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Abstract
Electric machine condition monitoring and fault detection using machine learning methods
have been widely investigated in recent years. One main challenge for such data-driven
approaches is the lack of real data, especially for machines under faulty conditions. In this
paper, we propose a framework to address the data scarcity problem with a hybrid physics-
based and data-driven method, and evaluate the effectiveness on induction motor eccentricity
fault detection. We first use a simulation model to generate synthetic data for the motor
under eccentricity fault; then we introduce a topological data analysis method to process the
obtained data and extract fault-related features; next we apply domain adaptation technique
to bridge the gap between the synthetic data and limited real data; finally with the adapted
data, we train machine learning models to predict motor fault conditions. We show the
prediction error is reduced from over 12% to about 5% compared with the same model trained
without the domain adaptation process.
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Abstract: Electric machine condition monitoring and fault
detection using machine learning methods have been widely
investigated in recent years. One main challenge for such
data-driven approaches is the lack of real data, especially for
machines under faulty conditions. In this paper, we propose
a framework to address the data scarcity problem with a
hybrid physics-based and data-driven method, and evaluate the
effectiveness on induction motor eccentricity fault detection.
We first use a simulation model to generate synthetic data
for the motor under eccentricity fault; then we introduce a
topological data analysis method to process the obtained data
and extract fault-related features; next we apply domain adap-
tation technique to bridge the gap between the synthetic data
and limited real data; finally with the adapted data, we train
machine learning models to predict motor fault conditions. We
show the prediction error is reduced from over 12% to about
5% compared with the same model trained without the domain
adaptation process.

I. INTRODUCTION

Electric machines are widely used in a variety of industry
applications and electrified transportation systems, and their
condition monitoring and fault detection are important in pro-
tecting assets and avoiding safety hazards. Traditionally, motor
fault detection replies on sensing modalities such as vibration
and acoustic emission [1]. Motor current signature analysis
(MCSA) approach, on the other hand, has a few promising
advantages compared with other sensing methods, such as
simple implementation and low cost [2]. MCSA detects motor
faults based on the measured motor current data, and requires
no additional sensor installation [3]. With the understanding
of the physical mechanism of faults, MCSA conducts detailed
signal analysis, and relates the specific frequency components
in the stator current spectrum to each type of fault. One main
challenge with MCSA is that the fault signals are often much
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smaller and dominated by the fundamental component and its
harmonics. In addition, it is impossible to have a model to
completely describe all the conditions in the physical motor
system, and there are always discrepancies between physical
models and real system. Therefore fault signals in real data
can be different than those identified with physical model [4],
and it is difficult to identify the fault signals in real data and
determine the fault condition based only on physical models.

In recent years, the advancements of machine learning and
deep learning techniques have attracted wide interest toward
electric machine fault detection and condition monitoring [5].
Trained on experiment data, these learning-based models have
the capability of extracting latent features in high-dimensional
data related to the fault condition of the machine, and perform
fault classification or regression tasks. However, for such data-
driven approach to work with reasonable accuracy, sufficient
measurement data are needed to train the models. In the case
of electric machines, measurement data from faulty conditions
are particularly difficult to obtain, as most data are collected
when the machines are healthy. Another drawback for data-
driven approaches is limited generalization capability. Models
that are trained and work well on one particular dataset often
do not work on new datasets that are not seen by the model
before.

To address this challenge, we develop a fault detection
method which combines physics-based and data-driven ap-
proaches to improve the fault detection performance as well
as the generalization capability. We first utilize a simulation
model to generate synthetic stator current data for an electric
motor under fault conditions. We then perform topological
data analysis on the time-domain data to better reveal fault-
related features. While the model can reasonably simulate the
fault condition, there are unavoidably discrepancies between
synthetic and real data. In the next step, with the obtained
synthetic data and some limited real measurement data, we
develop domain adaptation (DA) technique [6] to bridge the
gap between synthetic and real data. After simulation-to-real
(Sim2Real, or S2R) DA, the synthetic data are more aligned



with real data. With the synthetic data after S2R DA process,
we train machine learning models to make predictions for the
fault condition. After training process, the model is deployed
for fault detection, where it takes in the real data, and make
predictions for the fault condition of the machine.

The rest of the paper is organized as follows. In Section II
we define the problem and describe the proposed framework
and methodology for each step in the framework. In Sec-
tion III, we introduce the data collection and processing pro-
cess and analyze the obtained data. In Section IV, we introduce
the numerical experiment settings to validate the effectiveness
of proposed method on fault detection performance, present
and discuss the results. Finally we conclude the paper in
Section V.

II. PROBLEM DEFINITION & METHODOLOGY

This study evaluates the effectiveness of the proposed
method in detecting the level of eccentricity faults in an
induction motor. Eccentricity occurs when the rotor and stator
are not concentric, which is a common issue in motors and
the main problem addressed in this study. An elevated eccen-
tricity level causes stator winding faults and rubbing between
stator and rotor. Monitoring the eccentricity condition during
motor operation plays a crucial role in preventing machine
failures and protecting assets. Detection of eccentricity can
be achieved using MCSA by analyzing the spectrum of stator
current, where certain components indicate the presence of
the fault. However, the fault signatures in stator current can
be very small and difficult to quantity, making it difficult
to accurately identify the eccentricity level. To address the
problem of detecting eccentricity faults in induction motors,
we present a novel methodology, as illustrated in Fig. 1.
The initial step involves generating synthetic data through a
physics-based model (Section II-A). Subsequently, features are
extracted using topological data analysis techniques (Section
II-B). To bridge the gap between synthetic and real data, a
domain adaptation (DA) strategy based on optimal transport
is employed during the training stage (Section II-C), using
synthetic data as the source domain and limited real data as
the target domain. Finally, the trained model’s performance is
assessed on real data during the testing stage.

A. Physics-based Model

A physics-based model is developed for the purpose of
generating synthetic data that accurately represent the diverse
range of eccentricity conditions present within the experi-
mental framework. The key parameters include motor design,
supply voltage, load, and fault conditions, which determine
the inductance terms between rotor and stator windings at each
rotor position. These inductance terms, along with their deriva-
tives, are computed using the Modified Winding Function
Method (MWFM) [1], [7], [8], updating at each rotor position
to capture the motor’s dynamic behavior. The motor dynamics
are then simulated through coupled circuit equations to obtain

Fig. 1: A framework of the proposed methodology for motor eccentricity
detection.

stator current signals. The inductance between winding i and
winding j is expressed as:

Lij(t) = µ0lr

∫ 2π

0

ni(ϕ, t)Mj(ϕ, t)g
−1(ϕ, t) dϕ. (1)

Here, µ0 represents the permeability of free space, while r
and l denote the motor’s air-gap radius and stack length,
respectively. The terms ni(ϕ, t) and Mj(ϕ, t) correspond to the
winding function of coil i and the modified winding function
of coil j, respectively.

The air gap function g(ϕ, t) is crucial in modeling motor
performance under Static Eccentricity (SE) and Dynamic
Eccentricity (DE) conditions:

g(ϕ, t) = g0Kc − δSEg0 cos(ϕ)− δDEg0 cos(ϕ− ωrt), (2)

where g0 is the nominal air gap length, Kc is Carter’s
coefficient, and δSE and δDE represent the amplitudes of
SE and DE, respectively. The detailed modeling process is
described in [9]. While the simulation does not perfectly match
experimental data due to inevitable model simplifications, it
identifies key signal features attributable to eccentricity. The
generated synthetic data provides valuable insights into motor
faults by reflecting the non-uniform air gap distribution, crucial
for accurate fault diagnosis and system analysis. In this study,
we run simulations for the motor with SE level from 5% to
70%, with step size of 5%, and record the stator current data.

B. Topological Data Analysis & Feature Extraction

Topological Data Analysis (TDA) provides a numerical
method to extract intrinsic shape information from data spaces.
TDA has several advantages that make it highly attractive
for data analysis: it is invariant under small and continuous
deformations, coordinate-free, and robust to noise. Using
these strengths, TDA can effectively process time-domain
current data from different eccentricity conditions without pre-
processing to distinguish subtle differences. The TDA method
has been shown to be effective in extracting fault-related



features and differentiating data from different eccentricity
levels [10].

In this study, we summarize the overall procedure to cal-
culate persistent homology, exhibit persistent diagram, adopt
Betti curve as a representation, and extract ten statistical
features as the following six steps:

1) A point cloud is established by collecting time-domain 3-
phase current data. We generate this point cloud by seg-
menting the data and embedding it within a 3D Euclidean
space. Different sampling and embedding techniques can
be employed to optimize this process.

2) The simplicial complex of the point cloud is identified,
essentially employing Rips complex [11], a prevalent al-
gorithm in TDA. This approach constructs the simplicial
complex by defining a threshold value or filtration radius
r, and includes only those simplices where the pairwise
Euclidean distances between data points do not exceed
r. The simplicial complex comprises various topological
building blocks, such as points, edges, and triangles,
across multiple dimensions.

3) Homology Hi is computed from the constructed sim-
plicial complex, where the subscript i indicates the
dimension. Specifically, H0 enumerates the number of
connected components.

4) Persistent homology [12] is derived through a filtration
process of the Rips complex. This process computes the
homology at various filtration radius r, tracking each
topological feature’s ”birth” (b) and ”death” (d) at respec-
tive r. Persistent homology is represented in a persistence
diagram consisting of points (b, d), where b, d ∈ R2 and
d > b, each depicting the lifespan of a topological feature
”born” at radius b and ”dead” at radius d.

5) A Betti curve is derived from transforming a persistence
diagram. We analyze the persistence diagram D, com-
prising a set of points α = (bα, dα), each representing
the birth and death of topological features. We define a
maximum filtration radius rmax and an array of equally
spaced points {ri}Mi=1 within [0, rmax]. The Betti sequence
β⃗ = (βi)

M
i=1 is calculated by applying the function:

fα(r) =

{
1, if bα ≤ r ≤ dα,

0, otherwise,
(3)

At each ri, the Betti number βi is computed as:

βi =
∑
α∈D

fα(ri) (4)

6) Statistical features, from the H0 Betti Curve, provide a
quantitative analysis derived from the zeroth homological
dimensions of the data set across varying filtration radius.
These features include ten primary statistical measures:
area, slope, intercept, R-value, mean, standard deviation,
interquartile range (IQR), skewness, kurtosis, and root
mean square (RMS), detailed in Table I.

C. Domain Adaptation

While the synthetic data is reasonably good in modeling the
eccentricity fault, there are unavoidable differences between
the synthetic and real data. In this step, we try to bridge the
gap between the synthetic data obtained from simulations and
the real data from experiment measurements using domain
adaptation (DA). DA aims to reduce the distributional discrep-
ancy between the source domain Ds and the target domain Dt

by mapping their feature distributions. In our case, the source
domain Ds contains synthetic data with varying SE levels,
ranging from 5% to 70%, while the target domain Dt consists
of real data with only two SE levels: 7.1% and 57.3%. Feature
vectors, denoted as Xs and Xt, are generated by extracting
features from the source and target domains, respectively.
These vectors are subsequently used in the domain adaptation
process, where they are aligned.

Many DA techniques have been developed to address dif-
ferent types of problems. In this paper, we formulate DA as
a regularized optimal transport (OT) problem [13]. By adding
an entropy term to the traditional transport cost function, the
purpose is to achieve improved computational efficiency and
solution smoothness:

γ∗ = argmin
γ

∑
i,j

γi,jC(xi
s, x

j
t ) + ϵ

∑
i,j

γi,j log(γi,j) (5)

where the transport plan is denoted by γ, the function
C(xi

s, x
j
t ) defines the penalty for moving mass from location

xi
s in the source distribution to location xj

t in the target
distribution, and the regularization parameter, ϵ, controls the
trade-off between minimizing the transport cost and maxi-
mizing the entropy of the transport plan. The cost matrix C
represents the pairwise distances between source and target
domain data points, commonly calculated using the squared
Euclidean distance: Ci,j = ∥xi

s − xj
t∥2.

Due to the computational expense of solving the entropy-
regularized Optimal Transport problem, the Sinkhorn algo-
rithm is adopted to efficiently approximate the transport plan
γ while ensuring numerical stability. Given the cost matrix C
and a regularization parameter ϵ, the Sinkhorn kernel K is
defined as: K = exp

(
−C

ϵ

)
. The Sinkhorn algorithm updates

the dual variables u and v, which serve as scaling factors
for the source and target distributions. The updates proceed
iteratively:

u(k+1) =
r

Kv(k)
, v(k+1) =

c

KTu(k+1)
(6)

where r and c are normalized distribution vectors ensuring the
marginal constraints of the optimal transport formulation. This
iterative process continues until convergence, yielding the final
transport plan:

γ∗ = diag(u)Kdiag(v) (7)

The computed transport plan γ∗ is then used to transform
the source domain data into the target domain space: Xtrans

s =
γ∗Xs. This transformation ensures the source data distribution
matches the target domain. After the DA process, a regression
model is trained using the transported source domain data



Table I: Statistical Features Extracted from H0 Betti Curve

No. Feature Name Feature Description

1 Area =
∫
β(r) dr Area under the curve calculated using trapezoidal integration

2 Slope = ∆y
∆x

Slope of the linear regression line fitted to the curve
3 Intercept = b from y = mx+ b Intercept of the linear regression line fitted to the curve
4 R = correlation coefficient R-value from the linear regression indicating the strength of correlation
5 µ = 1

n

∑n
i=1 βi Mean value of the Betti numbers over the filtration range

6 σ =
√

1
n

∑n
i=1(βi − µ)2 Standard deviation of the Betti numbers, measuring dispersion

7 IQR = Q3 −Q1 Interquartile range (IQR), representing the middle 50% of the Betti numbers

8 Skewness =
∑n

i=1(βi−µ)3

nσ3 Skewness of the Betti numbers, indicating the asymmetry of the data distribution

9 Kurtosis =
∑n

i=1(βi−µ)4

nσ4 Kurtosis of the Betti numbers, measuring the tails’ heaviness

10 RMS =
√

1
n

∑n
i=1 β

2
i Root mean square (RMS) of the Betti numbers, indicating the magnitude of data

{ Xtrans
s , Ys}. The training model is tested with real data

only to evaluate the performance

III. DATA ANALYSIS

While the synthetic data for this work are generated by
the physical model described in Section II, real data for the
domain adaptation study are recorded from an experimental
setup.

A three-phase, 0.75 kW, 2-pole-pair squirrel-cage induction
motor was modified for the experiment [10], [14], [15] to
enable controlled levels of SE, as shown in Fig. 2. The motor
has 36 stator slots, 28 rotor bars, a nominal air gap of 0.28
mm, operates at 200 V line-to-line voltage, and runs at 60 Hz.
To facilitate precise adjustments, the original bearings were
replaced, and the rotor is supported by two custom mounting
structures with new bearings on the extended rotor shaft (with
only the load-side structure visible in the figure). The stator
assembly is mounted on a linear stage, allowing horizontal ad-
justments via micrometers. Additionally, displacement sensors
positioned on the stator monitor real-time air gap variations
in both horizontal and vertical directions during operation A
powder brake is coupled to the motor to serve as a load.

In our experiment, data were collected from three-phase cur-
rent sensors and four air gap sensors at a sampling frequency
of 10 kHz for each SE condition under no-load operation. Six
SE levels were set in the horizontal direction while the motor
remained stationary, corresponding to air gap deviations of
7.1%, 16.5%, 31.1%, 42.5%, 47.5%, and 57.3% relative to
the nominal air gap size. The air gap sensor measurements
across all cases confirmed that the actual SE levels closely
matched the initial settings, with deviations remaining within
3%, while also indicating a minor DE of approximately 6%.

The same data processing step using topological data anal-
ysis is performed for both synthetic and real data. More
specifically, to analyze signal characteristics, we extract 1,024
consecutive data points from the stator current in time-domain,
corresponding to approximately 0.1 seconds of measurement
data at a 10 kHz sampling rate. Fig. 3 (a) presents synthetic

Fig. 2: The experimental configuration for analyzing induction motor eccen-
tricity.

data at an SE level of 30%, while Fig. 3 (b) shows real data
at 31.1%, both recorded under no-load conditions. The corre-
sponding H0 Betti curves for all SE levels are shown in Fig.
3 (c) and Fig. 3 (d) for synthetic and real data, respectively.
Compared with time-domain signals, the Betti curves allow
us to distinguish data from different fault conditions more
easily. Although the line shapes of synthetic and real data
do not match exactly, the curves exhibit the same trend with
increasing eccentricity.

In the next step, we will address the differences between
the synthetic and real data, and bridge the gap using domain
adaptation. Instead of applying the H0 Betti curves directly for
domain adaptation, we further reduce the dimensionality of the
data by extracting ten statistical features from the obtained
Betti curves, and feeding the extracted features for domain
adaptation. The list of features extracted from the H0 Betti
curves is shown in Table I.



Table II: Experiment Design and Test Results

Data Real Data
(Baseline)

Synthetic Data without
Domain Adaptation

Synthetic Data with
Domain Adaptation

Training Real Data (7.1, 57.3 levels) All Synthetic Data All Synthetic Data +
Real Data (7.1, 57.3 levels)

Testing Real Data (16.5, 31.1, 42.5, 47.5 levels)

Test RMSE (%) 12.16 23.31 5.47
Test MAE (%) 11.32 22.93 4.83

Fig. 3: Synthetic data (a) at SE level of 30% and real data (b) at SE level
of 31.1%. H0 Betti curves for synthetic data (c) across all SE levels and real
data (d).

IV. EXPERIMENT DESIGN & RESULTS

With features extracted from the processed data, we apply
domain adaptation to bridge the gap between synthetic and real
data. To validate the effectiveness of the proposed method,
we design three different numerical experiments, which are
summarized in Table II:

1) Real Data (Baseline): Due to practical constraints, real
data collection is limited to extreme SE levels (7.1%
and 57.3%) for training, while data from intermediate
SE levels (16.5%, 31.1%, 42.5%, and 47.5%) serve as
the testing set.

2) Synthetic Data without DA: A physics-based model
generates synthetic data (SE levels: 5%–70%, in 5%
intervals) for training, with the testing set identical to
that of the baseline experiment.

3) Synthetic Data with DA: DA is applied to synthetic data
(at SE levels: 5%–70%), incorporating real data (at SE
levels: 7.1% and 57.3%), with the same testing set as the
previous two experiments.

The training set includes 7,350 synthetic samples (525
samples at each SE level) and 100 real samples (50 samples

for each SE level at 7.1% and 57.3%, reflecting real-world
data scarcity). The testing set includes 4,680 real samples
(1,170 samples per SE level), each representing a 0.1-second
measurement at 10 kHz sample rate. The same data pre-
processing and feature extraction process shown in Sec-
tion II-B is performed for all data samples. Domain adaptation
is performed according to the optimal transport method shown
in Section II-C. After that, we train a regression model to
make predictions to the eccentricity level. A regression model
using support vector regression with a radial basis function
kernel (SVR-RBF) is built and trained with the proposed
methodology. Models are trained to minimize the root-mean-
squared-error (RMSE) and mean-absolute-error (MAE) on the
SE level prediction.

The test results are also shown in Table II. As we can
see, with model trained with synthetic data only, the RMSE
is highest at 23.3%; with model trained with real data only
at SE level 7.1% and 57.3%, the RMSE is 12.16%. This
shows that there are discrepancies between synthetic data
and real data, and we cannot solely reply on synthetic data
from physical model. On the other hand, model trained with
only limited real data is difficult to predict unseen new data.
With our proposed DA strategy, the training data is enriched
by combining synthetic data with limited real data, and the
model performance is much improved, with RMSE reduced
to around 5%. Fig. 4 provides a visual distribution of SE level
predictions. These violin plots allow us to observe the spread
and concentration of prediction values based on the experiment
design.

To better understand the effect of domain adaptation, we
present the t-distributed stochastic neighbor embedding (t-
SNE) plot for data samples after TDA processing and feature
extraction in Figure 5. Using statistical features extracted from
H0 Betti curve, Fig. 5 (a) illustrates that without DA, the
distributions of source and target data are not well-aligned.
However, as shown in Fig. 5 (b), applying DA with the OT
method significantly improves alignment, bringing the adapted
source data distribution closer to that of the target data.

These results demonstrate the effectiveness of the proposed
method in enhancing data and improving the performance of
machine learning based fault detection, using synthetic data
generated by a physics-based simulation model, and domain
adaptation. The proposed framework is flexible and can be
easily applied to many other fault detection tasks. A variety
of signal processing techniques, feature extraction methods,



Fig. 4: Violin plot of SE level predictions on test data under to compare (a) real data: baseline, (b) synthetic data without DA, and (c) synthetic data with
DA using OT.

Fig. 5: t-SNE plot in 2d for features extracted from H0 betti curve at: (a)
Without DA and (b) With DA.

domain adaptation methods, and machine learning models can
be used to replace those presented in this work.

V. CONCLUSIONS

This study presents a groundbreaking approach to motor
fault detection by integrating physics-based modeling with
data-driven techniques. By applying topological data analysis
to extract statistical features from both synthetic and real data,
and subsequently aligning these domains through simulation-
to-real adaptation, the results show a marked improvement
in predictive performance, yielding more precise and robust
fault detection. This innovative framework offers substantial
improvements in fault detection accuracy and generalization
capabilities, making it particularly valuable in scenarios where
extensive real fault data is difficult to obtain. Future work can
further refine this methodology to address more complex fault
detection scenarios in electric machines.
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