂mt ) +

wm
neg · (1−y) · BCE(pmt , p̂mt ), (17)

wm
pos =

∑N
i=1

∑T
t=1

∑C
c=1(1− ŷmi,t,c)

NTC
×W, (18)

wm
neg =

∑N
i=1

∑T
t=1

∑C
c=1 ŷ

m
i,t,c

NTC
, (19)

where N denotes the number of videos in the training set,
and W is a hyper-parameter.

In summary, the inference module is trained on the
AVVP task with the proposed class-balanced re-weighting,
applied to the uncertainty-weighted classification loss, and
the uncertainty-weighted feature mixup loss, as shown be-
low:

Ltotal = Lw−soft + Lmix + Lvideo. (20)

5. Experiments
We assess the performance of UWAV empirically across
two challenging datasets and report its performance, com-
paring it with existing state-of-the-art approaches both
quantitatively and qualitatively. Additionally, through mul-
tiple ablation studies, we bring out the effectiveness of the
different elements of our proposed approach and the choices
of different hyper-parameters. For additional details, abla-
tion studies, and more qualitative results, we refer the reader
to our supplementary material.

5.1. Experimental Setup

Datasets: We evaluate all competing methods on the
Look, Listen, and Parse (LLP) dataset [35], which is the
principal benchmark dataset for the AVVP task. The dataset
consists of 11, 849 video clips sourced from YouTube. Each
clip is 10 seconds long and represents one or more of 25 di-
verse event categories, such as human activities, animals,
musical instruments, and vehicles. The dataset is split into
training, validation, and testing sets, following the official
split [35]: 10, 000 videos for training, 649 videos for vali-
dation, and 1, 200 videos for testing. While the training set
of this dataset is only associated with video-level labels of
the events, the validation and testing split is labeled with
segment-level event labels for evaluation purposes. Addi-
tionally, to demonstrate the generalizability of our method,
we conduct a similar study on the Audio Visual Event (AVE)
recognition dataset [34]. The AVE dataset consists of 4, 143
video clips crawled from YouTube, each 10 seconds long.
It is split into 3, 339 videos for training, 402 for validation,
and 402 for testing. It includes 29 event categories encom-
passing human activities, animals, musical instruments, ve-
hicles, and a “background” class (i.e., no event occurs). Un-
like the LLP dataset, each video in the AVE dataset con-
tains only one audio-visual event. Here too, the training
data is only provided with video-level labels while the vali-
dation and test splits are annotated with ground-truth event
labels for each one-second segment, which either is a spe-
cific audio-visual event or “background”.

Metrics: For the LLP dataset, following the standard
evaluation protocol [35], all models are evaluated using
macro F1-scores calculated for the following event types:
(i) audio-only (A), (ii) visual-only (V), and (iii) audio-visual
(AV). Type@AV (Type) and Event@AV (Event) are two ad-
ditional metrics that evaluate the overall performance of the
model, where Type@AV is the mean of the F1-scores for
the A, V, and AV events, while Event@AV is the F1-score
of all events regardless of the modality in which they occur.
Evaluations are conducted at both the segment-level and the
event-level. At the segment-level, the model’s predictions
are compared with the ground truth on a per-segment ba-
sis. At the event-level, consecutive positive segments for



Table 1. Comparison with state-of-the-arts methods on the LLP dataset. Best performances are in bold, second-best in underlined.

Method Segment-level Event-level
A V AV Type Event A V AV Type Event

HAN [35] 60.1 52.9 48.9 54.0 55.4 51.3 48.9 43.0 47.7 48.0
MA [39] 60.3 60.0 55.1 58.9 57.9 53.6 56.4 49.0 53.0 50.6

JoMoLD [8] 61.3 63.8 57.2 60.8 59.9 53.9 59.9 49.6 54.5 52.5
CMPAE [10] 64.2 66.4 59.2 63.3 62.8 56.6 63.7 51.8 57.4 55.7

PoiBin [27] 63.1 63.5 57.7 61.4 60.6 54.1 60.3 51.5 55.2 52.3
VPLAN [50] 60.5 64.8 58.3 61.2 59.4 51.4 61.5 51.2 54.7 50.8
VALOR [17] 61.8 65.9 58.4 62.0 61.5 55.4 62.6 52.2 56.7 54.2

LSLD [9] 62.7 67.1 59.4 63.1 62.2 55.7 64.3 52.6 57.6 55.2
PPL [26] 65.9 66.7 61.9 64.8 63.7 57.3 64.3 54.3 59.9 57.9

CoLeaf [31] 64.2 64.4 59.3 62.6 62.5 57.6 63.2 54.2 57.9 55.6
LEAP [51] 62.7 65.6 59.3 62.5 61.8 56.4 63.1 54.1 57.8 55.0

UWAV (Ours) 64.2 70.0 63.4 65.9 63.9 58.6 66.7 57.5 60.9 57.4

the same event are grouped together as a single event. The
F1-score is then computed using a mIoU threshold of 0.5.
For the AVE dataset, we follow Tian et al. [34] and use ac-
curacy as the evaluation metric. An event prediction of a
segment is considered correct if it matches the ground-truth
label for that segment.

Implementation Details: In line with prior work [35],
each 10-second video in both datasets is split into 10 seg-
ments of one second each, where each segment contains 8
frames. For the LLP dataset, pre-trained ResNet-152 [13]
and R(2+1)D-18 [37] are used to extract 2D and 3D vi-
sual features, respectively. The pre-trained VGGish [14]
network is used to extract features from the audio, sam-
pled at 16KHz. For the AVE dataset however, akin to
prior work [17], we extract visual features from pre-trained
CLIP and R(2+1)D while CLAP is used to embed the au-
dio stream. For both datasets, we set the number of en-
coder blocks L in the temporal-aware model to 5, α for the
Beta distribution in the feature mixup strategy to 1.7, and
W in the class-balanced loss re-weighting step to 0.5. The
pseudo-label generation modules and the inference model
(HAN) are trained with the AdamW optimizer [20]. For im-
proved performance on the AVE dataset, we replace p̂ati , p̂

a
tj

in Eq. 15 with ⌈p̂ati⌉, ⌈ŷ
a
tj⌉ and make corresponding modifi-

cations in the visual counterparts as well.

Baselines: We demonstrate the effectiveness of UWAV
by comparing against an extensive set of baselines. For
the LLP dataset, this includes video-level pseudo-label gen-
eration methods (MA [39], JoMoLD [8]), segment-level
pseudo-label generation methods (VALOR [17], LSLD [9],
PPL [26]), and the recently released works (CoLeaf [31],
LEAP [51]). On the other hand, for the AVE dataset,
baseline approaches with publicly available implementa-
tion, which use the state-of-the-art feature backbones (akin
to ours), such as HAN [35] and VALOR [17] are used.

5.2. Results

Comparison with Previous Methods on LLP: As
shown in Table 1, UWAV surpasses previous methods,
across almost all metrics. Notably, we achieve an F-score
of 70.0 on the segment-level visual event, 65.9 on the
segment-level Type@AV, and 66.7 on the event-level vi-
sual event metric. This corresponds to a gain of 1.1% on
segment-level Type@AV F-score and a 1% improvement on
event-level Type@AV F-score, over our closest competitor
PPL [26]. Of particular note, is the fact that our segment-
level and event-level F-scores improve by more than 3%,
over PPL, for visual events. When compared to other re-
cently published works, such as VALOR [17], CoLeaf [31]
and LEAP [51], UWAV outperforms them by up to 3%
on both segment and event-level Type@AV F-score while
gains on visual events are up to 5% on segment-level F-
score.

These observations are consistent with our qualitative
comparisons, as well. In the example on the left of Figure 3,
our model successfully recognizes and temporally localizes
the lawn mower event visually, whereas VALOR [17] (a re-
cent state-of-the-art approach with publicly available imple-
mentation) misclassifies it as a chainsaw. Additionally, our
model also accurately localizes the intermittent sound of the
lawn mower. In contrast, VALOR not only misclassifies the
sound of the lawn mower as that of a chainsaw but also in-
correctly predicts that someone is talking in the video. In
the example on the right of Figure 3, our model does not
err in recognizing either the visual presence or the audio
presence of the telephone, while VALOR fails to accurately
predict the events in either modality.

Comparison with Previous Methods on AVE: To
demonstrate the generalizability of our method, we evalu-
ate UWAV on the AVE [34] dataset and compare its per-
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Figure 3. Comparison between predictions by UWAV and competing AVVP methods on the LLP dataset. “GT”: ground truth.

Table 2. Model performances on the AVE dataset. CLIP,
R(2+1)D-18, and CLAP are used as feature backbones.

Method HAN [35] VALOR [17] UWAV (Ours)
Acc.(%) 75.3 80.4 80.6

Table 3. Accuracy of the generated pseudo-labels on LLP.

Method Segment-level
A V AV Type Event

VALOR [17] 80.5 61.7 55.7 66.0 74.6
PPL [26] 61.7 61.8 57.5 60.6 59.4

UWAV (Ours) 78.4 74.5 65.5 72.8 78.4

formance with that of previous works. From Table 2, we
observe that with the same backbone features, UWAV sur-
passes VALOR, our closest competitor, even on this small-
scale dataset.

Accuracy of the Generated Pseudo-Labels: To evalu-
ate the efficacy of our pseudo-label generation pipeline,
we compare the accuracy of our generated pseudo-labels
against those obtained from competing methods (with pub-
licly available implementation) [17, 26] on the test set of
the LLP dataset. As shown in Table 3, our pre-trained
temporally-dependent pseudo-label generation scheme gen-
erates more accurate segment-level pseudo-labels than pre-
vious methods, by up to 6% on the segment-level Type@AV
F-score, attesting to the advantages of factoring in inter-
segment temporal dependencies.

5.3. Ablation Study

To demonstrate the potency of the different elements of our
proposed method, UWAV, we conduct ablation studies. In
particular, the proposed uncertainty-weighted pseudo-label
based training, the uncertainty-weighted feature mixup
scheme, and the class-balanced loss re-weighting schemes
are ablated. As shown in Table 4, incorporating the
uncertainty-weighted pseudo-label training step improves

Table 4. Ablation study of the proposed components in UWAV.
“Binary” denotes training with binary pseudo-labels. “Soft” de-
notes training with uncertainty-weighted pseudo-labels.

Binary Soft Re-weight Mixup Segment-level
A V AV Type Event

✓ 62.7 67.7 61.9 64.2 62.2
✓ 63.0 68.3 61.8 64.4 62.8

✓ ✓ 63.6 69.5 63.0 65.4 63.1
✓ ✓ 63.9 69.0 62.8 65.2 63.4
✓ ✓ ✓ 64.2 70.0 63.4 65.9 63.9

the segment-level Type@AV F-score by 2%, compared to
using binary pseudo-labels. This demonstrates the benefit
of accounting for the uncertainty in the pseudo-label esti-
mation module. Moreover, sans the class-balanced loss re-
weighting strategy, the model’s performance is worse off by
1% on the Type@AV F-score, revealing the erroneous bias
in the model’s prediction arising from a skew of the class
distribution. On the other hand, introducing the uncertainty-
weighted feature mixup results in a gain of 0.8% on the
Type@AV F-score, which underscores the importance of
this self-supervised regularization.

6. Conclusions

In this work, we address the challenging task of weakly-
supervised audio-visual video parsing (AVVP), which
presents a two-fold challenge: (i) potential misalignment
between the events of the audio and visual streams, and (ii)
the lack of fine-grained labels for each modality. We ob-
serve that by considering the temporal relationship between
segments, our proposed method (UWAV) is able to provide
more reliable pseudo-labels for better training of the infer-
ence module. In addition, by factoring in the uncertainty
associated with these estimated pseudo-labels, regularizing
the training process with a feature mixup strategy, and cor-
recting for class imbalance, UWAV achieves state-of-the-art
results on the LLP and AVE datasets.
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