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Abstract

Our work addresses the problem of learning to localize objects
in an open-world setting, i.e., given the bounding box informa-
tion of a limited number of object classes during training, the
goal is to localize all objects, belonging to both the training and
unseen classes in an image, during inference. Towards this end,
recent work in this area has focused on improving the charac-
terization of objects either explicitly by proposing new objective
functions (localization quality) or implicitly using object-centric
auxiliary-information, such as depth information, pixel/region
affinity map etc. In this work, we address this problem by incor-
porating background information to guide the learning of the
notion of objectness. Specifically, we propose a novel frame-
work to discover background regions in an image and train
an object proposal network to not detect any objects in these
regions. We formulate the background discovery task as that of
identifying image regions that are not discriminative, i.e., those
that are redundant and constitute low information content. We
conduct experiments on standard benchmarks to showcase the
effectiveness of our proposed approach and observe significant
improvements over the previous state-of-the-art approaches for
this task.

1. Introduction

Open-world object localization (OWOL) refers to the task of
localizing all objects, including novel object instances in a
given image by learning from a limited set of predefined object
classes. Unlike the traditional closed-world object localization
setting, where the task is to localize object classes only seen
during training, OWOL is a more realistic and challenging
problem that evaluates generalization performance of the
learned model to novel object classes.

Learning to localize object instances, not seen during train-
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Figure 1. An example of a training image showing a ground truth
annotated object (green box), unlabeled objects that are not in the
known training classes (purple boxes), and clear non-object/background
regions (red boxes) that are automatically classified as non-object
regions by BOWL (ours) and used in training.

ing time, is important for many downstream applications like
autonomous agents, robotics, and self-driving cars. As a result,
there has been a growing interest in developing methods for ob-
ject detection/localization in an open-world setting over the last
few years [14, 34]. Previous works in OWOL have primarily fo-
cused on improving objectness learning. Specifically, Kim et al.
[14] proposed incorporating localization-quality as a loss func-
tion to learn a more generalizable object representation, whereas,
Wang et al. [34] explicitly enriches the training data by synthe-
sizing pseudo-annotations for unannotated regions. While the
above approaches show improvement in localizing unseen object
classes, their performance is still limited. Specifically, we ob-
serve that during inference, either: (1) novel objects with features
like shape, color, textures, etc. not observed in known classes are
not detected, or (2) non-object regions are erroneously detected
as objects due to noisy pseudo-annotations during model train-
ing. These observations allude to the challenging issue of devel-
oping and learning a generalizable notion of objectness. Learn-
ing the objectness of a region is non-trivial and most assumptions
developed to characterize objectness do not generalize to unseen



environments. In this work, we tackle this challenge by explor-
ing a complementary source of information, i.e., non-objectness
of a region. We show that identifying non-object regions and
incorporating them during the learning process significantly
improves the localization of unseen object classes and the gener-
alization to novel domains on various challenging benchmarks.

In particular, we propose to improve open-world object
localization by incorporating non-objectness information during
the learning process as illustrated in Figure 1. We first model
the non-objectness information by constructing a codebook
comprised of embeddings of exemplar non-object patches,
extracted from a pre-trained model. This codebook is then used
to identify seed anchors representing non-object regions while
training the object localization method. This provides additional
self-supervision in training the localization method along with
labeled information from known classes.

Our evaluations show that by incorporating our non-object
model into the object localization pipeline, our proposed
method, Background-aware Open-World Localizer (BOWL),
significantly improves over previous methods on multiple
benchmarks for OWOL. Specifically, we surpass the previous
baselines by 4.0% on the AR@100 measure for detecting
non-VOC classes when the training data consist of 20
PASCAL-VOC [10] classes. Furthermore, we show a domain
generalization improvement of 2.0% on the AR@100 measure
for open-world localization in the wild, when evaluating a
model trained with the COCO dataset [17] on the ADE20K
dataset [40]. Going forward, we sometimes use the term,
”background”, in an informal way to mean non-object regions.

Overall, in this work, we make the following contributions:
1. We propose BOWL, a novel, open-world object localization

method based on background-awareness.
2. We formalize the notion of non-objectness of image regions

and propose a novel, unsupervised method for discovering
non-object regions with high precision.

3. Our extensive evaluation shows that incorporating non-
objectness information in BOWL leads to improved recall
in detecting unseen objects, outperforming competing
methods for this task.

2. Related Work
In this section, we discuss related prior works and delineate the
differences from our proposed approach.

Open-World Object Localization addresses the problem
of localizing objects in images under the open-world setting.
Early methods in object localization [1, 3, 9, 18, 41] adopted
a bottom-up approach to creating a relatively small set of
candidate bounding boxes that covered the objects in an image.
These methods utilized hand-crafted heuristics based on raw
image information like color, edge, and pixel-contrast to charac-
terize objectness [31, 41]. In contrast, learning based methods
[15, 16, 19, 22, 33] adopt a top-down approach, where the
model is trained end-to-end with objectness defined by a set of

training categories in the dataset. These learning-based methods
show considerable improvement over heuristics-based ap-
proaches in terms of precision and recall when localizing object
classes from the training set. However, they struggle to localize
novel object categories. In particular, these methods incorrectly
assume any unannotated region of a training image to be a
non-object region and thus suppress detection of novel objects
at inference time. To resolve this issue, Kim et al. [14] proposed
to modify Faster-RCNN [22] by replacing classification heads
with class-agnostic objectness heads which are trained using
base-class annotations, thus avoiding any incorrect assumptions
about background. Saito et al. [25] proposed to instead crop
labeled object regions in training images and paste them into
images not containing any unlabeled objects to avoid the faulty
assumption that unlabeled regions of training images do not con-
tain any objects. While the above methods focus on mitigating
the background bias, another family of methods have focused
on improving object localization recall by pseudo-annotating
novel objects. In particular, Wang et al. [34] learns a model to
predict pairwise affinity to segment an image. Prediction from
this model is then used to generate new box annotations, which
is then used to train a detection model along with the original
ground truth base class annotations as supervision.

Our work proposes a complementary approach, where in-
stead of completely suppressing background or pseudo-labeling
novel objects, we identify regions in training images which
we can categorize as non-objects with high precision. Our
experiments show that using non-object supervision for training
the detector is better than completely disregarding it and avoids
errors introduced by noisy pseudo-annotations.

Unsupervised Background Estimation: Most works for
estimating background in images fall under the paradigm of
either: (i) saliency detection [5], or (ii) figure-ground separation
[23, 37–39], where the primary objective is to detect the
salient foreground regions. Early attempts to solve the fore-
ground/background separation task focused on thresholding or
binary clustering on the color, depth, edge or other hand-crafted
features [13, 23, 36, 37]. Recent methods in unsupervised
object localization, a new formulation similar to figure-ground
segmentation [28], in particular, utilize self-supervised models
[6, 20] to estimate salient objects. Methods like LOST [26]
and TokenCut [35] used deep features from pre-trained vision
transformers (ViTs) [6]. LOST defined background regions as
the patches that were most correlated with the whole image,
while TokenCut investigated the effectiveness of applying spec-
tral clustering [32] to self-supervised ViT features. Both of the
above method make strong assumptions in defining objectness.
As a result, they don’t generalize well to images from different
domains. In comparison, FOUND [27] proposed discovering
the background as the primary step, with the objective of
discovering foreground objects. Specifically, they first identify
seed patch token with least attention value. Then background
is defined as all the patches with similar representation as the



seed patch. They further improve the initial coarse background
mask by refining it using a lightweight segmentation head.

While our method shares commonality with the above
methods with respect to the use of self-supervised models
for extraction of patch features, we differ from the above
approaches with respect to our primary objective. In particular,
in these prior methods, the main goal is to discover objects
in the foreground region, and background estimation is a
by-product. Thus they focus more on improving the precision
of object discovery. Our goal on the other hand, is to improve
novel unseen object localization using background as a
supervisory signal. Thus for our problem statement, we want
to categorize an image region as background/non-object with
high confidence. In this regard, the focus of our unsupervised
background estimation method is to achieve high precision with
moderate recall, which is different from the above approaches.

3. Method
Our goal is to improve OWOL by incorporating non-objectness
cues. Specifically, our proposed method BOWL is comprised
of two main steps: (i) Modeling non-object information:
where we construct a codebook containing embeddings of ex-
emplar non-object patches, extracted from a pre-trained model,
and (ii) Background-aware training: Where we train an
open-world localization model with additional self-supervision
using non-object seed anchors discovered using our computed
non-object codebook. Fig. 3 shows an overview of our method.

3.1. Motivation

For the object localization task, we are provided with a training
dataset D consisting of bounding box annotations {bi} from a
pre-defined list S of known base classes. The goal for the object
localization task (also commonly known as object proposal
generation) is to generate bounding boxes on unseen images,
localizing objects from the known base classes. As such, the
primary objective adopted to train these models can be divided
into two parts: (i) Classification objective Lcls: which trains
the model to categorize a region as ‘object’ or ‘background,’
and (ii) Bounding box regression objective Lreg: which helps
the model learn to accurately estimate the coordinates of a
bounding box. Formally, given a training image I, the training
loss can be formulated as:

L(I)= 1

|A|
∑
i∈A

Lcls(ci, c
∗
i )+

1

|AK|
∑
i∈AK

Lreg(bi, b
∗
i ), (1)

where {ci, bi} are the predicted label and bounding box
coordinates, {c∗i , b∗i } are the corresponding ground truths,
A is the set of all candidate anchor boxes, AK is the set of
candidate anchor boxes with ground truth label c∗i =1. Here,
c∗i ∈C= {0,1}, where c∗i =1 only when the anchor i can be
associated with an annotated object bounding box from the
known classes S (based on pre-defined intersection-over-union
thresholds) and c∗i =0 otherwise.

Thus, every candidate anchor box Ai not associated with
an annotated object bounding box is automatically labeled
as a background/non-object region. This design choice made
sense for traditional methods [22], where the model was trained
under the closed-world assumption, i.e., at the testing time, their
generalization is evaluated by detecting the objects from the
known base classes. However, under the open-world setting,
where the task is to localize every object in the image, which can
belong to an unknown novel class u∈U , the training objective
Eq. 1 can lead to poor test time performance. Specifically,
under the training loss in Eq. 1, an unannotated object will be
classified as ‘background,’ resulting in incorrect categorization
of unknown novel object regions as ‘non-objects.’

To avoid the above issue of false negative detections, Kim
et al. [14] proposed to replace Lcls in Eq. 1 with the objectness
score prediction loss Lobj, yielding:

LOLN(I)=
1

|AK|
∑
i∈AK

Lreg(bi,b
∗
i )+

1

|AK|
∑
i∈AK

Lobj(oi,o
∗
i ), (2)

where oi and o∗i are the predicted and ground truth objectness
score with respect to an anchor box Ai. Here objectness score
can refer to any metric [24, 30] that can measure bounding
box localization quality with respect to ground-truth bounding
boxes. Thus, in their formulation, Kim et al. [14] removes any
dependency of predicting ‘background’ regions. In other words,
‘background’ regions are simply ignored during training.

While the above loss modification does improve performance
over traditional methods with respect to localizing unknown
novel objects, it underutilizes the supervision from non-object
candidate anchor boxes. Specifically, Kim et al. [14] selects the
candidate anchor boxes set AK, by randomly sampling |AK|
anchors with Intersection over Union (IoU) larger than 0.3 with
the matched ground-truth boxes. While this ensures that an
anchor box localized at an unknown novel object region is not
incorrectly labeled as non-object, it reduces the diversity of
anchor boxes in the candidate set, resulting in a reduction of
the range of loss values. This issue can be potentially resolved
if we knew apriori which regions correspond to non-objects.
To this end, we propose the following modification to Eq. 2:

LBOWL(I)=
1

|AK|
∑
i∈AK

Lreg(bi, b
∗
i )

+
1

|AK|+|AB|
∑

i∈AK∪AB

Lobj(oi, o
∗
i ),

(3)

where AB refers to the set of non-object anchor boxes.
Concretely, we propose to improve the diversity of sampled
anchor boxes for objectness score prediction loss by sampling
anchor boxes corresponding to non-object regions. Unlike
previous methods, we first identify highly likely non-object
regions in a given image, to ensure that we do not incorrectly
label unknown novel object anchors as non-objects.



3.2. Modeling non-object patches in images

Given an arbitrary training set of unlabeled images, our goal is to
identify image regions that are very unlikely to contain objects.
Our model of non-object regions will consist of a representative
set (called an exemplar set) of embeddings of non-object patches
that cover a large percentage of all non-object patches in the
training images. Note that our non-object model does not need
to include every possible non-object region. Our goal is to learn
a representative set of regions that with high probability are all
non-object regions. When we use our non-object model to train
the object localization network as described in Section 3.1 there
may still be regions which are ignored because they are neither
high-probability non-object regions nor labeled object regions.

To find non-object regions from an unlabeled set of training
images, we observe that patches of training images that occur
frequently are almost always non-object regions. For example,
patches of sky, grass, concrete, brick, and white walls are all
examples of non-object regions that occur frequently in many
different images. This idea is consistent with the idea introduced
in Sing et al. [29] that object patches are representative (meaning
they occur often enough in the visual world) and discriminative
(meaning they are different enough from the rest of the visual
world). Since we are trying to model non-object patches, we are
looking for patches that are representative but not discriminative.
By clustering all patches of an unlabeled training set of images
and taking a representative patch from the largest clusters, we
will have our exemplar set of non-object regions.

Given a set of unlabeled images I = {I1, ... , IN} where
Ii∈RW×H×3, we first compute patches by dividing each im-
age into M square patches of size S×S. Given the set of image
patches P = {P1, ... , PN×M} where Pi ∈RS×S×3, we com-
pute features of each patch using a self-supervised pretrained
neural network (we use DINO-ViT[6] in our experiments). Each
patch Pi is represented by a d-dimensional feature embedding
ϕPi

computed using the pretrained model f , i.e. f(Pi)=ϕPi
.

The choice of a self-supervised pretrained model ensures that the
feature representations are not biased towards any specific object
category, allowing for a more general representation of patches.

Given the set of patch features, we construct an exemplar
set E of patch features using a greedy nearest neighbor method.
In particular, for each patch Pi∈P, we compute:

smax(Pi, E)=max
e∈E

ϕPi ·ϕe

∥ϕPi
∥2∥ϕe∥2

(1)

A patch Pi is added to E if:

smax(Pi, E) < λ, (2)

where λ is a distance threshold controlling the diversity of
the exemplar set. Figure 2 illustrates the exemplar selection
algorithm. This approach avoids the computational overhead
of traditional clustering methods while still ensuring that the
exemplar set captures the diverse range of non-object regions
present in the dataset.

As described in Figure 2, a count of the number of times
each exemplar was the most similar exemplar to a training
patch embedding is kept. These counts give the size of each
exemplar cluster. As explained in Section 3.2, the largest
clusters correspond to non-object patches with high probability.
Our method simply uses the N clusters with the largest counts
as the non-object exemplars in our background model.

It is important to note that the non-object model is intended
to be learned only once and to be general enough to then be
used in conjunction with learning an open-world localization
network on any object detection dataset.

3.3. Background-Aware Open-World Localization

We incorporate the constructed non-object exemplar set into
the training framework of an OWOL model. This integration
allows us to explicitly leverage non-object regions during
training, leading to more robust object localization.
Network Architecture and Base Training: We adopt the
object localization network architecture which consists of two
primary prediction heads:
• A regression head that predicts distances from the feature

location to four sides of the ground-truth box G=(l,r,t,b).
• An objectness head estimating localization quality c∈ [0,1] by

measuring the alignment between predicted and ground-truth
boxes.
In the conventional training setup, the objectness head is

trained only using foreground proposals that satisfy:

IoU(Ai, Bgt) > 0.3, (3)

where Ai is a candidate anchor box and Bgt is the set of
ground-truth boxes, respectively. The objectness score is
supervised using an L1 regression loss:

Lobj=∥1−Sigmoid(cAi
)∥1, (4)

where cAi is the centerness score of Ai. The value cAi = 0
when Ai has no overlap with the ground-truth box and cAi =1
when there is perfect overlap.
Training with Non-object Supervision: We observe that the
conventional training approach underutilizes non-object regions
for supervision. To address this limitation, we augment the
training process as shown in Figure 3 by incorporating explicit
supervision from our non-object exemplar set E. Given the
set of exemplar embeddings representing non-object regions,
we categorize a region in an image (defined by anchor boxes
from the detector) as a non-object region if it is similar to a
member of the exemplar set, i.e., the maximum similarity of
the image patch embedding to all exemplar patch embeddings
is above a fixed threshold. Cosine similarity between patch
embeddings is used to measure similarity. We compute the
negative anchor boxes at different scales defined by the detector
pipeline. Specifically, for each anchor box Ai, we:
1. Extract its feature embedding ϕAi

using the same pre-trained



Figure 2. Exemplar selection works by first splitting the t+1st image into fixed-size patches and computing a feature embedding (using DINO,
represented by the function, f) for each patch (represented by the grid of light blue cubes). Each patch is compared to the existing exemplars from
the first t images, E(t), using the similarity function S. E(0) is initialed to the empty set. Patch embeddings that have below threshold similarity to
all exemplars in E(t) (represented by dark blue cubes) are then added to the exemplar set to yield E(t+1). This repeats until all training images
are processed. In addition, each exemplar in E(t) maintains a count of the number of times it was the most similar exemplar to a training patch
embedding to keep track of each exemplar’s cluster size.

Figure 3. Overview of training process with BOWL. First the input image on the left is passed through the feature pyramid network (FPN) backbone.
Next, anchor boxes are generated which cover the image with regions of different positions, aspect ratios and scales. The anchor boxes are compared
with the ground truth known object boxes to generate a set of labeled object boxes (shown in green). With BOWL, a DINO embedding for each
image patch within an anchor box is also compared to the non-object exemplar set using cosine similarity, S, and embeddings that have similarity
above a certain threshold to an exemplar are used as non-object regions for training.

model used in constructing E.
2. Compute its maximum similarity to the exemplar set:

smax(Ai, E)=max
e∈E

ϕPi
·ϕe

∥ϕAi∥2∥ϕe∥2
. (5)

3. Label it as a non-object region if:

smax(Ai, E) > γ, (6)

where γ is a threshold parameter.

For anchor boxes identified as non-object regions, we
provide negative supervision to the objectness head by setting
their target objectness score to zero. The hypothesis is that the
objectness head learns to disregard these regions as the loss will
be high relative to ground-truth bounding box. The objectness
loss can thus now be written as:

Lnew
obj =

{
Lobj , if IoU(Ai, Bgt)>0.3

1 , if smin(Ai, E) > γ
. (7)



Lnew
obj ensures that the model learns to distinguish between

object and non-object regions more effectively, leading to
improved localization performance in open-world settings.

4. Experiment

4.1. Experimental Details

Datasets. We evaluate BOWL on two tasks to measure
open-set generalization performance: (1) Cross-category
generalization: where for a fixed data distribution, the model
is evaluated on its performance on object categories not seen
during model training, and (2) Cross-dataset generalization:
where the model is evaluated on a dataset different from the
training dataset and contains unseen object categories. For cross-
category evaluation, we use different subsets of the MS-COCO
[17] dataset for training and testing and consider two settings. In
the first setting, we use the subset of MS-COCO containing the
20 object classes from the PASCAL-VOC [10] for training and
utilize the remaining 60 classes of MS-COCO for evaluation.
We refer to this setting as VOC to NON-VOC generalization
task. For the second setting, we utilize LVIS [11] benchmark,
which provides annotations for 1203 classes in a long-tail
distribution. We use the original 80 MS-COCO classes for
training and test on the remaining 1123 classes. We refer to this
setting as LVIS COCO to LVIS NON COCO generalization task

For cross-dataset evaluation, we train the model on the
MS-COCO [17] dataset containing a mix of object and
scene-centric images and evaluate on the ADE20K [40] dataset
(a dataset of scene-centric images). We evaluate our method
in two settings: (i) training with COCO subset containing 20
VOC classes and (ii) training with full COCO training set. In
both settings, we use ADE20K validation set consisting of
instance-level annotations of 3148 object categories.
Evaluation Metrics. Following prior work [14, 34], we
calculate Average Recall (AR@k) across a range of IoU
thresholds, spanning 0.5 to 0.95, and set a default detection
budget k=100. AR values are presented as percentages. We
denote ARA as the AR score for all classes, covering both
base and novel categories, while ARN represents the AR score
specifically for novel classes. When measuring ARN , the
detections linked to the base classes are omitted from the budget
k. This approach is consistently applied when calculating
per-class AR, as well as AR values for objects of different
scales: small (ARs), medium (ARm), and large (ARl).
Implementation Details. For extracting non-object exemplar
patches, we use the pre-trained DINO [6] ViT to extract
patch-wise features. Specifically, we extract the last layer
(Layer 11) ‘key’ features [2] using the 16×16 patch version
of ViT S/16 with stride=8. Thus each image is represented as
a set of 16×16 overlapping patches, with an overlap of 8 pixels.
We select λ = 0.2 for exemplar selection based on held out
validation set. From the extracted set of exemplars, we choose
N = 1000 for training BOWL. An ablation on the effect of

Table 1. Cross-category generalization evaluation (VOC → COCO).

Method ARN ARs
N ARm

N ARl
N

FRCNN (oracle) 52.6 37.1 60.0 73.1

FRCNN (cls-agn) 27.3 10.8 30.2 55.8
OLN [14] 33.2 18.7 39.3 58.6
GGN [34] 31.5 11.8 37.4 63.8

BOWL (ours) 37.5 20.7 46.9 58.6

Table 2. Cross-category generalization evaluation (LVIS COCO →
LVIS NON-COCO).

Method ARN ARs
N ARm

N ARl
N

FRCNN (cls-agn) 21.0 14.9 32.7 36.2
OLN [14] 27.4 17.9 44.7 53.1
GGN [34] 22.5 15.7 35.5 38.4

BOWL (ours) 28.3 18.3 46.5 53.9

different values for N is included in the supplemental material.
For open-world localization, we follow the same architecture

as OLN [14], which uses the Faster RCNN [22] architecture
with the ResNet-50 backbone [12] pretrained on ImageNet
[8]. We implement BOWL using the MMDetection framework
[7] and use the SGD optimizer with an initial learning rate of
0.01. We train BOWL for 16 epochs. BOWL is trained on 8
NVIDIA 1080Ti GPUs with a batch size of 2 images per device.
For non-object anchor box selection, we set γ adaptively using
Otsu’s method [21].

4.2. Cross-category generalization

We show the results for cross-category evaluation in Table 1
for VOC to COCO classes domain generalization and Table
2 for COCO to NON-COCO domain generalization using
annotations from LVIS [11] benchmark. We report Average
Recall score for novel classes (ARN@100) as our primary
objective for cross-category evaluation is to assess the model’s
ability to localize instances from unseen novel categories.

From both results, we see that BOWL outperforms
other baselines. Specifically, we observe an increase of
4.3% ARN@100 compared to OLN for VOC to COCO
generalization task. Furthermore, BOWL also outperforms
OLN on COCO to LVIS NON-COCO generalization task by
0.9% ARN@100. Considering both results, we can conclude
that non-object supervision does improve performance for
open-world localization task. While background supervision is
also used in training the class-agnostic Faster-RCNN baseline,
it significantly under performs in comparison to all the other
methods. Thus improved results shown by our method can
be attributed to accurate selection of non-object regions during
model training using our non-object exemplar set.



Figure 4. Qualitative results of (a) GGN [33], (b) OLN [14], and (c) BOWL on MS-COCO validation images. The shown results are all
predictions with objectness score higher than 0.75 generated from models trained on VOC categories. From the results we can see that while both
OLN and GGN are able to localize unseen novel objects, there are significant false positive and false negative predictions. Specifically, because of
noisy pseudo-annotations, GGN incorrectly predicts non-object regions as objects with high objectness score (false predictions on floor and bed in
first row while wall and in second row). OLN on the other hand is not able to predict objects with shapes and scales not present in training data
due to only using object supervision (false negative prediction of bed in first row and laptop in second row). BOWL mitigates the above issues by
utilizing non-object supervision leading to better localization of objects. We provide more results in supplementary.

Table 3. Cross-dataset generalization evaluation (VOC → ADE20K).

Method ARA ARs
A ARm

A ARl
A

FRCNN (cls-agn) 22.6 15.5 23.7 26.5
OLN [14] 29.2 19.7 30.7 34.4
GGN [34] 27.0 16.9 27.5 33.6

BOWL (ours) 30.2 20.7 32.5 34.8

Table 4. Cross-dataset generalization evaluation (COCO →
ADE20K).

Method ARA ARs
A ARm

A ARl
A

FRCNN (cls-agn) 25.9 20.5 28.5 27.4
OLN [14] 32.9 25.1 35.9 35.6
GGN [34] 29.8 18.9 29.1 38.2

BOWL (ours) 34.1 25.3 37.5 37.0

4.3. Open-set localization in the wild

A key requirement of any good open-world model is its ability
to generalize in out-of-distribution (OOD) settings. Specifically,
for the case of open-world object localization, it is important
to quantify OOD generalization performance to make sure that

the model is not overfitting to a particular dataset. To this end,
we evaluate our method for the cross-dataset generalization
task, where we train our model on MS-COCO and test it on
the ADE20K dataset. For evaluation, we report Average Recall
score for all categories (ARA@100). Specifically we report AR
score for all categories, since unlike the cross-category setting,
similar classes across two datasets can show different properties
like change in prototypical shape, scale, size etc.

We show our results for VOC to ADE20K and COCO to
ADE20K in Table 3 and 4, respectively. Both the results show a
trend, similar to cross-category evaluation tasks, where BOWL
outperforms other baseline methods. Our method improves over
OLN by 1% ARA@100 when the model is trained on VOC
classes and 1.2% ARN@100 when the full COCO dataset is
used for training. Improvement in both the settings suggests that
our non-object supervision not only improves open-world local-
ization but is also generalizable across data distribution shift.

4.4. Ablation Study

Comparison of different approaches for non-object
supervision. We evaluate our approach for the identification
of non-object regions with other methods with respect to
improving localization performance. Specifically, we consider



Table 5. Cross-category generalization evaluation (VOC → NON-
VOC) of different sources for non-object supervision.

Method ARN ARs
N ARm

N ARl
N

Gradient Energy 36.2 20.9 43.1 57.4
DINO 36.8 20.3 45.4 57.7

BOWL (ours) 37.5 20.7 46.9 58.6

gradient energy [4] and image self-correlation map using DINO
[6] to identify non-object regions and use the same for training
the localization model. Gradient energy has been previously
used in figure-ground segmentation methods [23, 37–39],
where background is defined as any region in an image with
below threshold gradient energy. Similarly, recent works in
unsupervised object localization [26, 28] utilize self-correlation
maps generated using patch features from DINO to identify
foreground regions, by considering patches with high correlation
to majority patches in an image as background regions.

For both methods, we first generate a binary map specifying
foreground and background regions, which is then used to
select anchor boxes when training the model. We categorize
an anchor box as non-object, if it has at least a 90% overlap
with background regions.

We compare our approach with the above methods for the
VOC to COCO cross-category task. As shown in Table 5, all
three methods perform better than OLN. This further confirms
our initial hypothesis that accurate non-object supervision
should lead to improvement in open-world object localization.
Amongst the three approaches, our method performs better than
the other two methods. We surmise that this is because unlike
the other two approaches, our method considers dataset-level
statistics to model non-object information. This makes
our method more precise in identifying non-object regions.
Furthermore, this result also confirms that it is more important
to have higher precision in identifying non-object regions for
improving open-world object localization.

Influence of the number of base classes for training. One of
the advantages of open-world models is that we don’t need to
annotate every single object instance as these models should be
able to generalize to unseen novel objects. Thus it is important
to consider the effect of number of base classes used for training
the model. To this end, we split the COCO dataset based on the
supercategories to create six different splits (Table 6) and then
trained BOWL and OLN on these splits. For evaluation, we test
both methods on ADE20K validation set. As shown in Figure
5, both BOWL and OLN achieve better ARA@100 scores as
the number base classes in training set increases. While for
the extreme case of a single base class (‘Person’) both methods
show similar results, we see more improvement in localization
performance for BOWL when number of classes is on the
lower side. Thus BOWL is more efficient when considering
data annotation cost.
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Figure 5. Base class evaluation on ADE20K

Table 6. Base class selection for evaluating the effect of the number of
base classes.

Superclasses #Training Classes #Training Images

Person 1 64115
(+) Vehicle 9 74152
(+) Outdoor, Animal 24 92169
(+) Accessory, Sports 39 93939
(+) Kitchen, Food 56 107036
(+) Furniture, Electronic, 80 117266Appliance, Indoor

5. Discussion and Conclusion

In this work, we introduce the idea of learning a model of non-
object regions in a self-supervised way and use it to improve
the accuracy of open-world object localization. We have shown
that this idea improves results on standard datasets compared
to the state-of-the-art. BOWL is the first method that uses a
generic model of non-object regions to improve open-world
object localization. Our ablation experiments confirm that
our exemplar-based non-object model achieves better results
than simpler background models, while also showing that our
improvement over the OLN open-world detector is independent
of the number of base classes in the training set. For future
work, we think further gains can be realized by combining the
idea of background modeling with the creation of pseudo-labels
to increase the number of labeled object for training.

Limitations: While incorporating a background model
into open-world localization training improves accuracy, it
does require the extra computational expense of learning
a background model, although this only needs to be done
once. Also, BOWL is slightly worse, in terms of perfor-
mance, on large objects than some competing methods.
This is likely due to competing methods’ use of pseudo
annotations which add more large object training exam-
ples.
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[27] Oriane Siméoni, Chloé Sekkat, Gilles Puy, Antonı́n Vobeckỳ,
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