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Abstract
Motor performances such as cogging torque and torque ripple are difficult to predict accurately
with surrogate models. In this work, we propose Vision Transformer (ViT) based models to
tackle the problem. We adopt a ViT model pre-trained on image classification tasks, and
fine-tune it with a dataset prepared for interior permanent magnet motor designs. Each
motor design is represented by a 2d image and fed into the ViT model for making predictions
on cogging torque. To further improve the data efficiency of the model, we customize it by
utilizing the motor design parameter information to initialize the class token of the ViT model.
We show that the proposed method significantly outperforms established deep convolutional
neural network (CNN) based models, and achieves high accuracy on cogging torque prediction
on the test dataset.

IEEE International Electric Machines and Drives Conference (IEMDC) 2025

c© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Electric Motor Cogging Torque Prediction with
Vision Transformer Models

Siyuan Sun
Department of Computer Science,

Iowa State University,
Ames, IA 50011, USA

Ye Wang
Mitsubishi Electric Research

Laboratories (MERL)
Cambridge, MA 02139 USA

Toshiaki Koike-Akino
Mitsubishi Electric Research

Laboratories (MERL)
Cambridge, MA 02139 USA

Tatsuya Yamamoto
Advanced Technology R&D Center

Mitsubishi Electric Corporation
Amagasaki, Hyogo 661-8661 Japan

Yusuke Sakamoto
Advanced Technology R&D Center

Mitsubishi Electric Corporation
Amagasaki, Hyogo 661-8661 Japan

Bingnan Wang
Mitsubishi Electric Research

Laboratories (MERL)
Cambridge, MA 02139 USA

Abstract: Motor performances such as cogging torque and
torque ripple are difficult to predict accurately with surrogate
models. In this work, we propose Vision Transformer (ViT)
based models to tackle the problem. We adopt a ViT model
pre-trained on image classification tasks, and fine-tune it with a
dataset prepared for interior permanent magnet motor designs.
Each motor design is represented by a 2d image and fed into
the ViT model for making predictions on cogging torque. To
further improve the data efficiency of the model, we customize
it by utilizing the motor design parameter information to
initialize the class token of the ViT model. We show that
the proposed method significantly outperforms established
deep convolutional neural network (CNN) based models, and
achieves high accuracy on cogging torque prediction on the
test dataset.

Index Terms—Electric Motors, Surrogate Model, Machine
Learning, Vision Transformer.

I. INTRODUCTION

Electric machines are widely used in households and various
industries, and their technologies and design principles are
well established. However, the requirements for motor design
and customization, especially for new applications such as
transportation electrification and factory automation, always
pose new challenges to motor designers. Parameter sweeping
or iterative optimization methods are often utilized to evaluate
a large number of design candidates before identifying the
optimal design for a specific task. The accurate analysis of a
motor design typically relies on numerical simulations based
on finite-element analysis (FEA), which are time-consuming,
especially when various operating points are evaluated for one
design. Surrogate model based optimization has been investi-
gated to speed up the process [1]. Due to the highly nonlinear
nature, the accuracy of conventional surrogate models is not
sufficient for the prediction of certain motor performances such
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as torque profile and efficiency map. In recent years, machine
learning and deep learning methods have been developed and
applied to many applications including motor design [2], [3],
due to their powerful capability to emulate highly nonlinear
functions. For example, several studies [4]–[7] have proposed
neural network-based approaches to address various critical
tasks, such as generating innovative motor designs, predicting
physical responses for given designs, and detecting potential
faults during operation. In particular, due to the success of
convolutional neural networks (CNNs) for image recognition,
one popular approach is to represent a motor design with a 2D
image, which is fed into a CNN-based model, to predict the
motor performance [8]. However, the highly sensitive cogging
torque and torque ripple prediction for permanent magnet
motors, remain a challenge even for deep CNN models.

The Vision Transformer (ViT) is first been proposed in [9]
as a variant of the transformer [10]. It turns images into a
token sequence, which is suitable for the transformer to handle.
The ViT models have been primarily used to solve general
image-related tasks, achieving superior performance compared
with other existing deep learning models. For instance, they
have been widely applied in object detection [11]–[13],object
segmentation [14]–[16] and image generation [17]–[19]. In
the motor design field, Shimizu et al. [20] introduced the
ViT as part of the motor design process, demonstrating its
potential in this domain. However, the full capabilities of Vi-
sion Transformers in motor design remain largely unexplored.
In this paper, we propose a novel Vision Transformer-based
surrogate model to estimate the physical responses of motor
designs more accurately and efficiently, advancing the use of
modern deep learning techniques in motor design optimization.
We show that ViT models can achieve significantly improved
accuracy compared with deep CNN models, demonstrated
by cogging torque prediction of interior permanent magnet
synchronous motors (IPMSMs). In addition, we develop an
effective way of combining the motor design information in
the form a 2D image and a list of parameters to facilitate
the training process of ViT models. Specifically, we utilize



Fig. 1. (a) A section of the magnetic design for an example IPM motor; (b) tunable design parameters on rotor, and (c) tunable design parameters on the
stator.

the motor design parameters to initialize the class token of
the ViT model, and show that this approach improves the
data efficiency of the model, and achieves improved prediction
accuracy.

II. PROBLEM DEFINTION

In this work, we develop surrogate models to evaluate the
cogging torque of 4-pole 24-slot IPMSM. The topology of the
motor is shown in Fig. 1. The values of 13 design parameters,
as indicated in Fig. 1(b) and (c) are tunable. To create the
dataset for the study, a total of 19,373 design candidates
are generated, each have a distinct combination of the 13
parameters. FEM simulations are then performed for each of
the design candidate to obtain the torque waveform under
no-load condition. The obtained torque waveform is further
decomposed into the following Fourier series including the
dominating harmonic terms:

T(θ) = A12 cos(12θ) +B12 sin(12θ) +A24 cos(24θ) +B24 sin(24θ) (1)

This way, instead of recording the waveform by the torque at
each rotor angle, we can represent it with only four Fourier
coefficients:A12, B12, A24, B24. In addition, the induced volt-
age is also calculated. For each entry in the compiled dataset,
the input includes the value of 13 design parameters, and
corresponding 2D cross section image as shown in Fig. 1(a),
and the output includes the EMF, and four Fourier coefficients
for cogging torque.

To predict the cogging torque, the Fourier coefficients are
first predicted by a surrogate model, which are used to recover
the torque waveform according to Eq.(1). Finally the cogging
torque is determined by the difference between maximum and
minimum value of the torque waveform: Tc = max(T (θ)) −
min(T (θ)). Based on previous studies [21], the performance
of cogging torque prediction with this approach is generally
better than directly predicting cogging torque value using the
same model. We aim to develop models that make predictions
for the cogging torque, with the objective of reducing the root-
mean-square error (RMSE) of the prediction.

III. VISION TRANSFORMER FOR COGGING TORQUE
PREDICTION

One popular method of deep learning-based surrogate mod-
els for motor design is to represent the magnetic design of
a motor design candidate as a standard RGB image, and
feed it into a deep CNN model for performance prediction.
A CNN model extracts features by applying local spatial
filters to adjacent pixels, and by applying this operation over
many layers, the resulting features can cover larger areas.
To capture features representing the motor design across the
whole image, the CNN-based network needs to be quite deep,
with many layers, and the extracted features can become very
abstract. While the approach generally performs better than
other existing surrogate models, the accuracy for cogging
torque and torque ripple prediction is still insufficient.

A. Vision Transformer for Motor Design

Recently, Vision Transformer [10] architectures demon-
strated strong capabilities in image-related tasks. ViT adopts
the multi-head self-attention mechanism to grasp the cor-
relation between different input parts of an image. In this
section, we will introduce why the Vision Transformer is more
proficient for Motor Design.

1) Multi-head Self-Attention Layer: In a transformer-based
model, each input vector represents a token. The model pro-
cesses a sequence of tokens as input, and its self-attention layer
enables each token to attend to every other token, including
itself. This mechanism allows the model to effectively capture
dependencies and contextual relationships within the sequence.

Generally, each token will be transformed to query token Q,
key token K, and value token V . These transformations are
achieved through three learned matrices WQ, WK and WV

Q = XWQ,K = XWK , V = XWV . (2)

Here, the query token Q represents the current token that
searches for relevant information. The key K represents all
tokens in the sequence used for comparison. The value V
contains the actual information carried out by each token.

The self-attention mechanism then compares each query
Q with all keys K to compute a relevance score, which
determines how much attention the token should pay to others.



Fig. 2. Illustration of receptive field for self attention and convolution. Left: Self attention. The receptive field is the full input image. Right: Convolution.
The receptive field is 5×5 pixels for a 3×3 convolution.

Finally, the output is a transformed representation of the input,
where each token is encoded based on its relevance score
and the corresponding value V . This process enables the
model to capture meaningful contextual relationships across
the sequence, contributing to the model’s ability to under-
stand complex patterns. Furthermore, we can align several
self-attention layers in parallel to create a multi-head self-
attention layer. Each self-attention layer can learn different
features in a multi-head self-attention layer, leading to a more
comprehensive understanding of the input data.

2) Vision Transformer: The Multi-head Self-Attention
Layer is originally designed for sequence data, such as text
or time series. To adapt this mechanism for image data, some
modifications are necessary. This led to the proposal of the
Vision Transformer (ViT).

In ViT, each input image I is divided into a sequence of
fixed-size 2D patches. This sequence of 2D patches is then
passed through a convolution layer to generate a sequence of
tokens, along with a special token known as the CLS token.
This results in a token sequence X derived from the image,
where the CLS token is a learnable embedding that serves
as a context aggregator, gathering information from all other
tokens in the sequence.

This token sequence X is then treated as input and passed

through a series of self-attention layers to obtain an encoded
vector X

′
. The information contained in the CLS token of X

′

is then used for further prediction tasks.
3) Why ViT is more suitable for Motor Design?: Motor

design images are unique in that they typically share the same
format, with variations primarily in the size and shape of
different parts. Therefore, the global features such as overall
structure and spatial relationships between parts play a more
significant role compared with local features at pixel levels.

Compared with the convolution layer in CNN-based meth-
ods, the self-attention layer in ViT can grasp global features
more thoroughly. This difference is evident when comparing
the receptive fields of these two approaches. In deep learning,
the receptive field indicates the connection between the output
(feature) and the input. Figure 2 compares the receptive
fields of ViT and CNN-based networks. For the CNN-based
network, the receptive field size is related to its kernel size
of convolution operation. For instance, a 3×3 convolution
kernel can cover a 5×5 pixel area. To cover a larger area,
a very deep network is required. On the other hand, as shown
on the left, one patch interacts with all other patches in a
transformer. Thus, the receptive field for the transformer-based
network encompasses the entire input space from the first
to the last layer. This extensive receptive field makes the



transformer better at learning global and structural features
of inputs compared to traditional CNN-based networks [22].

With this understanding, in this paper, we apply ViT-based
models to predict the physical response of a motor design.
The input is an RGB image representing a motor design,
which is passed through the ViT-based model to obtain an
encoded sequence. The information contained in the ”CLS
token” is then extracted. Finally, a linear layer transforms the
”CLS token” to produce the final prediction, which includes
the Fourier coefficients for cogging torque prediction, as well
as the induced voltage, labeled as EMF.

B. Parameter as prior knowledge

One concern for training ViT-based models is the limited
amount of training data available, which can largely hinder
the performance of network if training from scratch. In this
paper, we implement two strategies to address this problem.
First, we start from models pre-trained on ImageNet for image
classification tasks, and fine-tune the models on our IPM motor
dataset. However, most pre-trained networks are trained on
ImageNet for image classification tasks, which differ greatly
from motor design tasks. Therefore, we need an efficient way
to fine-tune pre-trained ViT models on motor design data.

To address this issue, we effectively combine the design
information in the form of a 2D image and a list of parameters
into the training process. In particular, we propose using the
parameter list as sample-specific information for CLS token
initialization.

As mentioned in section II, a motor design sample can
be described either by an image of the magentic design, or
a list of design parameters. One nature thought to improve
the performance of a surrogate model is to combine the
information of the design parameters and the images. However,
how to effectively combine the two types of pint is not straight-
forward, as the dimensions of these two inputs are largely
different. A image is usually 3-dimension (224×224×3 for all
images in the dataset) and list of parameters is a vector (13×1
in our case). Simply concatenate the two inputs will render the
parameter list ineffective due to its much lower dimension.
Simply upscaling the parameter list to the same dimension of
the image is not a good solution either, as this will largely
distort the information included in the parameter. Considering
the special structure of Vision Transformer, we propose to
utilize the parameter list as sample-specifc information and
use it to initialize the “CLS token”, which can help the Vision
Transformer to better converge on motor design data. The
CLS-token is a special token that gathers information from
all other patches. The information embedded in the CLS
token will be directly utilized to make the final prediction.
Generally, there are two methods to initialize the CLS token:
initializing it as a zero token or initializing it with pre-trained
parameters. However, these methods do not contain sample-
specific information, which is crucial for fast convergence. To
address this problem, we consider the parameter list as sample-
specific information and encode it as the initialization of CLS
token.

Specifically, we employ a linear transformer to convert the
parameter sequence into the same size as a token in the Vision
Transformer. Then, we assign the encoded parameter sequence
as the initialization for the CLS token and pass the entire
token list to the multi-head attention layer (MSA layer). In the
MSA layer, the information from the parameter list interacts
with all the tokens in the image token list. The MLP layer is
co-trained with the Vision Transformer, which help generate
better initialization for the CLS token. This architecture shown
in Fig. 3.

This setting provides several benefits for Vision Transformer
on motor design task. First, the upscaling does not distort the
information of parameter sequence. The size of the CLS token
is very small comparing with the entire token lists, which
means that the parameter list does not need to be upscaled to a
large dimension. This preserves the information contained in
the parameter list. Moreover, the parameter list can interact
with all parts of the image, ensuring that the model fully
integrates the information from the parameter list into the
image representation. This enhances the model’s understand-
ing of the input data especially when dealing with various
design patterns. Additionally, the parameter-based CLS token
is fully customized based on input designs, providing the
model with tailored information for each sample. This cus-
tomization enables the model to predict challenging samples
better, enhancing its overall performance and robustness.

IV. NUMERICAL TESTS & RESULTS

Model Parameter Number

VGG16 138M

VGG19 144M

ResNet50 23.9M

ResNet101 42.8M

ResNet152 58.5M

ViT-B/16 86M

ViT-B/32 88M

ViT-L/16 304M

ViT-L/32 305M

TABLE I. Parameter Number for each network

A. Models and Hyperparameters

To compare the performance of the ViT models, we choose
5 CNN-based models as baseline: VGG16, VGG19 [23],
ResNet50, ResNet101 and ResNet152 [24]. For ViT models,
we evaluate five of the variants: ViT-B/16, ViT-B/32, ViT-
L/16, ViT-L/32 [9] and ViT-B/32 with parameter initialized
CLS token. Table I shows the hyperparameter number for
each baseline. The parameter numbers for all baselines except
ViT-L/16 and ViT-L/32 are much larger and are on the same
order of magnitude(around 100M parameters). ViT-L/16 and
ViT-L/32 have much larger parameter numbers(around 300M
parameters). For both the CNN-based models and Vision
Transformer models, we train for a total of 300 epochs with a
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batch size of 128. For the CNN-based methods, the learning
rate is set to 0.0001, while for the Vision Transformer methods,
we use an initial learning rate of 0.009 with a cosine annealing
scheduler to gradually adjust the learning rate during training.

B. Results

In this section, we conduct numerical experiments to vali-
date the proposed methods and compare the ViT-based models
against state-of-the-art CNN models. The IPM dataset is split
into training (70%), validation (10%), and test (20%) datasets.
For comprehensive evaluation, all nine models introduced
in Section IV-A are compared with our proposed Vision
Transformer model equipped with a parameter-initialized CLS
token. For fair comparison, all models are pre-trained on
ImageNet and fine-tuned with the IPM motor training dataset.

The prediction results evaluated by RMSE on test data are
shown in Table II. The experiment supports two major claims
in our paper. First, the Vision Transformer outperforms CNN-
based methods. For EMF prediction, all models perform well,
with RMSE around 0.1. For cogging torque prediction on the
test dataset, all CNN-based models perform similarly, with
VGG16 (RMSE 0.905) and ResNet50 (RMSE 0.979) models
having slightly better performance than the others. In contrast,
all ViT based models perform much better, with RMSE below
0.3. The best performing model is ViT-L/16, which achieves
RMSE of 0.215.

And Our proposed method significantly improves Vanilla
Vision Transformer (ViT) performance. Using the ViT-B/32
model as the backbone, we evaluated our approach on the
Flat and Vshape datasets. The results indicate that our method
consistently outperforms Vanilla Vision Transformer models.
Specifically, on the Flat dataset, the ViT-B/32 model with an
initialized CLS token achieves an RMSE of 0.083 on EMF
and an RMSE of 0.182 on torque ripple, which outperform all
Vanilla Vision Transformer models. On the Vshape dataset,
the ViT-B/32 model with an initialized CLS token achieves an
RMSE of 0.102 on EMF and an RMSE of 0.133 on torque
ripple, outperforming all Vanilla Vision Transformer models.
These consistent improvements demonstrate that our proposed

methods significantly enhance the efficiency of the ViT model
in fine-tuning for model design datasets.

C. Visualization

To further demonstrate the effectiveness of the proposed
models, we plot model prediction vs. true values for all test
data in Fig. 4. In addition to RMSE, we also evaluate the
model prediction performance with R-squared (R2) value,
which indicates how well a model predicts a variable. The R2

value ranges from 0 to 1, with values closer to 1 signifying
more accurate predictions. The results are reported in Figure 4

For EMF prediction, all models perform well on test data,
while the ViT models perform even better with almost perfect
predictions as indicated by the low RMSE values and R2

approaching 1. Cogging torque prediction performance is
much worse for deep CNN models VGG16 and ResNet50,
with many outlier points away from the diagonal. In contrast,
the ViT-L/16 model with a pre-trained CLS token performs
significantly better, with R2 value reaching 0.997. With a
parameter-initiated CLS token, a smaller ViT-B/32 model
further improves the performance, with reduced RMSE and
R2 of 0.998.

D. Ablation study

In this section, we want to further check the efficiency of
parameter-initialized CLS token with the other two CLS token
initialization methods. One commonly used approach is to
take the pre-trained CLS token, which contains information
from the dataset used in the training process, and fine-tune
them on the motor dataset. Another approach is to initialize
the CLS token to zero, which means the token does not
contain any prior information, and tune it on the motor dataset.
Finially, in our proposed approach, we utilize the motor design
parameters, and initialize the CLS token with these design
information through an MLP network. The comparison of the
three methods is done using the smaller ViT-B/32 model, and
the results are shown in Table III.

As we can see, with parameter-initialized CLS token, the
model outperforms the other two token initialization methods.



Model A12 B12 A24 B24 EMF Torque Ripple

ResNet152 0.004 ± 0.002 0.498 ± 0.452 0.002 ± 0.001 0.230 ± 0.204 0.130 ± 0.087 0.995 ± 0.897

ResNet101 0.005 ± 0.004 0.519 ± 0.468 0.008 ± 0.003 0.230 ± 0.200 0.138 ± 0.095 1.010 ± 0.904

ResNet50 0.020 ± 0.005 0.492 ± 0.440 0.006 ± 0.003 0.223 ± 0.192 0.141 ± 0.095 0.979 ± 0.873

VGG19 0.002 ± 0.001 0.454 ± 0.403 0.002 ± 0.001 0.222 ± 0.194 0.171 ± 0.114 0.938 ± 0.829

VGG16 3.7e-3 ± 1.8e-3 0.453 ± 0.404 9e-4 ± 7e-4 0.213 ± 0.185 0.175 ± 0.119 0.905 ± 0.806

ViT-B-16 1e-3 ± 9e-4 0.122 ± 0.085 6e-4 ± 5e-4 0.065 ± 0.044 0.105 ± 0.068 0.258 ± 0.179

ViT-B-32 1e-3 ± 9e-4 0.128 ± 0.095 6e-4 ± 5e-4 0.072 ± 0.049 0.128 ± 0.077 0.272 ± 0.201

ViT-L-16 1e-3 ± 9e-4 0.106 ± 0.077 6e-4 ± 5e-4 0.059 ± 0.039 0.090 ± 0.058 0.215 ± 0.151

ViT-L-32 1e-3 ± 9e-4 0.148 ± 0.112 6e-4 ± 5e-4 0.075 ± 0.052 0.142 ± 0.090 0.309 ± 0.231

TABLE II. Performance Comparison for predicting EMF and Torque Ripple. 5 CNN-based methods: VGG16,VGG19, ResNet50, ResNet101, ResNet152. 4
ViT-based methods:ViT-B/16, ViT-B/32, ViT-L/16, ViT-L/32 with pretrained “CLS-token”. We report RMSE as evaluation metric.

Fig. 4. Visualization for four models on the Flat dataset. Four models are VGG16, ResNet50, ViT-L/16 with pretrained token and ViT-B/32 with parameter
token. For each figure, we also report corresponding RMSE and R-squared value.

CLS Token A12 B12 A24 B24 EMF Torque Ripple

Pre-trained 0.001 ± 0.0009 0.128 ± 0.095 6e-4 ± 5e-4 0.072 ± 0.049 0.128 ± 0.077 0.272 ± 0.201

Zero initialized 0.001 ± 0.0009 0.123 ± 0.089 6e-4 ± 5e-4 0.069 ± 0.046 0.127 ± 0.077 0.260 ± 0.187

Parameter-initialized 0.001 ± 0.0009 0.085 ± 0.064 6e-4 ± 5e-4 0.056 ± 0.038 0.083 ± 0.051 0.182 ± 0.134

TABLE III. Performance comparison for predicting EMF and torque ripple with different initialization of “CLS-token”. We compared three initializations:
pretrained-initialized token, zero-initialized token, and parameter-initialized token. The backbone network is ViT-B/32.

The model with zero-initialized token also performs slightly
better than the model with pretrained token initialization.

These results support our claim in the methods section.
Pretrained datasets, such as ImageNet, differ significantly
from the motor design dataset. Consequently, the pretrained-
initialized CLS token can hinder the fine-tuning process due to
the discrepancy in dataset characteristics. The zero-initialized
token, which lacks prior information, neither aids nor obstructs
the fine-tuning process. In contrast, our proposed parameter-
initialized token integrates sample-specific information, signif-
icantly enhancing the efficiency fine-tuning process.

V. CONCLUSION

In this work, we developed Vision Transformer-based deep
learning models serving as surrogate for accurate cogging
torque prediction. We adopted pre-trained ViT models and
fine-tune them on the IPM motor dataset, and showed that
ViT models, with larger receptive field, can capture important
features more effectively than deep CNN based-models and
achieve much high prediction accuracy. We further utilized
sample-specific motor design parameters to initialize the CLS
token in the ViT model, which further improves the prediction
performance, even with a smaller model.



REFERENCES

[1] R. C. P. Silva, T. Rahman, M. H. Mohammadi, and D. A. Lowther, “Mul-
tiple operating points based optimization: Application to fractional slot
concentrated winding electric motors,” IEEE Transactions on Industrial
Electronics, vol. 65, no. 2, pp. 1719–1727, 2017.

[2] S. Doi, H. Sasaki, and H. Igarashi, “Multi-objective topology optimiza-
tion of rotating machines using deep learning,” IEEE transactions on
magnetics, vol. 55, no. 6, pp. 1–5, 2019.

[3] A. Khan, V. Ghorbanian, and D. Lowther, “Deep learning for magnetic
field estimation,” IEEE Transactions on Magnetics, vol. 55, no. 6, pp. 1–
4, 2019.
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