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Abstract
Multi-speaker automatic speech recognition (ASR) has gained growing attention in a wide
range of applications, including conversation analysis and human-computer interaction. Speech
separation and enhancement (SSE) and single-speaker ASR have witnessed remarkable per-
formance improvements with the rapid advances in deep learning. Complex spectral map-
ping predicts the short-time Fourier transform (STFT) coefficients of each speaker and has
achieved promising results in several SSE benchmarks. Meanwhile, self-supervised learning
representation (SSLR) has demonstrated its significant advantage in single-speaker ASR. In
this work, we push forward the performance of multi-speaker ASR under noisy reverberant
conditions by integrating powerful SSE, SSL, and ASR models in an end-to-end manner.
We systematically investigate both monaural and multi-channel SSE meth- ods and various
feature representations. Our experiments demonstrate the advantages of recently proposed
complex spectral mapping and SSLRs in multi-speaker ASR. The experimental results also
confirm that end-to-end fine-tuning with an ASR criterion is important to achieve state-of-
the-art word error rates (WERs) even with powerful pre-trained models. Moreover, we show
the performance trade-off between SSE and ASE and mitigate it with a multi-task learning
framework with both SSE and ASR criteria.
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Abstract

Multi-speaker automatic speech recognition (ASR) has gained growing at-

tention in a wide range of applications, including conversation analysis and

human-computer interaction. Speech separation and enhancement (SSE)

and single-speaker ASR have witnessed remarkable performance improve-

ments with the rapid advances in deep learning. Complex spectral mapping

predicts the short-time Fourier transform (STFT) coefficients of each speaker

and has achieved promising results in several SSE benchmarks. Meanwhile,

self-supervised learning representation (SSLR) has demonstrated its signif-

icant advantage in single-speaker ASR. In this work, we push forward the

performance of multi-speaker ASR under noisy reverberant conditions by

integrating powerful SSE, SSL, and ASR models in an end-to-end manner.

We systematically investigate both monaural and multi-channel SSE meth-

Preprint submitted to a journal May 1, 2025



ods and various feature representations. Our experiments demonstrate the

advantages of recently proposed complex spectral mapping and SSLRs in

multi-speaker ASR. The experimental results also confirm that end-to-end

fine-tuning with an ASR criterion is important to achieve state-of-the-art

word error rates (WERs) even with powerful pre-trained models. Moreover,

we show the performance trade-off between SSE and ASE and mitigate it

with a multi-task learning framework with both SSE and ASR criteria.

Keywords: speech separation, automatic speech recognition, self-supervised

learning, joint training, multi-task learning

1. Introduction

Recent advancements in deep learning have significantly improved the

performance of single-speaker automatic speech recognition (ASR) Hinton

et al. (2012); Li et al. (2017); Chiu et al. (2018); Radford et al. (2023). The

end-to-end (E2E) framework simplifies the system and has demonstrated

promising results. In the literature, various sequence-to-sequence machine

learning techniques have been developed, such as the connectionist temporal

classification (CTC) Graves et al. (2006); Miao et al. (2015), the attention-

based encoder–decoder (AED) Chorowski et al. (2015); Chan et al. (2016),

and the recurrent neural network transducer Graves (2012). Neural network

architectures have also been explored, including Transformer Karita et al.

(2019) and Conformer Gulati et al. (2020). Despite these advancements,

there remains a large performance gap between single and multi-speaker con-

ditions, especially in noisy and reverberant environments. In such “cocktail

party” scenarios, speech separation and enhancement (SSE) is a key compo-
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nent to tackle a multi-speaker recording with an ASR system Carletta et al.

(2005); Barker et al. (2018); Watanabe et al. (2020); Cornell et al. (2023b);

Liang et al. (2023).

At the same time, in the last decade, SSE has remarkably progressed

with the adoption of supervised deep learning approaches, most notably the

permutation invariant training (PIT) Yu et al. (2017b). PIT allows to train

neural networks so that the predicted time-frequency masks are close to the

ideal masks in the short-time Fourier transform (STFT) domain Yu et al.

(2017b); Wang and Chen (2018). The encoder-masker-decoder approach,

e.g., ConvTasNet Luo and Mesgarani (2019), typically leads to better perfor-

mance by applying the masks in trainable latent space Luo and Mesgarani

(2019); Luo et al. (2020); Subakan et al. (2021). Another approach is com-

plex spectral mapping, where neural networks directly predict the real and

imaginary parts of the STFT coefficients of each speaker. Recently, this

approach outperforms the aforementioned approaches Wang et al. (2023b,a);

Tan et al. (2022); Cornell et al. (2023a); Pan et al. (2023). These SSE models

are, however, trained to minimize signal-level differences between the target

and separated signals Luo and Mesgarani (2019); Luo et al. (2020). As such,

the overall recognition performance may be sub-optimal or even degraded, if

these SSE models are used as a front-end of ASR applications.

The SSE process typically introduces artifacts that degrade recognition

performance when the SSE and ASR systems are pre-trained separately

Koizumi et al. (2022); Iwamoto et al. (2022). To mitigate this issue, E2E

integration of SSE and ASR via their joint training is an active research di-

rection Seltzer et al. (2004); Li et al. (2016); Heymann et al. (2017); Ochiai
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et al. (2017); Minhua et al. (2019); Chang et al. (2019, 2020); von Neu-

mann et al. (2020b); Zhang et al. (2022). For instance, early research showed

promising results in the context of single-speaker robust ASR by integrating

a neural beamformer and a joint CTC/AED model Ochiai et al. (2017). This

integration has been extended to multi-speaker settings, including MIMO-

Speech Chang et al. (2019). MIMO-Speech explicitly separates the observed

mixture with beamforming, while the entire system is trained only by the

multi-speaker ASR criterion. Such an approach preserves the modularity of

the entire system and is able to output intermediate separated signals in con-

trast to fully E2E black-box approaches Yu et al. (2017a); Seki et al. (2018);

Meng et al. (2023); Kanda et al. (2020); Sklyar et al. (2021). This approach

has been successfully developed in both monaural Settle et al. (2018); Chang

et al. (2019); Shi et al. (2020) and multi-channel Chang et al. (2019, 2020);

Zhang et al. (2022); Kanda et al. (2023) scenarios where the existing sys-

tems typically used classical filterbanks as feature representation for ASR as

summarized in Table 1.

Apart from the progress in SSE and its E2E integration with ASR, self-

supervised learning (SSL) models have shown promising performance im-

provements in single-speaker ASR Yang et al. (2021); Tsai et al. (2022).

SSL aims to learn useful feature representation (SSLR) by solving a pretext

task defined without manual labels. Many SSL models, including Wav2Vec

2.0 Baevski et al. (2020) and HuBERT Hsu et al. (2021), have been pre-

trained only on clean single-speaker speech, and thus their strength under

noisy reverberant conditions is limited Chang et al. (2021). More recently,

SSL models trained on noisy speech Chen et al. (2022); Wang et al. (2022b,a);
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Table 1: Comparison of each module used in the proposed SIMO/MIMO-IRIS and relevant

multi-speaker ASR systems with E2E training of SSE and ASR models. The system with †

combines pre-trained models without fine-tuning von Neumann et al. (2024). The system

with ‡ uses the transducer for ASR Kanda et al. (2023) while the others are based on joint

CTC/AED Watanabe et al. (2017).

SSE Feature representation ASR

Monaural

Settle et al. (2018) Time-frequency masking log mel-filterbank BLSTM

von Neumann et al. (2020b) ConvTasNet log mel-filterbank BLSTM

Shi et al. (2020) Conditional TasNet log mel-filterbank Transformer

von Neumann et al. (2024)† TF-GridNet WavLM Conformer

SIMO-IRIS (Proposed) TF-GridNet WavLM Conformer

Multi-channel

Chang et al. (2019) Mask-based MVDR log mel-filterbank BLSTM

Chang et al. (2020) Mask-based MVDR log mel-filterbank Transformer

Zhang et al. (2022) Mask-based WPE+MVDR log mel-filterbank Transformer

Kanda et al. (2023)‡ VarArray+MVDR log mel-filterbank Transformer

MIMO-IRIS (Proposed) TF-GridNet WavLM Conformer

Huang et al. (2022) and on multi-speaker speech Fazel-Zarandi and Hsu

(2023); Huang et al. (2023a) have been investigated. Among these models,

WavLM Chen et al. (2022), a robust variant of HuBERT, is particularly ef-

fective. It has achieved state-of-the-art (SOTA) performance on SUPERB

benchmark tasks Yang et al. (2021) and demonstrated promising recognition

performance even in noisy reverberant environments von Neumann et al.

(2024); Cornell et al. (2024).

By fusing WavLM into the E2E integration of speech enhancement and

ASR, the performance of single-speaker robust ASR has been significantly
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improved Chang et al. (2022); Masuyama et al. (2023). IRIS Chang et al.

(2022) integrates ConvTasNet, WavLM, and the joint CTC/AED model,

achieving SOTA performance on the CHiME-4 single-channel track. Multi-

IRIS Masuyama et al. (2023) extends IRIS to perform multi-channel speech

enhancement by neural beamforming. These works focused only on single-

speaker scenarios, and here we consider a multi-speaker extension for “cock-

tail party” scenarios.

In this paper, we advance the performance of robust multi-speaker ASR

by proposing SIMO-/MIMO-IRIS: an E2E integration of monaural/multi-

channel SSE, SSLR extraction, and ASR. Our systems are based on the lit-

erature of the E2E training of SSE and ASR models, but we leverage recently

proposed powerful SSE and SSL models as summarized in Table 1. Specif-

ically, we perform complex spectral mapping by using TF-GridNet Wang

et al. (2023a,b) and extract feature representation from WavLM Chen et al.

(2022). The SSE model is pre-trained individually and then combined with

SSL and ASR models. Afterward, both the front-end (the SSE model) and

back-end (the ASR model) are fine-tuned together based on an ASR criterion

as illustrated in Fig. 1. This allows to simultaneously optimize the front-end

for the subsequent ASR and adapt the back-end to the imperfect SSE out-

puts. We perform a comprehensive evaluation under anechoic/reverberant

and clean/noisy conditions by using the spatialized WSJ0-2mix Wang et al.

(2018) and WHAMR! datasets Maciejewski et al. (2020). We explore various

SSE methods, including time-frequency masking and neural beamforming,

and feature representations. The results confirm the advantage of the E2E

integration of a strong TF-GridNet-based SSE front-end and the WavLM-
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based ASR back-end. The fine-tuning only with the ASR criterion degrades

the signal-level separation quality while improving the word error rate (WER)

as mentioned in von Neumann et al. (2020b). We explore this trade-off by

following a multi-task learning framework with SSE and ASR criteria and

perform a detailed analysis of the trade-off. Our training recipes and model

checkpoints will be released through the end-to-end speech processing (ES-

Pnet) toolkit Watanabe et al. (2018); Li et al. (2021); Lu et al. (2022).

In our previous work Masuyama et al. (2023), we introduced MIMO-IRIS

and verified its efficacy with preliminary experiments. This paper extends

the previous work by making substantial contributions in the following areas:

• developing SIMO-IRIS that integrates monaural SSE and SSLR-based

ASR and performs the joint training;

• conducting an extensive evaluation of both SIMO-IRIS and MIMO-

IRIS under various conditions;

• exploring various SSLRs and classical filterbank features in the multi-

speaker ASR system;

• investigating the trade-off between separation and recognition perfor-

mance in the E2E fine-tuning through a multi-task learning framework.

This paper is organized as follows. Section 2 reviews various monaural

and multi-channel SSE methods under noisy reverberant conditions. Sec-

tion 3 presents the proposed SIMO-/MIMO-IRIS and clarifies its relation-

ship with other multi-speaker ASR frameworks. Sections 4 and 5 describe

the experimental investigations of SIMO-IRIS and MIMO-IRIS, respectively.

In Section 6, we draw conclusions and highlight future research directions.
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SSLR

SSLR
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ASR

Fine-tuned Frozen

Figure 1: Overview of SIMO/MIMO-IRIS via an E2E integration of SSE, SSLR extraction,

and ASR. The input of the SSE model can be multi-channel as in MIMO-IRIS or monaural

(only x1) as in SIMO-IRIS.

2. Review of monaural and multi-channel SSE

2.1. Problem settings

Let an audio mixture with K speakers and noise be observed by M mi-

crophones under reverberant conditions. The mixing process of the observed

time-domain signal xm of length L can be formulated as

xm =
K∑
k=1

yk,m + nm

=
K∑
k=1

(dk,m + rk,m) + nm

=
K∑
k=1

(hk,m ⊛ sk + rk,m) + nm, (1)

where yk,m is the reverberant source image of source k, nm is the background

noise signal, and m = 1, . . . ,M and k = 1, . . . , K are the microphone and

source indices, respectively. Each source image yk,m is decomposed into the
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desired source image dk,m and the undesired late reverberation rk,m. In (1),

the desired source image is further modeled by the convolution of the impulse

response hk,m and the dry source signal sk, where ⊛ denotes the convolution.

Let us denote the STFT coefficients of xm by Xm = STFT(xm) ∈ CT×F ,

where T and F are the number of time frames and frequency bins, respec-

tively. The mixing process in (1) can be reformulated as follows:

Xm =
K∑
k=1

(Dk,m +Rk,m) +Nm, (2)

where Dk,m, Rk,m, and Nm are the STFT coefficients of the desired source

image, late reverberation, and noise, respectively. With the reference micro-

phone m ∈ {1, . . . ,M}, the (t, f)th entry of Dk,m is approximated by

Dk,m(t, f) = ak,m(f)Dk,m(t, f), (3)

where ak(f) = [ak,1(f), . . . , ak,M(f)]T is the relative transfer function Gannot

et al. (2001), and (·)T denotes the transpose.

On the basis of the mixing process in (2), our SSE model aims to estimate

the desired source image in the time-frequency domain:

{D̂1,m, . . . , D̂K,m} = SSE(X1, . . . ,XM), (4)

where we need to not only separate each speaker but also suppress the noise

and late reverberation. That is, the SSE model performs denoising and

dereverberation along with separation. Building up on SSE, our goal is to

predict the transcription sequence for each speaker Wk from the mixture:

{Ŵ1, . . . ,ŴK} = MultiSpeakerASR(X1, . . . ,XM), (5)

where we do not care for the speaker order of the predicted transcripts.
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Throughout this paper, we assume that the array geometry, including

the number of microphones M , and the number of speakers K are known

and fixed during both training and inference. While the integration of SSE

and ASR with variable numbers of microphones Kanda et al. (2023) and

speakers von Neumann et al. (2020a) is interesting, we defer such directions

to future work. We instead focus on demonstrating comprehensive analysis

of multi-speaker ASR under static conditions.

2.2. Monaural SSE

When M = 1 and the input of SSE is only x1, it is called monaural SSE.

For monaural SSE in the time-frequency domain, time-frequency masking

and complex spectral mapping have been widely used Wang and Chen (2018).

In the former masking approach, a neural network is used to estimate a mask

Ĝk ∈ CT×F for each speaker k, and then the mask is applied to the STFT

of the mixture:

{Ĝ1,m, . . . , ĜK,m} = MaskNet(Xm), (6)

D̂k,m = Ĝk,m ⊙Xm, (7)

where m = 1 by definition, and ⊙ denotes the Hadamard product. While

the time-frequency mask is usually restricted to non-negative real value, it

can be complex Williamson et al. (2016). The separated STFT coefficients

are then converted to the time domain by the inverse STFT (iSTFT):

ŷm = iSTFT(Ŷm). (8)

In the more modern encoder-masker-decoder approach, STFT and iSTFT

are replaced by trainable 1D convolution and deconvolution layers, respec-

tively Luo and Mesgarani (2019); Luo et al. (2020); Subakan et al. (2021).
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Complex spectral mapping directly predicts the complex STFT coeffi-

cients of each speaker D̂k,m instead of the mask Ĝk,m Tan and Wang (2020);

Wang et al. (2020); Yang et al. (2022):

{D̂1,m, . . . , D̂K,m} = MappingNet(Xm). (9)

This approach has less restriction on the output and demonstrates compara-

ble or better performance than the encoder-masker-decoder approach Cornell

et al. (2023a); Pan et al. (2023).

2.3. Multi-channel SSE

Multi-channel SSE exploits spatial information obtained from multiple

microphones. It is typically realized in the time-frequency domain because we

can efficiently implement spatial filtering with the narrow-band approxima-

tion Gannot et al. (2017). As a front-end for ASR, mask-based beamforming

has demonstrated promising results Heymann et al. (2016); Erdogan et al.

(2016), where the non-negative time-frequency masks {Ĝ1,m, . . . , ĜK,m} in

(6) are used to build the beamformers.

In mask-based beamforming, a concatenation of STFT of the M -channel

mixture χ(t, f) = [X1(t, f), . . . , XM(t, f)]T ∈ CM is considered, whereXm(t, f)

is the (t, f)th entry of Xm. We first compute the spatial covariance matrix of
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the each speaker V̂k(f) and their respective interference V̂\k(f) as follows:

V̂k(f) =
1∑T

t=1 G̃k(t, f)

T∑
t=1

G̃k(t, f)χ(t, f)χ(t, f)
H, (10)

V̂\k(f) =

(
K+1∑
k′=1

V̂k′(f)

)
− V̂k(f), (11)

G̃k(t, f) =
1

M

M∑
m=1

Ĝk,m(t, f), (12)

where (·)H denotes the Hermitian transpose, and V̂K+1 represents the spatial

covariance matrix of the noise. Then, the beamformers are constructed based

on well-studied criteria such as the minimum variance distortionless response

(MVDR) beamformer Souden et al. (2010) and the generalized eigenvalue

beamformer Warsitz and Haeb-Umbach (2007).

The MVDR beamformer can be implemented by leveraging the spa-

tial covariance matrix of each speaker instead of the relative transfer func-

tion Souden et al. (2010). Specifically, the spatial filter ŵk(f) can be ex-

pressed as:

ŵk(f) =
V̂−1

\k (f)V̂k(f)

trace
(
V̂−1

\k (f)V̂k(f)
)u, (13)

where trace(·) denotes the matrix trace, and u ∈ RM is a one-hot vector

indicating the reference microphone m. Then, the beamformer is applied to

the STFT of the mixture, and the results are converted to the time domain

via iSTFT:

D̂k,m(t, f) = ŵH
k (f)χ(t, f), (14)

d̂k,m = iSTFT(D̂k,m). (15)
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The process of the mask-based beamforming is differentiable, and thus we can

optimize MaskNet in (6) with a loss function defined on the separated signals

{d̂1,m, . . . , d̂K,m}. The main advantage of mask-based beamforming is the

fact that the obtained spatial filter is linear and based on well-studied array

signal processing principles. These properties mitigate artifacts Iwamoto

et al. (2022) and improve the robustness and generalization capability Chang

et al. (2019); Zhang et al. (2021b); Masuyama et al. (2023).

Since the MVDR beamformer is mainly designed for separation and de-

noising, we need additional dereverberation under reverberant conditions.

The weighted prediction error (WPE) Nakatani et al. (2010) has been widely

used to suppress the late reverberation in (2) Kinoshita et al. (2016); Barker

et al. (2018). WPE estimates the late reverberation by using an inverse filter

and subtracts it. It is typically performed before beamforming, and its inte-

gration with beamforming has been explored Nakatani and Kinoshita (2019);

Zhang et al. (2022).

Complex spectral mapping in (9) can be easily extended to multi-channel

SSE as follows Wang et al. (2020, 2021b); Tan et al. (2022):

{D̂1,m, . . . , D̂K,m} = MappingNet(X1, . . . ,XM). (16)

In (16), MappingNet implicitly performs time-varying nonlinear spatial fil-

tering. Compared with the time-invariant beamformers, the output may re-

duce the interference more but can introduce more artifacts on the separated

speech. Although prior studies showed that the time-invariant beamformers

would be preferable for ASR Chang et al. (2019); Zhang et al. (2021b), we

expect that the combination of modern front-ends and back-ends can address

the issue of artifacts.
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2.4. Loss functions for SSE

In this subsection, we briefly review popular signal-level loss functions

for SSE. During the training of an SSE model, the order of the separated

signals d̂1,m, . . . , d̂K,m is unconstrained and can be different from the original

order. To compute the signal-level loss functions, however, we need to assign

each estimate d̂k′,m to one of the desired source images dk,m. To address

this problem, PIT computes all the possible permutations and uses the best

assignment as follows Kolbæk et al. (2017):

LSSEPIT = min
π∈PK

K∑
k=1

L(dπk
, d̂k), (17)

where PK is the set of K! possible permutations on {1, . . . , K}, and πk is the

kth entry of the permutation. In (17), L denotes a loss function computed

for each pair of signals.

Regarding the pair-wise loss function in (17), various loss functions have

been developed. The scale-invariant signal-to-distortion ratio (SI-SDR) has

been widely used not only for evaluation but also as a loss function:

LSI-SDR = 20 log10

(
∥αd∥2

∥αd− d̂∥2

)
, (18)

where α = d̂Td/∥d∥22, and ∥ ·∥2 denotes the ℓ2 norm. In (18), α compensates

for the scale of the target signal to fit to the estimate. While the SI-SDR

loss is defined in the time domain, recent studies Wang et al. (2023a) have

shown the benefit of combining the time-domain and STFT-domain losses:

LMIX = β
∥∥∥d− α̂d̂

∥∥∥
1
+ (1− β)

∥∥∥|STFT(d)| − |STFT(α̂d̂)|
∥∥∥
1
, (19)

where α̂ = d̂Td/∥d̂∥22, | · | computes magnitude in entry wise, and ∥ · ∥1
denotes the ℓ1 norm. Here, the estimate is rescaled instead of the target
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following Ma et al. (2020); Wang et al. (2023a). In (19), the ℓ1 norm of the

STFT magnitude is computed for |STFT(α̂d̂)| instead of |α̂D̂|. As a result,

the second term takes into account the inconsistency issue in D̂ Masuyama

et al. (2020); Wang et al. (2021c).

3. E2E multi-speaker ASR with SSLR

3.1. Overview of proposed SIMO- and MIMO-IRIS

Our multi-speaker ASR system consists of three modules: monaural/multi-

channel SSE (SSE), SSLR extraction (SSLR), and E2E ASR (ASR), as illus-

trated in Fig. 1. The observed mixture (x1, . . . ,xM) is first separated into K

sources, where M = 1 in the monaural case. Then, we extract SSLR from

each separated signal and feed it into E2E ASR as follows:

{D̂1,m, . . . , D̂K,m} = SSE(X1, . . . ,XM), (20)

Q̂k = SSLR(iSTFT(D̂k,m)), (21)

Ŵk = ASR(Q̂k), (22)

where Q̂k is the SSLR for the kth speaker. The modularity of our system

allows to leverage powerful pre-trained models for each module. To recognize

multi-speaker conversation, we can cascade pre-trained SSE and ASR models.

This cascaded strategy without fine-tuning is not optimal because the ASR

model is sensitive to the imperfect SSE outputs. To mitigate this issue,

we optimize the entire multi-speaker ASR system in an E2E fashion using

backpropagation.
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Figure 2: Overview of TF-GridNet. Here, gLN stands for global layer normalization.

3.2. Complex spectral mapping by TF-GridNet

While our system can use any SSE model, we leverage complex-spectral

mapping to simultaneously perform separation, denoising, and dereverbera-

tion as it is seamlessly applicable to both monaural and multi-channel cases.

Specifically, we use TF-GridNet that has shown SOTA performance in various

SSE benchmarks Hershey et al. (2016); Wang et al. (2018); Maciejewski et al.

(2020); Cornell et al. (2023a); Pan et al. (2023). Its overview is illustrated

in Fig. 2. The STFT of the observed mixture is expanded to C-dimensional

embeddings for each time-frequency bin by using a 2D convolution layer fol-

lowed by global layer normalization. The number of input channels of the 2D

convolution layer is 2M by concatenating the real and imaginary parts for all

the microphone channels. These embeddings are passed to B TF-GridNet

blocks, each consisting of an intra-frame spectral module, a sub-band tempo-

ral module, and a cross-frame self-attention module. The real and imaginary

parts of each speaker are obtained by applying a 2D deconvolution layer to

the output of the final TF-GridNet block.

In the intra-frame spectral module, the embeddings of size T × F × C
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are treated as T sequences of length F . For each sequence, we apply layer

normalization and stack adjacent I embeddings along frequency with shift

J . The resulting sequence of C × I dimensional features are passed to a bi-

directional long short-term memory (BLSTM) layer and a 1D deconvolution

layer. This module focuses on modeling spectral information at each time

frame. Meanwhile, the sub-band temporal module views the embeddings as

F sequences of length T and performs a similar procedure. This module

handles the temporal information at each sub-band.

While the aforementioned modules handle the spectral and temporal re-

lationships separately, the cross-frame self-attention module is designed to

aggregate full-band information between distant time frames. In detail, we

apply a point-wise 2D convolution to the 2D embeddings and concatenate

the embeddings for the frequency direction with layer normalization. The

attention matrix is computed over the time frames, i.e., its size is T × T .

The attention outputs of multiple heads are concatenated for the channel

direction, and then it is passed to another point-wise 2D convolution layer

followed by layer normalization.

After B TF-GridNet blocks, the embeddings are passed to a 2D deconvo-

lution layer with 2K output channels to obtain the real and imaginary parts

of each speaker. Each estimate is converted back to the time domain as d̂k,m

by iSTFT.

3.3. SSLR extraction by WavLM

Separated signals may contain residual noise, reverberation, and arti-

facts introduced by the SSE process. To robustly extract SSLRs, we use

WavLM Chen et al. (2022) that has shown remarkable performance in the
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SUPERB benchmark Yang et al. (2021) and multi-speaker ASR Cornell et al.

(2023b); von Neumann et al. (2024). WavLM consists of a convolutional en-

coder block and LSSL Transformer layers. During pre-training, the input

speech is augmented with noise and interference speech, and the augmented

speech is fed into the convolutional encoder block. Its output Z0,k is passed

to the Transformer layers after masking out some frames. We optimize the

Transformer layers to predict the k-means cluster assignment of clean speech

on the masked frames. Although this training strategy is similar to HuBERT,

the training of WavLM uses multiple datasets Kahn et al. (2020); Chen et al.

(2021); Wang et al. (2021a) and significantly leverages data augmentation.

Following the SUPERB strategy Yang et al. (2021), the output from

each Transformer layer Zl,k are averaged with trainable weights in our multi-

speaker ASR system:

Q̂k =

LSSL∑
l=0

γlZl,k, (23)

where l = 0 indicates the convolution encoder output, γl ∈ [0, 1] is the non-

negative weight satisfying
∑LSSL

l=0 γl = 1. This trainable weight is jointly

optimized with the following E2E ASR model while WavLM itself is frozen.

3.4. E2E ASR by joint CTC/AED

To predict the transcript of each speaker, we use the joint CTC/AED

model Watanabe et al. (2017) as a powerful E2E ASR framework. It leverages

the CTC module with an encoder shared with AED, which enforces the

alignment between the feature representation and transcription. In the joint

CTC/AED model, SSLR from WavLM Q̂k is passed to an encoder:

Êk = ASREnc(Q̂k), (24)
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where Êk = [ê1,k, . . . , êT ′,k] is the encoder output, and t′ = 1, . . . , T ′ is the

sub-sampled frame index. The CTC module predicts the posterior distribu-

tion of the alignment between the feature representation Qk and the tran-

scription Wk:

p(Ak | Q̂k) ≈
T ′∏
t′=1

p(at′,k | Q̂k), (25)

p(at′,k | Q̂k) = CTC(êt′,k), (26)

where Ak = [a1,k, . . . , aT ′,k] is the alignment sequence, at′,k is an entry of

the vocabulary or a blank token, and p(at′,k | Q̂k) denotes the frame-level

posterior distribution. In (25), we introduce the conditional independence

assumption between the frame-level outputs for the approximation. Then,

the posterior distribution of the transcription is computed as follows Graves

et al. (2006):

pctc(Wk | Q̂k) =
∑

Ak∈B−1(Wk)

pctc(Ak | Q̂k), (27)

where B−1(Wk) indicates all the possible alignments compatible with the

transcription Wk.

Meanwhile, AED computes the posterior distribution without the condi-

tional independence assumption:

patt(Wk | Q̂k) =

τk∏
τ=1

patt(Wτ,k | Q̂k,W1,k, . . . ,Wτ−1,k), (28)

patt(Wτ,k | Q̂k,W1,k, . . . ,Wτ−1,k) = ASRDec(Q̂k,W1,k, . . . ,Wτ−1,k), (29)

where τ = 1, . . . , τk is the index of tokens in the transcription for the kth

speaker. During training, we use teacher forcing to condition the decoder.
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At the inference, we combine the posteriors from the CTC module and the

decoder and apply beam search.

3.5. Training strategy of SIMO- and MIMO-IRIS

Training of a multi-speaker ASR system from scratch is computationally

intensive and potentially leads to sub-optimal performance, as reported in

previous studies Chang et al. (2022); Masuyama et al. (2023). To address

this issue, we first individually pre-train SSE, SSLR, and ASR, and then fine-

tune SSE and ASR in an E2E manner. In detail, the SSE model is pre-trained

with the signal-level loss function in (19). Meanwhile, the ASR model is

pre-trained on monaural clean speech datasets, e.g., the WSJ corpus, based

on the following sum of two loss functions Watanabe et al. (2017):

LASR = −λ log pctc(W |Q)− (1− λ) log patt(W | Q), (30)

where λ ∈ [0, 1] is a hyperparameter for balancing two terms. In (30), we

omit the source index because the pre-training is performed on a single-

speaker dataset. While freezing the pre-trained WavLM to avoid overfitting,

we optimize the trainable weights introduced in Eq. (23) together with the

ASR model Chang et al. (2022); Masuyama et al. (2023).

After pre-training, the integrated system is fine-tuned with the ASR cri-

terion defined in Eq. (30) with PIT:

LASRPIT =
K∑
k=1

LASR(Wπ⋆
k
, Q̂k), (31)

π⋆ = min
π∈PK

K∑
k=1

− log pctc(Wπk
, Q̂k), (32)
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where the CTC loss is used to determine the permutation π⋆ that will be used

in the subsequent computation of both terms in Eq. (30) for all the sources.

This is because the CTC loss requires only K forward passes to determine

the permutation, while the AED loss takes K2 forward passes for considering

every combination of the feature representation and the transcription for

teacher forcing Seki et al. (2018).

We can also include the SSE loss in (19) with PIT even during the fine-

tuning according in a multi-task learning fashion:

LMULTI = LASRPIT(W1:K , Q̂1:K) + κLSSEPIT(d1:K , d̂1:K), (33)

where κ ≥ 0 is a weight for the SSE loss, and the subscript 1 : K indicates

variables for all the sources. We choose the speaker permutation on the basis

of the SSE loss as in (17) and use that permutation for the ASR loss Settle

et al. (2018); von Neumann et al. (2020b).

3.6. Relation to other multi-speaker ASR

Towards multi-speaker ASR, the classical strategy is to separate a mixture

into single-speaker streams and then recognize each separated speech Yosh-

ioka et al. (2018a,b); Raj et al. (2021). This strategy employs the pre-trained

SSE and ASR models in a cascade, which is not optimal as discussed in Sec-

tion 3.5. This strategy has been extended to jointly train both SSE and

ASR models Qian et al. (2018); Settle et al. (2018); Chang et al. (2019);

von Neumann et al. (2020b); Zhang et al. (2022). In particular, MIMO-

Speech Chang et al. (2019) integrates the mask-based beamformer and the

joint CTC/AED model and trains the entire system with an ASR criterion
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in an E2E manner. Our multi-speaker ASR system advances this E2E inte-

gration by incorporating the robust SSL model, WavLM. We further provide

a comprehensive analysis of various SSE strategies, including time-frequency

masking, mask-based beamforming, and complex spectral mapping. Another

relevant study von Neumann et al. (2024) uses TF-GridNet and WavLM sim-

ilarly to our work. The latter system, however, still cascades the pre-trained

models and does not perform E2E training.

Another E2E strategy directly estimates multiple transcriptions without

explicitly performing SSE Yu et al. (2017a); Seki et al. (2018); Meng et al.

(2023). While this strategy originally used PIT, the serialized output train-

ing Kanda et al. (2020, 2022a); Sklyar et al. (2021); Li et al. (2023) and the

heuristic error assignment training L. Lu and Gong (2021); Raj et al. (2022)

have been developed to reduce computational complexity. This strategy has

recently been extended to multi-channel cases Kanda et al. (2023); Yifan

et al. (2023). In contrast to these systems, our system preserves modularity

and exploits pre-trained SSE and ASR models, which stabilizes the train-

ing of the combined multi-speaker ASR system. We can even pre-train each

model on separate datasets.

Meanwhile, speaker-attributed ASR Fiscus et al. (2007); Barker et al.

(2018); Watanabe et al. (2020), which aims to jointly recognize “who said

what,” has gained much attention in conversation analysis Shafey et al.

(2019); Kanda et al. (2022b); Cui et al. (2023); Cornell et al. (2024). Speaker-

attributed ASR provides rich speaker attribution in addition to the transcrip-

tion. On the other hand, our multi-speaker ASR system does not provide

speaker attribution. It can be predicted by a subsequent diarization system
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or via continuous speech separation, which will be explored in future works.

Finally, SSL models handling multiple speakers have recently been de-

veloped Fazel-Zarandi and Hsu (2023); Huang et al. (2023a). These models

are trained to predict the cluster assignments of each speaker from a mix-

ture. In addition, WavLM has been adapted to extract SSLR of the target

speaker by conditioning Huang et al. (2023b). By feeding in the conditioning

information of each speaker, the adapted SSL model can extract SSLRs for

multi-speaker ASR. While our main experiments freeze the SSL model, we

will also explore adapting the SSL model to multi-speaker ASR.

4. Experimental validation of SIMO-IRIS

We first evaluated SIMO-IRIS under noisy anechoic and reverberant con-

ditions. Our experiments were conducted using the ESPnet-SE toolkit Li

et al. (2021); Lu et al. (2022) and S3PRL Yang et al. (2021).

4.1. Dataset

We used the WHAMR! dataset. It contains anechoic and reverberant

two-speaker mixtures with noise recorded in urban environments Maciejewski

et al. (2020). Its dry source signals are from the WSJ0-2mix dataset Hershey

et al. (2016), but artificially simulated room impulse responses are convolved

with each clean source signal to obtain reverberant signals. To exploit the

pre-trained WavLM large model1, we used the source signals sampled at

16 kHz. The WHAMR! dataset provides two versions of overlapped mix-

tures: min and max versions. The longest of the two utterances is truncated

1https://huggingface.co/microsoft/wavlm-large
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in the min version, while the max version pads the shorter utterance by zero.

We used the min version to pre-train the SSE model since it resulted in better

separation performance compared with pre-training on the max version in our

preliminary experiments. Meanwhile, the fine-tuning of the entire system was

performed on the max version because the ASR loss in (31) requires the entire

utterances of both speakers without truncation. We combined the anechoic

and reverberant conditions during training and validation following Zhang

et al. (2022). For reference, the SI-SDRs of the input noisy mixtures are

−4.5 dB and −6.1 dB under anechoic and reverberant conditions, respec-

tively Maciejewski et al. (2020).

For the pre-training of the ASR model, we used the WSJ corpus. Since it

is also used as the source signal in the WHAMR! dataset, there is no domain

mismatch regarding the speaking style or semantic content of the speech

signal between the pre-training and fine-tuning data.

4.2. Experimental configuration

TF-GridNet was compared with a monaural SSE baseline, BLSTM-based

time-frequency masking. STFT was implemented with the Hann window of

512 samples with a 256-sample shift. To estimate the time-frequency masks,

we employed a 4-layer BLSTM along with time direction, where each layer

has 600 units for each direction. Regarding the TF-GridNet, the kernel size

of the initial 2D convolution and the final 2D deconvolution layers was 3,

where the embedding dimension C = 48. The number of TF-GridNet blocks

B was 6, where the BLSTM layer has 192 units in each block. We set I and

J to 4 and 2, respectively. The cross-frame self-attention module leveraged

4 heads. The SSE models were pre-trained based on the combination of the
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time-domain and STFT domain losses in (19), where β = 0.99. The Adam

optimizer was used with a learning rate of 0.001.

The ASR encoder consisted of 12 Conformer Gulati et al. (2020) blocks,

where each block had 4 attention heads with feed-forward layers of 2048 units.

The kernel size of the convolution layers was set to 15. The ASR decoder

consists of 6 Transformer Karita et al. (2019) blocks with 4 attention heads.

The dimensions of SSLR Z in (23) were reduced to 80 from 1024 by an

additional feed-forward layer. The ASR model and the trainable weight in

(23) were pre-trained on the WSJ corpus with the joint CTC/AED loss in

(30). We used the Adam optimizer with a warmup scheduler, where the

peak learning rate was 0.005. We performed model averaging over the 10

checkpoints with the highest accuracy.

Our entire system had 368M parameters, where the TF-GridNet and the

joint CTC/AED consisted of 8M and 44M parameters, respectively. The rest

of the parameters came from the frozen WavLM large model. The SSE and

ASR models were fine-tuned with the ASR criterion using stochastic gradient

descent with a learning rate of 0.001 and a momentum of 0.9. This is because

stochastic gradient descent typically performs better in fine-tuning Zhou et al.

(2020) and led to stable performance improvements in our previous study for

robust single-speaker ASR Masuyama et al. (2023). Training and inference

scripts will be available through ESPnet2.

2https://github.com/espnet/espnet
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Table 2: WERs (%) on the clean WSJ corpus with different feature representation.

dev93 eval92

Fbank 6.6 4.4

HuBERT Base 4.0 2.6

WavLM Base+ 3.6 2.1

HuBERT Large 2.6 1.5

WavLM Large 2.5 1.2

4.3. Experimental results with different feature representation

Before moving on to multi-speaker ASR, we investigate the recognition

performance on the WSJ corpus with different feature representation: filter-

banks, HuBERT, and WavLM. We explored two model sizes for HuBERT

and WavLM. The recognition performance on the development and evalu-

ation sets is summarized in Table 2. Consistent with the SUPERB bench-

mark results Yang et al. (2021), SSLRs dramatically improved single-speaker

recognition performance, and the WavLM large model performed the best.

Table 3 reports the WER as well as the substitution, deletion, and inser-

tion errors for different feature representations in the monaural WHAMR!

dataset. Here, the pre-trained TF-GridNet and the joint CTC/AED model

are combined without fine-tuning, where TF-GridNet results in SDRs of

10.17 dB and 8.96 dB under noisy anechoic and reverberant conditions, re-

spectively. While the order of WERs is consistent with that on the clean

WSJ corpus, the overall recognition performance was degraded even with

TF-GridNet. This result shows that multi-speaker ASR under noisy con-

ditions remains a challenge for a näıve cascaded method. Interestingly, all

the systems achieved lower WERs under the reverberant condition, although
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Table 3: WERs (%) and their breakdown on the test set of monaural WHAMR! dataset

with different feature representation. TF-GridNet is used for SSE.

Noisy anechoic Noisy reverberant

Sub. Del. Ins. WER Sub. Del. Ins. WER

Fbank 17.3 2.1 10.1 29.5 17.4 1.7 10.2 29.3

HuBERT Base 12.4 1.6 7.5 21.5 11.9 1.3 6.4 19.5

WavLM Base+ 9.3 1.5 5.8 16.7 8.7 1.2 4.3 14.2

HuBERT Large 8.0 1.3 5.6 14.9 7.2 1.0 3.9 12.1

WavLM Large 6.1 1.1 6.4 13.6 5.8 0.9 5.0 11.6

TF-GridNet resulted in better SDR in the anechoic scenario. We suppose

that this is because the residual interference and artifacts are masked out by

the late reverberation. Such masking effect could improve the performance

of subsequent ASR Cord-Landwehr et al. (2022). In our informal listening

tests, we heard the residual interference more clearly in the anechoic scenario.

4.4. Experimental results on monaural WHAMR!

We then compare our systems with different SSE models and training

strategies. Table 4 summarizes both separation and recognition performance.

Here, we also show WER of an existing method Ravenscroft et al. (2024) that

uses a time-domain SSE model fine-tuned with a loss defined on the ASR

encoder output. Its WER was obtained by using Whisper Radford et al.

(2023). Even without fine-tuning, our combination of TF-GridNet, WavLM,

and the Conformer-based joint CTC/AED model outperformed the existing

system and the time-frequency masking baseline. This suggests that time-

frequency masking might be too restrictive to restore clean speech, especially

under noisy reverberant condition. The fine-tuning of the ASR model on
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Table 4: Separation and recognition performance on the monaural WHAMR! test set with

different training strategies. The shaded rows indicate the systems with the proposed E2E

integration, i.e., SIMO-IRIS. During E2E fine-tuning, we used only the ASR loss except for

the system with † that was fine-tuned with the multi-task learning framework in Eq. (33).

SSE model Fine-tuned models SDR SIR SAR Sub. Del. Ins. WER

Noisy anechoic

Time-frequency masking - 4.75 16.47 5.65 23.3 3.2 16.0 42.6

TF-GridNet

-
10.17 27.25 10.42

6.1 1.1 6.4 13.6

ASR 4.0 0.9 1.9 6.7

SSE, ASR 4.67 19.99 4.91 2.3 0.4 0.8 3.6

SSE, ASR† 11.92 29.81 12.04 2.9 0.5 1.0 4.3

Noisy reverberant

Ravenscroft et al. (2024) SSE - - - - - - 26.7

Time-frequency masking - 3.28 15.61 4.19 30.8 3.6 17.9 52.3

TF-GridNet

-
8.96 27.55 9.07

5.8 0.9 5.0 11.6

ASR 3.6 0.7 1.3 5.7

SSE, ASR 4.00 19.26 4.21 2.2 0.3 0.6 3.1

SSE, ASR† 10.77 29.21 10.86 2.6 0.4 0.8 3.8

the SSE outputs brought better recognition performance, notably reducing

insertion errors. This result indicates that the fine-tuning stage mainly helps

the ASR model to focus on the primary speaker in each separated signal, as

observed in von Neumann et al. (2020b) with ConvTasNet for SSE. In the

second bottom row, both the SSE and ASR models were fine-tuned with the

ASR loss in (31), further improving recognition performance. This suggests

that the fine-tuning of both models is essential for the best performing multi-

speaker ASR system.
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As shown in the second bottom row of Table 4, the fine-tuning of the

SSE model degrades the separation performance, resulting in lower SDR and

SAR even compared with the time-frequency masking baseline under the

anechoic condition. TF-GridNet-based complex spectral mapping does not

impose any constraints on its outputs and thus can easily generate artifacts.

When SSE models are trained on signal-level loss functions, the generated

artifacts degrade the recognition performance Koizumi et al. (2022); Iwamoto

et al. (2022). On the other hand, the artifacts improved WER in our case

because our E2E fine-tuning enforces the SSE outputs to preserve critical

information for subsequent ASR, as discussed in von Neumann et al. (2020b).

The artifacts can be observed from examples of the separated signals shown

in Fig. 3. Meanwhile, by incorporating the SSE loss as in (33) with κ = 1.0,

the degradation of separation metrics was mitigated3 at the bottom row of

Table 4. A similar trend was reported in a previous work using ConvTasNet

for SSE and log-mel features instead of SSLR von Neumann et al. (2020b).

We therefore conclude that the degradation of the SSE performance due to

fine-tuning only with an ASR criterion is mitigated by using also an SSE loss

regardless of SSE models and feature representations.

Even with and without fine-tuning, the trainable weights in (23) for the

SSLRs were mainly concentrated in the last layer. In detail, γLSSL
was 0.88

and 0.90 for with and without fine-tuning, respectively, which are similar to

3The joint fine-tuning with the multi-task learning framework improved the separation

performance even from the cascaded method in which the SSE model was pre-trained

without the ASR loss. This is because the pre-training was performed on the min version

and caused domain mismatch to the max version used in the fine-tuning and evaluation.
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Figure 3: Examples of log magnitude of the separated STFT coefficients with and without

fine-tuning of the SSE model.

previous studies Chang et al. (2021, 2022); Masuyama et al. (2023).
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4.5. Experiment on two-speaker segments of AMI

To further investigate the performance in more realistic conditions, we

tested SIMO-IRIS on the AMI dataset Carletta et al. (2005). AMI consists

of recordings of real long-form meetings, where each meeting has 3 to 5 par-

ticipants. Here, we consider utterance-group based evaluation only Kanda

et al. (2023) and restrict ourselves to two speakers utterance groups. We

followed the ESPnet AMI recipe Watanabe et al. (2018) to partition the

original AMI data into training, development, and evaluation sets. After-

wards, for each split, we extracted two-speaker utterance groups based on

the given word-level segmentation annotation. The resulting dataset con-

sists of sparsely overlapped single-channel noisy/reverberant mixtures of two

speakers from a distant microphone (SDM). Following, Kanda et al. (2021);

Cornell et al. (2024), we augmented the training data by generating mixtures

from individual headset microphone (IHM) recordings. More in detail, we

mixed headset recordings at two-speaker overlapped segments to obtain two-

speaker mixtures. We used pyloudnorm Steinmetz and Reiss (2021) to align

the loudness of the generated mixture and the corresponding SDM recording.

We excluded utterance groups that were too short to compute the loudness.

The statistics of these mixtures are summarized in Table 5.

The network architecture and training configurations are the same as in

the previous experiment on the WHAMR! dataset. To construct SIMO-IRIS,

we used the TF-GridNet model pre-trained on the WHAMR! dataset because

there are no signal-level ground truth for the two-speaker utterance groups

of SDM recordings of AMI. Although IHM provides relatively clean signals,

these signals are typically still contaminated by their own noises and cross-
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Table 5: Statistics of our two-speaker utterance groups.

# of mixtures Average duration (sec) Total # of words

Train
SDM Original 19605 5.0 328800

IHM-mix 19528 5.1 328640

Dev
SDM Original 2322 4.6 37137

IHM-mix 2315 4.6 37123

Eval SDM Original 2133 4.7 34301

talk speech Wang et al. (2024). Training an SSE model on such imperfect

target signals is still not an easy task Maciejewski et al. (2023) and is out of

the scope of this work. Meanwhile, the ASR model was pre-trained on the

IHM recordings of AMI, which achieved WERs of 12.8% and 11.4% on the

development and evaluation sets, respectively. Then, we fine-tuned only the

ASR model or both SSE and ASR models with the ASR loss. The proposed

E2E integration allows the adaptation of the entire system, including the SSE

model, to realistic scenarios by using mixture recordings with transcripts.

This is preferable because signal-level ground truth corresponding to a real

mixture is difficult to obtain without a careful recording setup.

Table 6 shows the recognition performance on the two-speaker utterance

groups from the development and evaluation sets. The system without the

E2E fine-tuning resulted in poor performance. This is because TF-GridNet

did not work well due to the domain mismatch between the WHAMR! and

AMI datasets. Hence, the WERs were not improved significantly even with

fine-tuning of the ASR model. By fine-tuning both SSE and ASR models,

SIMO-IRIS achieved WER of 23.0% and 24.5% on the development and

evaluation sets, respectively. While SIMO-IRIS still lags behind the best-
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Table 6: WERs (%) and their breakdown on the two-speaker utterance groups in the de-

velopment and evaluation sets of AMI SDM recordings. The scores for Kanda et al. (2021)

is from the original paper, where the score with † indicates that the training leveraged

additional 900K multi-speaker mixtures simulated by using in-house recordings.

Fine-tuned Development Evaluation

models Sub. Del. Ins. WER Sub. Del. Ins. WER

Kanda et al. (2021)
- - - - - - - 59.5

- - - - - - - 19.6†

- 14.9 13.1 20.8 48.8 15.7 15.6 20.2 51.5

ASR 14.0 14.1 17.7 45.7 13.9 16.8 15.9 46.6

SSE, ASR 9.9 7.3 5.8 23.0 10.9 9.1 4.6 24.5

performing system that was trained with huge amount of in-house recordings,

these experiments confirm the advantage of the E2E fine-tuning with the ASR

loss on real meeting scenarios.

5. Experimental validation of MIMO-IRIS

In this section, we demonstrate the efficacy of MIMO-IRIS under various

conditions. Then, we explore multi-task learning during the joint fine-tuning

of SSE and ASR models.

5.1. Dataset

We used the spatialized WSJ0-2mix dataset Wang et al. (2018) as a

dataset of multi-channel two-speaker mixtures without noise. It convolved

the simulated room impulse responses with the dry source signals provided in

WSJ0-2mix dataset, and we used the first two channels as observations. In

this dataset, SDR with respect to the input mixture is 0.07 dB. We combined
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both anechoic and reverberant mixtures during training as in Zhang et al.

(2022).

The two-channel version of the WHAMR! dataset was also used to in-

vestigate the performance of MIMO-IRIS in challenging noisy environments.

The real noise in the WAHMR! dataset was recorded in two-channels Ma-

ciejewski et al. (2020), and thus we can add the noise to the simulated clean

two-channel mixtures.

5.2. Experimental configuration

TF-GridNet was compared with a multi-channel SSE baseline employing

mask-based beamforming. For the mask-based beamforming, we computed

the spatial covariance matrix of each speaker by using time-frequency masks

as in (10) and used the MVDR beamformer as formulated in (13). The time-

frequency masks were predicted by a 3-layer BLSTM, where each layer has

512 units for each direction (forward/backward along the frame dimension).

In addition, we performed dereverberation by using WPE before feeding

the mixture to the beamformer. WPE leveraged a time-frequency mask

calculated by another 3-layer BLSTM to compute the spatial filter following

Zhang et al. (2020b). TF-GridNet was adapted to the two-channel input by

increasing the number of input channel of the initial convolution layer from

2 to 4. Both multi-channel SSE front-ends were pre-trained with the loss

function in (19).

The ASR model was pre-trained on the WSJ corpus similar to the monau-

ral case, and then we fine-tuned the system with (31). We used the same

configuration as in the previous experiment.
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5.3. Experimental results on spatialized WSJ0-2mix

The separation and recognition performance on the two-channel rever-

berant test set of the spatialized WSJ0-2mix dataset is summarized in Ta-

ble 7. We include the score of an existing time-domain method Zhang et al.

(2020a). Although our mask-based beamforming lagged behind the exist-

ing method in terms of WER, its E2E fine-tuning resulted in better WER

with a small degradation in separation performance. That is, the E2E fine-

tuning is beneficial in multi-channel scenarios, similar to monaural cases.

TF-GridNet without joint training consistently outperformed the mask-based

beamformer. That is, the unconstrained complex spectral mapping is advan-

tageous for ASR when the number of microphones is limited. In contrast to

the mask-based beamforming, we observed a severe separation performance

degradation in the E2E fine-tuning with TF-GridNet. This is because TF-

GridNet can easily generate artifacts through time-varying nonlinear filter-

ing, whereas the mask-based MVDR beamforming is a distortionless linear

filtering. We emphasize that the E2E integration of TF-GridNet and the

Conformer-based joint CTC/AED model achieved WER of 1.6 %, compara-

ble to the performance on the clean WSJ corpus in Table 2.

5.4. Experimental results on two-channel WHAMR!

Table 8 shows the separation and recognition performance on the two-

channel WHAMR! dataset. Compared with existing methods based on mask-

based beamforming Zhang et al. (2022) and time-domain target speaker ex-

traction Zhang et al. (2021a), our combination of TF-GridNet, WavLM, and

Conformer-based joint CTC/AED model dramatically improved WER. It

also outperformed SIMO-IRIS in Table 4 by successfully leveraging spatial
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Table 7: Separation and recognition performance on the two-channel reverberant test

set of spatialized WSJ0-2mix. The shade indicates the system with the proposed E2E

integration, i.e., MIMO-IRIS, where the systems were fine-tuned only with the ASR loss.

SSE model Fine-tuned models SDR SIR SAR Sub. Del. Ins. WER

Zhang et al. (2020a) - - - - - - - 25.3

WPE-MVDR
- 4.77 8.75 8.40 20.2 0.6 27.3 48.1

SSE, ASR 4.08 8.64 7.17 9.1 1.5 3.2 13.8

TF-GridNet
- 15.06 31.29 15.21 1.3 0.1 0.6 2.0

SSE, ASR 6.75 25.98 6.82 1.3 0.1 0.3 1.6

information. We then fine-tuned the ASR model while freezing the SSE

model, obtaining a WER of 3.6% and 3.9% under anechoic and reverber-

ant conditions, respectively. By fine-tuning WavLM in addition to the ASR

model, we further improved WER. These fine-tuning strategies are advanta-

geous for the front-end because we can preserve the original SSE model.

Our MIMO-IRIS with the E2E fine-tuning of both SSE and ASR models

decreased the separation performance but yielded WERs of 2.3% under both

anechoic and reverberant conditions. The fine-tuning of the SSE model is

more beneficial than that of the SSL model for multi-speaker ASR. Finally, we

further fine-tuned the entire model, including WavLM, after fine-tuning the

SSE and ASR models. Its performance gain was marginal, which highlights

the importance of fine-tuning the SSE model. We emphasize that the WER of

2.3% under the noisy reverberant condition is remarkable because the input

SI-SDR is around −6.1 dB, demonstrating the potential of E2E integration

of modern SSE and ASR models.
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Table 8: Separation and recognition performance on the two-channel WHAMR! test set

with different training strategies. The shaded rows are for MIMO-IRIS. The fine-tuning

of the systems was performed only with the ASR loss.

SSE model Fine-tuned models SDR SIR SAR Sub. Del. Ins. WER

Noisy anechoic

TF-GridNet

-

13.2 32.9 13.3

3.0 3.6 0.3 6.9

ASR 2.3 0.3 1.0 3.6

SSLR, ASR 2.1 0.3 0.8 3.1

SSE, ASR 8.9 28.9 9.0 1.5 0.2 0.6 2.3

SSE, SSLR, ASR 8.7 29.1 8.8 1.5 0.2 0.5 2.2

Noisy reverberant

Zhang et al. (2022) SSE, ASR -2.27 - - - - - 28.9

Zhang et al. (2021a) - - - - - - - 20.9

TF-GridNet

-

11.1 30.2 11.3

3.4 0.3 4.6 8.3

ASR 2.5 0.3 1.1 3.9

SSLR, ASR 2.2 0.2 0.8 3.2

SSE, ASR 7.9 25.0 8.0 1.6 0.2 0.5 2.3

SSE, SSLR, ASR 7.7 25.8 7.8 1.6 0.2 0.5 2.3

5.5. Multi-task learning framework with SSE and ASR losses

In this subsection, we investigate the impact of the multi-task learning

with the SSE loss in addition to the ASR loss during the fine-tuning. Similar

to Section 5.4, we used the two-channel anechoic and reverberant mixtures

from the WHAMR! dataset. Since the dataset provides the clean source

images for each mixture, we can seamlessly investigate the effect of the SSE

loss in (19) by changing κ in (33). The previous multi-channel experiments

does not use the SSE loss, corresponding to κ = 0. The joint fine-tuning
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of the SSE and ASR models was conducted on the max version to compute

the ASR loss, while the SSE model was pre-trained on the min version. As

a result, the separation performance on the max version could be improved

through fine-tuning with the SSE loss.

Fig. 4 shows the relationship between SDR and WER for different weights

on the SSE loss κ. Even with small weights, multi-task learning substantially

mitigated the degradation of the separation performance. In detail, WERs

were inversely proportional to SDRs under both anechoic and reverberant

conditions across multi-task learning systems. The SSE loss in (33) enforced

the model to achieve better signal-level separation and thus improved SDR.

Meanwhile, E2E fine-tuning without the SSE loss is optimal for ASR appli-

cations, and WERs deteriorated as the weight κ increases. This could be

because, for κ > 0, the SSE model separates sources more effectively but

also introduces undesirable artifacts Koizumi et al. (2022); Iwamoto et al.

(2022), negatively impacting ASR performance. Meanwhile, the ASR loss

may allow the SSE model to ignore the signal parts that are unimportant

for the subsequent ASR, which degrades the signal-level metrics. These re-

sults reveal a trade-off between the SDR and WER, where improvements in

one metric come at the expense of the other. This finding suggests the im-

portance of task-specific fine-tuning because improving popular signal-level

metrics might compete with down-stream objectives.

We emphasize that models with multi-task fine-tuning still outperformed

existing systems Zhang et al. (2022, 2021a) in Table 8 and our system without

any fine-tuning.
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Figure 4: SDR and WER with different weights κ on the SSE loss in multi-task learning

framework. The star, κ = 0, indicates the fine-tuning without the SSE loss.

6. Conclusions

We propose SIMO/MIMO-IRIS, a monaural/multi-channel multi-speaker

ASR system, which integrates monaural/multi-channel SSE, SSLR extrac-

tion, and ASR in an E2E manner. By integrating TF-GridNET, WavLM, and

a Conformer-based joint CTC/AED model, we obtained significant WER im-

provements and SOTA results on the spatialized WSJ0-2mix and WHAMR!

datasets. Our experimental results demonstrated the importance of the E2E

fine-tuning of the pre-trained SSE and ASR models, even with powerful pre-

trained models including WavLM. E2E fine-tuning with only the ASR loss

significantly decreased SDR by introducing artifacts, which can be mitigated

via multi-task learning with an SSE loss.

In this paper, we focused on ideal settings where the numbers of mi-

crophones and speakers are time-invariant and known. In addition, our
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experiments were based on simulated reverberation, while using real noise

recordings. In the future, we would like to extend SIMO/MIMO-IRIS to

handle a time-varying number of speakers and long-form recordings e.g., via

continuous speech separation Chen et al. (2020); von Neumann et al. (2024).

Such an extension would make the proposed system applicable to real multi-

speaker conversations featured in the recent CHiME challenges Watanabe

et al. (2020); Cornell et al. (2023b).
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