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Abstract—Contact-implicit trajectory optimization (CITO) is
an effective method to plan complex trajectories for various
contact-rich systems including manipulation and locomotion.
CITO formulates a mathematical program with complementarity
constraints (MPCC) that enforces that contact forces must be
zero when points are not in contact. However, MPCC solve times
increase steeply with the number of allowable points of contact,
which limits CITO’s applicability to problems in which only a
few, simple geometries are allowed to make contact. This paper
introduces simultaneous trajectory optimization and contact
selection (STOCS), as an extension of CITO that overcomes this
limitation. The innovation of STOCS is to identify salient contact
points and times inside the iterative trajectory optimization
process. This effectively reduces the number of variables and
constraints in each MPCC invocation. The STOCS framework,
instantiated with key contact identification subroutines, renders
the optimization of manipulation trajectories computationally
tractable even for high-fidelity geometries consisting of tens of
thousands of vertices.

Index Terms—Manipulation planning, trajectory optimization,
infinite programming

I. INTRODUCTION

UMANS and other organisms treat contact as a fact of

life and utilize contact to perform dexterous manipula-
tion of objects and agile locomotion. In contrast, the majority
of current robots avoid making contact with objects as much
as possible, and tend to avoid contact-rich manipulations like
pushing, sliding, and rolling [1], [2]. Trajectory optimiza-
tion [3] has been investigated as a tool for generating high
quality manipulations, but choosing an effective mathematical
representation of making and breaking contact remains a
major research challenge. Two general classes of methods are
available: hybrid trajectory optimization and contact-implicit
trajectory optimization (CITO). Hybrid trajectory optimization
divides a trajectory into segments in which the set of contacts
remains constant, but it requires the contact mode sequence to
be known in advance [4] or explored by an auxiliary discrete
search. CITO [5], [6], [7], [8], [9] allows the optimizer to
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choose the sequence of contact within the optimization loop.
CITO formulates contact as a complementarity constraint to
ensure that the contact forces can be non-zero if and only if a
point is in contact [5]. Although the resulting mathematical
programming with complementary constraint (MPCC) [10]
formulation is less restrictive than hybrid trajectory optimiza-
tion, it still requires a set of predefined allowable contact points
on the object. Moreover, MPCC rapidly becomes more chal-
lenging to solve as the number of complementarity constraints
increases, so past CITO applications were limited to a small
handful of potential contact points.

This paper introduces the simultaneous trajectory optimiza-
tion and contact selection (STOCS) algorithm to address the
scaling problem in contact-implicit trajectory optimization. To
the best of our knowledge, this is the first method capable of
optimizing contact-rich manipulation trajectories with high-
fidelity geometric representations in 3D. This method paves
the way for manipulation planning with raw sensor input, such
as point clouds derived from RGBD images, and eliminates
the need for geometry simplification.

Instead of predefining a fixed set of possible contact points
as in typical CITO approaches, the STOCS algorithm employs
an infinite programming (IP) approach, functioning similarly
to the active set method [11]. This approach dynamically
generates potential contact points and contact times between
the object and environment, making the resulting MPCCs
significantly more tractable to solve. The primary contribution
of this work is to extend prior work on IP for robot pose opti-
mization [12] to the trajectory optimization setting. This paper
describes methods for encoding quasi-dynamic constraints in
trajectory optimization, and also presents a novel method for
selecting salient contact points and contact times. This method,
Time-active Maximum Violation Oracle (TAMVO) with spa-
tial disturbance and temporal smoothing, encourages the IP
framework to converge quickly toward a feasible solution.
We demonstrate the effectiveness and efficiency of STOCS
in solving 2D and 3D sliding, pivoting, and peg in hole tasks
with irregular objects and environments, whose models can
include up to tens of thousands of vertices. Without STOCS,
CITO methods take hundreds to thousands of times longer,
even for problems of moderate size (a few hundred vertices).

II. RELATED WORK

Model-based trajectory planning methods have been exten-
sively studied for contact-rich manipulation problems. The
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Fig. 1. STOCS accepts as input the high-fidelity geometry of the object (represented by a dense point cloud) and the environment (represented by a signed
distance field), the robot’s contact point, and start and goal poses of the object (left). The STOCS algorithm first generates an initial trajectory by linearly
interpolating between the start and goal poses, and then it iterates between selecting contact points and solving a finite-dimensional MPCC to decide a step
direction until the convergence criteria are met (center). As output (right), STOCS produces the pose of the object, active object-environment contact points
(green dots) and forces (green lines), and manipulation force (red lines). Nonpenetration, Coulomb friction, complementarity, and quasi-dynamic stability are

enforced throughout the trajectory. [Best viewed in color.]

presence of contact presents significant challenges for opti-
mization, primarily due to the stiff and non-smooth nature
of contact dynamics [13]. Various approaches have been
proposed to address this challenge.

Hybrid trajectory optimization approaches divide a trajec-
tory into segments in which the contact mode (set of active
contacts) remains constant [14]. This segmentation allows
trajectory optimization to be cast as a large non-linear program
that can be solved to optimize the timings and variables
associated with each of the individual modes [15], [16].
However, manually determining an appropriate sequence of
contact modes is intractable in all but the simplest problems.

An alternative approach assumes a predefined object trajec-
tory, which prescribes the contact mode, and then solves for
the robot’s contact interactions needed to achieve this desired
trajectory [17]. However, obtaining a feasible object trajectory
itself can be challenging.

Rather than predefining contact mode sequences, mode
search methods [18], [19] automatically enumerate contact
modes [20] to guide the tree expansion within a sampling-
based motion planning algorithm. Although this overcomes the
limitations of mode sequencing, the complexity of enumerat-
ing all 3D contact modes for one object is O(N?), where N
represents the number of contacts and d denotes the object’s
effective degrees of freedom, which is 3 in 2D and 6 in 3D.
This superlinear growth in N makes these methods impractical
for high-fidelity geometric representations.

Contact-implicit trajectory optimization (CITO) offers an
alternative to predefining or searching over the contact mode
sequence [5], [6], [7]. CITO models all possible contacts with

complementarity constraints and casts trajectory optimization
as a mathematical program with complementarity constraints
(MPCC). These constraints allow forces to be nonzero if
and only if the distance between a contact and the opposing
object is zero. Given a set of potential allowable contacts,
the optimizer loosens the complementarity constraints to let
forces be applied at a distance, and then progressively tightens
them. Through smoothing the contact dynamics using the
above strategy, CITO can then simultaneously optimize the
mode sequence as well as the contact forces. However, CITO
becomes extremely challenging to solve when there are a large
number of possible contacts, leading to large numbers of com-
plementarity constraints. Consequently, the main limitation of
this approach is that the set of allowable contacts must be
predefined and needs to be relatively small.

The STOCS method introduced in this paper addresses the
scaling problem of CITO by incorporating the identification
of salient contact points and contact times inside trajectory
optimization. This approach effectively reduces the number
of variables and constraints in the resulting MPCC, rendering
the computation of contact-rich manipulation trajectories for
objects with complex, non-convex geometries computationally
tractable. In prior work, we introduced the infinite program-
ming framework used here, and applied it to optimizing
stable grasping poses [12]. In contrast, this paper extends
the framework to optimize entire trajectories for contact-rich
manipulations. Although STOCS is contact-implicit for object-
environment contact, it still requires a pre-defined robot-object
contact state. To enable changes in the robot-object contact, a
sampling-based planner that incorporates robot-object contact



sampling could be integrated with STOCS. It is also worth
noting that STOCS is a local trajectory optimization method,
so its output is sensitive to the specified temporal resolution
and initial trajectory.

This article is an expanded version of a conference paper
[21]. Our extensions broaden the applicability of STOCS
and enables its use with more complex objects and envi-
ronments. Compared to the conference version, which only
worked in planar problems, the current implementation is far
more efficient and we demonstrate how it can be applied to
3D problems. Moreover, we introduce a novel method for
selecting contact points and contact times, called the Time-
active Maximum Violation Oracle (TAMVO), that also greatly
improves computational performance. This version also adds
additional details, references, and experiments.

III. APPROACH

Given a start pose and a goal pose, a trajectory that
includes the object’s motion and the control inputs of the
manipulator needs to be planned. In this section, we describe
the inputs and outputs of our method in detail, and explain how
we use STOCS to solve contact-rich manipulation trajectory
optimization problems.

A. Problem Description

Our method requires the following information as inputs:

1) Object initial pose region: Qinit C SE(2) or SE(3).

2) Object goal pose region: Qgoar C SE(2) or SE(3).

3) Object properties: a rigid body O whose geometry, mass
distribution, and friction coefficients with both the envi-
ronment fc,, and the manipulator fi,,,, are known.

4) Environment properties: rigid environment £ whose ge-
ometry is known.

5) Robot’s contact point(s) with the object: ¢™"P.

6) A time step At and number of time steps 7' in the
trajectory.

Our method will output a trajectory 7 that includes the
following information at time ¢:

1) Object’s configuration: g.

2) Object’s velocity (angular and translational): v;.

3) Robot’s contact point(s): ¢;""F.

4) Manipulation force: wu;.

5) Object’s contact points with the environment: Y;.

6) Contact force at each object-environment contact point:
2(yt) Yy € V3.

In this paper, we treat all objects and environments as rigid
bodies and we assume the contact between the manipulator and
the object is sticking contact. Furthermore, users are provided
with the flexibility to opt for either quasistatic or quasidynamic
assumptions based on their specific requirements. Under the
quasistatic paradigm, inertial forces are considered negligible,
necessitating that the object remains in a state of force and
torque equilibrium at all times. Quasidynamic manipulation
accounts for scenarios where tasks may involve occasional
dynamic periods, during which accelerations do not integrate
into substantial velocities, and both momentum and the effects
of impact restitution are negligible [22].

Algorithm 1 STOCS
Reql}ire: qstart> 9goals cmnp
1YY =]] > Initialize empty constraint set

20+ 0 > Initialize empty force vector

: Tp + initialize trajectory(gsiart> dgoal> €' "'F)

cfor k=1,..., N do
> Update constraint set and guessed forces zj,
Add all points in Y*-1 to Y*, and initialize their

forces in z; with the corresponding values in zx_1

7: Call Oracle to add new points to Y, and initialize
their corresponding forces in zj

8: Tp < Th—1

9: > Solve for step direction

10 Set up inner optimization P* = P(Y¥)

11: Run S steps of an NLP solver on Pk, starting from
Tk, 2k

12: Set x*, z* to its solution, and Az < x* — xp, Az +
FA A

13: Do backtracking line search with at most N7'¢'* steps
to find optimal step size « such that ¢(zp + Az, 2 +
Az p) < ¢(wg, 215 1)

AN

14: > Update state and test for convergence
15: T — T + oAz, 2, — 2 + alAz
16: if Convergence condition is met then

return .,z
17: return NOT CONVERGED

B. STOCS Trajectory Optimizer

Overall, STOCS formulates contact-rich trajectory opti-
mization as an infinite program (IP), which is a constrained
optimization with a potentially infinite set of variables and
constraints. It uses an exchange method to solve the IP,
by wrapping a contact selection outer loop around a finite
optimization problem. The inner problem formulates CITO
with complementarity constraints and solves an MPCC. In
summary, the algorithm operates as follows:

1) Initialize the initial guess object trajectory, e.g., a linear
interpolation.

2) Initialize an empty candidate set of contact points
Y1, ..., Yy for each time step and an empty set of contact
forces.

3) Use an Oracle to identify new / removed contact points,
and update }71, o ,YT.

4) Solve an MPCC for the candidate set of contact points
using a small number of iterations.

5) Check for convergence. If not converged, repeat from
step 3.

Contact forces for existing contact points are maintained from
iteration to iteration to warm-start the next MPCC. Details
about the algorithm (Alg. 1) and oracle design are described
below.

Infinite programming for contact-rich trajectory optimiza-
tion. First, we describe the IP formulation used by STOCS.
Let us start by defining semi-infinite programming (SIP). An
SIP problem is an optimization problem in finitely many



variables ¢ € R™ on a feasible set described by infinitely
many constraints:

min f(q) (la)
qeRn
st.glq,y) >0 VyeY (1b)

where g(q,y) € R™ is the constraint function, y denotes the
index parameter, and Y € RP? is the index domain which can
be continuously infinite.

As an example, to solve pose optimization with non-
penetration constraints [23], ¢ describes the pose of the
object, and y is a point on the surface of the object O,
where Y = 0O denotes the surface of O. The constraint
g(+,-) is the signed distance from a point to the environment.
Although the inequality g(gq,y) > 0 must be satisfied for all y,
optimal solutions will be supported by some points, i.e., at the
optimal solution ¢*, the Karush-Kuhn-Tucker conditions will
be established by a finite set of points y such that g(¢*,y) = 0.

In trajectory optimization, constraints need to be enforced in
space-time [23], so we define a candidate index point i, € 0O
as being indexed by time. We denote Y; = 0O as the index
domain at time ¢. To enhance the stability of the optimization
process, we assume that once an index point is instantiated,
it remains active throughout the whole solving process. The
removal of index points will be considered in future work.

STOCS then reasons about contact forces at each index
point, and since the contact force distribution is a function
over the object surface, this introduces infinitely many vari-
ables, which turns the problem into an infinite program [24].
Specifically, we define the contact force z(-) : Y; —
R"™ as an optimization variable. Our formulation imposes
friction constraints, complementarity constraints, and quasi-
dynamic/quasi-static force and moment balance on these vari-
ables.

To formulate the force variables and friction cone, we
encode normal and tangential forces separately in the vector z.
In 2D, z(y) = [¢V, 2%, 27] is expressed in a reference frame
with 2 the component of force normal to the contact surface,
and 2T, z~ tangent to the contact surface. In 3D, following [5],
we use a polyhedral approximation of the friction cone [25].
We express z(y) = [zV,2P1,--- 2P in a reference frame
with zV normal to the contact surface, and zP1 ... zPd
tangent to the contact surface. The convex hull of the unit
vectors along the directions of zP! ... 2P? in R? forms
the polyhedral approximation. The force is required to satisfy
z > 0 and pz — ZIDJDI 2* > 0 where p is the friction
coefficient of the given point and Z?:le 2% is the sum of
tangential forces.

In summary, the constraints we impose at time t are as
follows:

1. State and Control Bounds:

G E€Q eV, el 2)
2. Object Dynamics:

Gt — Q41 + V1AL =0 3)

3. Distance Complementarity: ensures that nonzero forces
are only exerted at points where objects are in contact,

i.e. the normal force 2% (y) is nonzero only if contact is
made at y.

0<2N() Lglgny) >0 Vyey, )

4. Unilateral Manipulation Velocity: ensures the manipu-
lator can only push the object rather than pull.

c(qe,ue) >0 &)

Here, c(q¢, u:) represents the normal force exerted by the
manipulator, and this constraint ensures that the force
points inward, toward the object.

5. Force-torque Balance:

Sq,u(Qta ut) + /

yeYt

Sz(Qta Y, Z(y))dy = Mvt or Oa (6)

=15(qt,ut,2;Y%)

where sq..(g:, u;) represents the wrench applied at the
object’s center of mass by gravity and the manipulation
force, while s, (q:,y, 2(y)) denotes the wrench applied at
the object’s center of mass by the contact force z(y).

6. Friction constraints: the force constraints defined above
are grouped into a function h

Function h is related to the friction cone constraint,
and the linearized friction cone constraint used in [25]
can serve as a specific instantiation of it. Details on
the formulation of h for both 2D and 3D scenarios are
provided separately in the Appendix. A similar constraint
is applied to the manipulator contact force.

7. Friction-Velocity Complementarity: ensures the relative
tangential velocity at a contact is zero unless the contact
force is at the boundary of the friction cone

0 < w(g,ve,y) L h(g,y,2(y)) >0 VyeY,. (8

Function w is related to the relative tangential velocity at
a contact. Details on the formulation of w for both 2D and
3D scenarios are provided separately in the Appendix.

We elaborate a bit on (6), which integrates the force distri-
bution over the domain Y;. Here, s,,(q,u) represents the
force and torque applied by gravity and the manipulator, and
s.(q,y, 2(y)) represents the force and torque applied on an
index point y by the contact force z(y). The integral gives the
net force and torque experienced by the object, which is 0 if we
assume quasi-static, and is M, if we assume quasi-dynamic,
where M is the inertia matrix of O, and ¥; is approximated
as vy /At.

Lastly, adding terminal constraints gy € Qin;¢ and qr €
Qgoal, we formulate the following infinite programming with
complementarity constraints trajectory optimization (IPCC-
TO) problem P(Y):

min f(q,v,u, 2) (9a)
q,0,u,2

s.t. go € QinihQT € ngal (9b)

(2),(4),(5),(6),(8) t=0,....,T (9¢)

3) t=0,...,T—1, (9d)



where ¢, v, and u concatenate the state and control variables
along all time steps, and z represents the contact force distri-
bution at all points in time. Detailed instantiations of Equation
9 for both 2D and 3D scenarios are available in the Appendix.

Exchange method. The IPCC-TO problem P(Y') not only has
infinitely many constraints, but also an infinity of variables in
z. To solve it using numerical methods, we require that z only
is non-zero at a finite number of points. Indeed, if an optimal
solution ¢* is supported by a finite subset of index points
Y € Y, then it suffices to solve for the values of z at these
supporting points, since z should elsewhere be zero thanks to
(4). This concept is used in the exchange method to solve SIP
problems [26], and we extend it to solve [IPCC-TO.

The exchange method progressively instantiates finite in-
dex sets Y = [Yp,---,Y7] and their corresponding finite-
dimensional MPCCs whose solutions converge toward the true
optimum [27]. The solving process can be viewed as a bi-level
optimization. In the outer loop, index points are selected by
an oracle to be added to the index set }7, and then in the inner
loop, the optimization P(}N/) is passed to the solver to solve for
a small number of iterations. The outer loop will then decide
how much should move toward this solution. Specifically, if
we let (2* = [¢*, v*, u*], 2*) be the optimal solution to P(Y),
then as Y grows denser, the iterates of (Z*, z*) will eventually
approach an optimum of P(Y).

Given a finite number of instantiated contact points Y C Y,
we can solve a discretized version of the problem which only
creates constraints and variables corresponding to Y. Also,
through replacing the distribution of z(y) with Dirac impulses,
integrals are replaced with sums and we formulate the finite

MPCC problem P(Y) in the following form:

min f(q,v,u, z) (10a)
q,0,u,z

S.t. go € Qinita qar € ngal (10b)

(2),(4),(5),8) t=0,...,T (10c)

3 t=0,...,T—1 (10d)

5(qr,ue, 2Y:) =00r Mo t=0,---, T  (10e)

where  f(q,v,u,z) = ZtT=O~[fq7v,u(Qt7Ut,Ut) n
> oyev, [2(a, v, 2(y)], and 3(ge, ue, 23Y:) = Squlqe, ue) +
> yev, 82(at, Y, 2(y)).

Oracle. Identifying an effective selection strategy for index
points is a key to solving the IPs, and this strategy is
denoted the Oracle. A naive Oracle would sample index points
incrementally from Y; (e.g., randomly or on a grid) at each of
the discretized time steps along the trajectory, and hopefully,
with a sufficiently dense set of points the iterates of solutions
will eventually approach an optimum. However, this approach
is inefficient, as most new index points will not yield active
contact forces during the iteration. Better strategies seek to
identify a small number of points that would be active at an
optimal solution. This work introduces two different Oracle
designs, the Maximum Violation Oracle (MVO) and the Time-
active Maximum Violation Oracle (TAMVO), which will be
discussed in more detail in Sec. III-C.

Merit function for the outer iteration. After solving P(Y)
in an outer iteration, we get a step direction from the current
iterate (Z, 2) toward (Z*, z*), where z = [g,v,u] is a
concatenation of all the optimization variables except for z.
However, due to nonlinearity, the full step may lead to a
worse constraint violation for the original problem P(Y). To
avoid this, we perform a line search over the following merit
function that balances reducing the objective and reducing the
constraint error on the infinite dimensional problem P(Y):

¢<x72aw6) :f(x72)+w6||b($7z)”17 (11)

where b denotes the vector of constraint violations of Problem
(10). Also, in SIP for collision geometries, a serious prob-
lem is that using existing instantiated index parameters, a
step may go too far into areas where the minimum of the
distance function ¢*(¢:) = minyey, g(q:,y) greatly violates
the inequality, and the optimization loses reliability. So we
add the max-violation ¢g*~(¢;) to b, in which we denote
the negative component of a term as -~ = min(+,0). Thus,

*

¢*~ = min(minyey, g(g,y),0).

Convergence criteria. We denote the index set Y instantiated
at the k'™ outer iteration as Y*, the corresponding MPCC as
P, = P(Y'*), and the solved solution as (z, z).

The convergence condition is defined as ||[Az, Az]|| < e -
Ny, and |Zk|T|g(qka Yk)|~+ |U(qk> Uk, Yk)|T|h(qk?7 Ykagk” <
€gap * Tce and |s(zp, 2, YF)| < e - T (or  |s(awp, 2, V)| —
MV < e -T)and Y, g, "(zrt) < € - T, where ng, is
the dimension of the optimization variable and n.. is the
number of complementarity constraints, €, is the step size
tolerance, €44, is the complementarity gap tolerance, €, is the
balance tolerance, and ¢, is the penetration tolerance. With
a little abuse of notation, g(;vk,f/k) is the concatenation of
the function value of all the points in }N/k, and similar for
v(qr, v, Y*) and h(qy, Y*, z;). V is the concatenation of all
the v; fort € T.

C. Oracle Choice

As described above, the oracle design is a key component
of STOCS. We compare Maximum Violation Oracle (MVO),
that adds the closest / deepest penetrating points between
the object and the environment at each time step along the
trajectory, along with a new method, Time Active Maximum
Violation Oracle (TAMVO) with smoothing. TAMVO selects
index points more judiciously and only adds the closest /
deepest penetrating points at a specific time step.

MVO (Alg. 2) adds the closest or deepest penetrating points
between the object and environment at each time step along
the trajectory to all candidate index points across time ﬁks.
Note, however, that it may still include index points that do
not generate active contact forces during the iteration. For
instance, as illustrated in Fig. 2(a), the closest or deepest
penetrating points at time step ¢ are typically active only
around that specific period.

To address this issue, we introduce TAMVO (Alg. 3). In this
refined approach, the index set is no longer the same across
time steps. Lines 8—12 identify closest points at each time step.



Algorithm 2 Maximum-Violation Oracle

Input qo.7, Y*~', adding threshold d* ;.
Output Y
Y vkt
fort=0,...,7 do

y* = argmin,cy, 9(qt, )

d* =g(a,y")

if y* is not in V¥ and d* < dy, 4, then

if ||y — y*|| > d;y;, Yy € " then

fort =0,...,7T do

add yx to Y}

and d*

max

X DN A RN

Algorithm 3 Time-Active Maximum-Violation Oracle

Input qo.7, Yk —1 max object-environment distance d;, ..,

contact uniqueness threshold ¢, time smoothing step ny,
spatial disturbances N

Output Y*
1: }:/k — Y/k_l
2 Y+ [[Jo, 1o [Jn]
3: fort =0,...,7T do
4 y*=argmin .y 9(q,Y)
si d*=g(g,y")
6: if d* < d;, . then
7: add y* to Y'[t]
8: fort =0,...,7 do
9: for n, € N, do
10: ys = argmin, ¢y, g(q: + ns,y)
11 if (gt + ns,ys) < d7y,q, then
12: add y, to Y'[t]
13: for t =0,...,7 do
14: fort' =t—ny,...,t+n; do
15: if 0 <t <T then
16: for / in Y'[t] do
17: if ||y’ — y|| > € Vy € Y}* then
18: add y' to Y}

Duplicate points (within threshold ¢€) are excluded in lines 13—
18. Given default parameters n; = 0 and N = [0], adds only
the closest or most deeply penetrating points at the current
time step ¢ to Y;*.

Choosing only the closest points at the current iterate is
potentially not the most ideal choice unless the current iterate
is near-optimal. A better choice would anticipate which points
are active at the optimum. To address this, we introduce the
following two strategies designed to mitigate this issue.
Spatial Disturbance (SD). Recognizing that the current iterate
is likely to be in the neighborhood of the optimal solution, the
SD approach introduces perturbations to the current solution
to add new candidate contact points. Consequently, in lines
9-12 of Alg. 3, ¢; is perturbed with disturbance n; to choose
closest points. We choose to perturb along each dimension of
@+ in both positive and negative directions. In 3D, this strategy
chooses 12 perturbations accounting for both increases and
decreases in z, y, z and roll, pitch, yaw. An illustration of
adding perturbation to rotation in 2D is shown in Fig. 2(e).

* A % & %

(a) Closest point on the object to the environment at each time step

(b) Index points selected by MVO at each time step
(c) Index points selected by TAMVO without SD and TS at each time step

w XA % X

(d) Index points selected by TAMVO with TS (ns = 1) at each time step

(e) Spatial Disturbance

Fig. 2. Comparing various Oracles. The object trajectory is depicted as
moving from left to right (as indicated by the black arrow) and undergoing
clockwise rotation (as indicated by the arrow on the star). (b) In Maximum
Violation Oracle (MVO), the closest point on the object is added ot the
candidate set at every time step. (c) The Time-Active Maximum Violation
Oracle, without Spatial Disturbance and Spatial Disturbances, introduces the
closest point only at the current time step. The Time Smoothing technique
with ng = 1, demonstrated in (d), extends constraint imposition to the
closest points identified at adjacent time steps. (e) presents the Spatial
Disturbance technique applied at a specific time step, with only disturbed
rotation illustrated. [Best viewed in color.]

Time Smoothing (TS). Considering that the closest points
may be active not just at the current time step ¢, but also
during a surrounding interval, in line 14 of Alg. 3, the closest
points detected within the adjacent time steps from ¢t — n; to
t+ny, governed by a parameter n;, are added to the index set
of time step ¢. The effect of using TS is illustrated in Fig. 2(d).

IV. EXPERIMENTAL RESULTS

The proposed methods are implemented in Python using the
optimization interface and the SNOPT solver [28] provided by
Drake [29].

A. Experiments in 2D

First, we compare STOCS with vanilla MPCC to evaluate
the efficacy of dynamic contact selection on an object pivoting
task. We finely discretize the object geometries to better illus-
trate the advantages of our method. Vanilla MPCC involves
adding all index points in Y to an MPCC problem without
selection, resulting in a larger optimization problem than P*
in STOCS. MVO is employed in this experiment, and 7" = 20,
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Fig. 3. Pivoting trajectories for 3 objects solved by STOCS. The object’s
poses, the contact between the object and the robot (red triangle), and object-
environment contact points (green dots) are plotted for each time step. [Best
viewed in color.]

TABLE 1
NUMERICAL RESULTS ON THE PIVOTING TASK. NUMBER OF POINTS IN
THE OBJECT’S REPRESENTATION (# POINT), SOLVE TIME (TIME), OUTER
LOOP ITERATION NUMBER (OUTER ITERS), AND AVERAGE ACTIVE INDEX
POINTS FOR EACH ITERATION (INDEX POINTS) ARE REPORTED IN THE

TABLE.
STOCS MPCC
Object  # Points Time (s) Outer iters. Index points Time (s)
Box 212 43 2 2.0 2908.5
Peg 214 45.2 5 42 5503.9
Mustard 400 33.6 5 6.8 Failed

AT = 0.1 s, ptmnp = 1.0 and fien, = 0.5 are used for this
set of the experiments.

The results are presented in Table I. We observe that STOCS
can be around two to three orders of magnitude faster than
MPCC, and can solve problems that MPCC cannot solve.
STOCS selects only a small amount of points from the total
number of points in the objects’ representation on average,
which greatly decreases the dimension of the instantiated
optimization problem and reduces solve time. The solved
trajectories of STOCS for three different object are shown in
3.

Next, we evaluate STOCS in a 2D setting with TAMVO,
focusing on testing its applicability with objects and environ-
ments whose geometries are significantly more complex than
those presented in the examples of [21]. In this experiment, we
set n; = 1 and N, = [le™?] as the parameters for TAMVO,
and we designate these as the default values for TS and SD
separately. Four tasks are designed for this evaluation: pushing
a dented object across uneven terrain, inserting a tilted peg
into a correspondingly angled hole, and maneuvering a bean-
shaped object across two distinct curvilinear terrains. The
trajectories planned for these tasks are depicted in Fig. 4, and
the detailed information regarding the objects’ geometries and
the solve of the trajectories are presented in Table II.

T =10, AT = 0.1 s, ftymnp = 1.0 and ften, = 0.5 are used
for this set of the experiments in 2D.

Same as before, STOCS selects only a small number of
points from the entire set in the object’s representation to
establish a solution. Typically, STOCS reaches convergence
after just a few iterations. The final example, sliding the
bean along curve 2, demands additional iterations and time
for convergence due to the curve’s curvature shifting from

Index Points
v Robot-Object Contact

A T XK;IE?

(a) Pushing a dented object on uneven terrain

(d) Sliding bean on curve 2

Fig. 4. Trajectories planned by STOCS on 2D examples. The progression
from the start to the end of the trajectory is indicated by a dark to light
gradient. For clarity, the instantiated object-environment contact points are
depicted only at the first and the last time steps. [Best viewed in color.]

concave to convex. This alteration results in different contact
points at different stages along the trajectory, which takes more
iterations to be fully instantiated.

We visualize the solving progress of STOCS for two ex-
amples in Fig. 5. In the initial few iterations, penetrations
are resolved and contacts are established. Subsequently, the
solver begins to satisfy additional constraints, including object
dynamics, and gradually instantiates index points to meet
the object’s balance constraints. In later iterations, fine-tuning
ensures that all constraints are fully satisfied.

B. Experiments in 3D

Next, we evaluate STOCS in 3D. To demonstrate its gener-
alizability, we collect object geometries from the YCB dataset
[30], the Google Scanned Objects [31], and 3D models found
online [32], [33]. All the objects used in the study are shown
in Fig. 6, and all the environments used in the study are shown
in Fig. 7. Klampt [34] and the code in [23] are used to find
the closest points between two complex shaped geometries.
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(a) Initialization (b) Iteration 1 (c) Iteration 5 (d) Result

« Index Points
v Robot-Object Contact

(e) Initialization (f) Iteration 1 (g) Iteration 8 (h) Result

Fig. 5. Visualization of STOCS iterations for two examples (each example shown in a separate row). In the initial few iterations, penetrations are resolved and
contacts are established. Subsequently, the solver begins to satisfy additional constraints, including object dynamics, and gradually instantiates index points to
meet the object’s balance constraints. In later iterations, fine-tuning ensures that all constraints are fully satisfied. For clarity, the instantiated object-environment
contact points are depicted only at the first and the last time steps. [Best viewed in color.]
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Fig. 6. 3D test objects (first row) and their point clouds (second row) used in the experiments. Not drawn to scale.
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Fig. 8. Success rates of STOCS for varying choice of Oracle.

As demonstrated in the first set of experiments, employing
a vanilla MPCC approach by incorporating all index points
in Y into an MPCC problem without selection results in a time to find a solution. Consequently, we have opted not to
large optimization problem. Such an approach can take a long pursue experiments with the vanilla MPCC in this study, given



TABLE III
NUMERICAL RESULTS OF STOCS IN 3D. NUMBER OF POINTS IN THE
20 OBJECT’S REPRESENTATION (# POINT), SOLVE TIME (TIME), OUTER
ITERATION COUNT (OUTER ITERS), AND AVERAGE ACTIVE INDEX POINTS
” FOR EACH ITERATION (INDEX POINTS) ARE REPORTED.
5 15
o
é Environment Object Task # Point Outer iters. Index points Time (s)
%10 Box  Push 764 3 5.75 24.84
(3
H Shoe Push 17890 6 4.95 144.71
Koala  Pivot 67359 4 5.89 37.93
5 Plane Mustard Pivot 8424 3 8.58 59.37
Sphere Roll 2362 6 4.39 94.42
Tool Rotate 8316 6 5.09 99.85
Uneven & Sphere Plane & Drug Bottle Sofa & Pillow ~ Plane & Koala  Plane & Sphere Drug Roll 5533 10 6.35 319.72
(a) Average Index Points Curve Koala  Pivot 67359 9 13.47 676.01
Sphere Roll 2362 4 6.86 72.66
800 Oracle Sofa Pillow Pivot 13316 7 9.95 201.39
o Shelf Basket Push 71961 7 23.10 421.30
700 TAMVO+SD Plate Plate  Slide 67283 3 24.67 54.02

TAMVO+TS
TAMVO+SD+TS

600

Solve Time (s)

Uneven & Sphere Plane & Drug Bottle Sofa & Pillow Plane & Koala  Plane & Sphere

(b) Solve Time

Fig. 9. The average index points selected at each time step by the different
Oracles (a) and the solve time (b) for tasks that were successfully solved by
all Oracles. [Best viewed in color.]

that the 3D point clouds utilized herein contain thousands
of points on average. Additionally, approximating the friction
cone with a polyhedral model in a 3D context further increases
the number of constraints for each index point, exacerbating
the complexity beyond that encountered in 2D scenarios.

To demonstrate the effectiveness of STOCS in planning
with high-fidelity geometric representations, we conduct ex-
periments on ten different objects represented by dense point
clouds sampled on the surface of the objects’ meshes, and five
different environments represented by Signed Distance Field
(SDF). The SDFs are calculated offline on a grid that encloses
the corresponding environment given a closed polygonal mesh

TABLE II
NUMERICAL RESULTS OF STOCS IN 2D. NUMBER OF POINTS IN THE
OBJECT’S REPRESENTATION (# POINT), SOLVE TIME (TIME), OUTER
ITERATION COUNT (OUTER ITERS), AND AVERAGE ACTIVE INDEX POINTS
FOR EACH ITERATION (INDEX POINTS) ARE REPORTED.

Environment Object # Point Outer iters. Index points Time (s)
Uneven Dented 543 4 9.05 30.83
Tilted Hole = Tilted Peg 214 4 12.93 40.11
Curve 1 Bean 100 7 9.43 72.74
Curve 2 14 14.29 636.89

of the environment, and values off of the grid vertices are
approximated via trilinear interpolation.

Using STOCS, we plan for pushing, pivoting, rolling and
rotating trajectories on these objects. The resulting planned
trajectories are illustrated in Fig. 10, while detailed informa-
tion regarding the objects’ geometries and the solve of the
trajectories are presented in Table III. Like the experiment in
2D, we set ny = 1 and N, = [le~2] as the default parameters
for TAMVO. AT = 0.1 s, ftmnp = 1.0 and pen, = 1.0
are used for all the experiments in 3D. For all experiments,
T = 10 is used except in the tasks of pushing a basket on a
shelf and sliding a plate on another plate, where 7" = 5 is used.
To model the robot manipulatior as having a patch contact, 3
to 5 object vertices in the neighborhood of the indicated cone
are allowed to be used as contact points.

Following the initial assessments, we further evaluated the
efficacy of the TAMVO alongside the SD and TS techniques
through a set of comparative experiments. These experiments
utilized STOCS to plan trajectories for the same set of tasks,
with the primary variation being the specific oracle employed
in each scenario.

Figure 8 presents the success rates of all tested Oracles. The
data shows that the MVO achieves a 75% success rate. In con-
trast, TAMVO without SD and TS exhibits worse performance
than MVO; this is particularly evident in 3D scenarios where
relying solely on the nearest object-to-environment point is
inadequate for fulfilling the object’s balance constraints. The
SD and TS techniques, introduced to address this challenge,
both demonstrated enhanced performance when combined
with TAMVO, surpassing the success rate of TAMVO alone.
Furthermore, the integration of SD and TS with TAMVO
consistently achieved successful trajectory planning for all
tasks.

Figure 9 displays the average number of index points
selected at each time step by the different Oracles assessed
in our study, focusing on tasks that were successfully solved
by all Oracles. As depicted in Fig. 9(a), the MVO selects a
larger number of points than TAMVO and all its variations.
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(e) Sphere Rolling on Plane

(h) Koala Pivoting on Curved Surface
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(c) Koala Pivoting on Plane

2/

(f) Tool Rotating on Plane

M

(i) Sphere Rolling on Curved Surface

(j) Pillow Pivoting on Sofa

(k) Basket Pushing on Shelf

(1) Plate Sliding on Plate

Fig. 10. Trajectories planned by STOCS for the 3D examples. Progress along the trajectory is indicated by color (dark to light). The black arrow indicates
the object’s movement direction. The red cone marks the contact location of the manipulator on the object. [Best viewed in color.]

Notably, TAMVO combined with SD and TS can successfully
plan trajectories for all tasks while selecting fewer index points
compared to MVO. These findings validate our hypothesis
regarding TAMVO: an index point identified at time step ¢
is most valuable within a temporal vicinity of ¢. Furthermore,
these results substantiate our rationale for introducing SD and
TS, affirming that a localized exploration in both temporal
and spatial dimensions offers a more efficient strategy than
incorporating index points identified at distant time steps along
the trajectory.

Figure 9(b) presents the solve times for STOCS employing
various Oracles across all successful tasks. The results indicate
that the quantity of index points selected by an Oracle does not
necessarily correlate with the solve time. For instance, in the

sphere rolling on plane task, TAMVO+SD+TS chooses a larger
number of index points than TAMVO+TS, yet the solve time
for TAMVO+SD+TS is much faster than that of TAMVO+TS.
Similarly, in the case of the drug bottle rolling on plane task,
it can be seen that both TAMVO+SD+TS and TAMVO+TS
select a comparable number of index points, yet the solve
time for TAMVO+TS is much faster than TAMVO+SD+TS.
This phenomenon underscores that a larger number of index
points does not invariably lead to longer solve time. Although
TAMVO+SD+TS provides the best performance in terms of
success rate, it is not guaranteed to give the best solve time
for all different tasks.

We further assess the impact of N, and n; on STOCS
performance by varying these parameters individually with



TAMVO+SD and TAMVO+TS for the tasks listed in Table
III. The results are shown in Table IV. TAMVO+SD achieves
the best performance when N, = [le™2]. We observe that,
on average, fewer index points are added when N is set
to a smaller value, as index points identified under small
spatial disturbances often overlap. The optimal N, depends
on factors such as object size, point cloud resolution, and
signed distance field resolution. However, to demonstrate the
generalizability of STOCS, we keep this parameter constant
as much as possible across all experiments rather than tuning
it individually for each task and geometry.

TAMVO+TS yields the best results with n; = 3. As ny
increases, both the success rate and average number of index
points increase. This rise in index points is inherent to the
TS design, as index points identified at nearby time steps are
added to the current time step. These additional points provide
a more accurate local representation of the object’s geometry,
which facilitates finding feasible solutions, though at the cost
of longer solve times due to larger optimization problem sizes.

V. CONCLUSION AND DISCUSSION

This paper introduces Simultaneous Trajectory Optimiza-
tion and Contact Selection (STOCS) to address the scaling
problem in contact-implicit trajectory optimization (CITO).
Through embedding CITO in an infinite programming (IP)
framework to dynamically instantiate possible contact points
and contact times between the object and environment inside
the optimization loop, STOCS entends the application of CITO
to a much higher number of contact points. The introduction
of the Time-Active Maximum Violation Oracle along with
Spatial Disturbance and Temporal Smoothing techniques for
more efficient index point selection further enables STOCS
to plan contact-rich manipulation trajectories with dense point
clouds representation of complex-shaped objects. To the best
of our knowledge, this is the first method capable of plan-
ning contact-rich manipulation trajectories with high-fidelity
geometric representations in 3D.

Looking ahead, to further facilitate the practical application
of the STOCS algorithm to raw object point clouds obtained
from RGB-D sensors, it will be essential to devise effective
pre-processing techniques for the point cloud data. This is
crucial given that raw depth data typically contain a significant

TABLE IV
NUMERICAL RESULTS ANALYZING THE IMPACT OF Ng AND nt ON THE
PERFORMANCE OF STOCS. FOR TASKS SUCCESSFULLY SOLVED ACROSS
ALL TESTED PARAMETERS, THE AVERAGE SOLVE TIME AND AVERAGE
NUMBER OF INDEX POINTS PER ITERATION ARE CALCULATED
SEPARATELY FOR EACH SET OF EXPERIMENTS.

TAMVO+SD
Ns [le 2] [le®] [le”7]
Success Rate 91.7% 66.7% 66.7%
Average Solve Time (s) 291.7 151.9 160.9
Average Index Points 3.9 2.7 2.9
TAMVO+TS
nt 1 2 3
Success Rate 58.3% 66.7% 75.0%
Average Solve Time (s) 168.3 256.9 499.8
Average Index Points 4.6 6.2 9.1

amount of noise. Moreover, STOCS presupposes the knowl-
edge of specific physical properties of the object, such as mass,
center of mass, and friction coefficients. However, accurately
measuring these parameters in practice can be challenging,
and discrepancies between the nominal values used during
planning and their actual real-world counterparts may lead to
failures in execution. It would be of considerable interest to
explore the incorporation of robust optimization techniques
into the STOCS framework to develop manipulation trajec-
tories that maintain robustness against uncertainty in physical
parameters. Also, it is worth exploring methods to allow robot-
object contact to change, such as incorporating a sampling-
based planner to generate contact transitions between the robot
and the object.
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APPENDIX

We discuss the detailed instantiation of the MPCC problem
that needs to be solved inside STOCS for both 2D and 3D
scenarios separately.

A. 2D

1) Geometry modeling: To handle collision avoidance, we
establish a semi-infinite constraint ¢g(g,y) between the object
and the environment. The object is represented as a densely
sampled point cloud on its surface, and the environment is
represented as a signed distance field (SDF) ¢(z) : R* — R
which supports O(1) depth lookup. Specifically, we define
9(q,y) = ¢¥(Ty - yp) with T, the object transform at con-
figuration q.
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2) Friction force modeling: The force variable of the i
index point at time step ¢ is z,; = (2%, 2, 2,,), which
is divided into the normal component zg’vz and frictional
components zf ; and z,; along the tangential direction of
the contact surface [25]. Given the normal vector ny.; Ne along
the outward surface normal of the environment, and nm
and n, f, the overall force applied at index point y;; is
20 = 2 Znt .+ z;rznj; + 2, ;n; ;. Each of the components
of 2 is requ1red to be non-negative, and given the friction
coefficient ficn,, the friction cone constraint is given by
frenvzly — (215 + 21,) = 0.

Similarly, for the it" contact between the robot and the
object, we define the force variable at time step ¢ to be
up; = (ul;, uf;, u; ;). Besides, the normal vector ny; along
the inward surface normal of the object, and the ta{ngential
vectors n+“ and n, ;* which are perpendicular to the normal
vector are deﬁned in the object’s local frame.

We adopt a heuristic to reduce the number of constraints in
the complementarity condition and accelerate solve times. By
only applying complementarity to the normal component of
force variables, g(q:, yt,i) - ngZ = 0, we reduce the number
of distance complementarity constraints from ZOT3|5~Q\ to
ZE}F |Y;|, and the problem is unchanged because 2 =0=
z;r ; =0, z,; = 0 due to the friction cone constraint.

3) Force and torque balance: We establish an equality con-
straint on the object’s force and torque balance. It requires the
joint force and torque exerted by the robot, the environment,
and the gravity on the object to be 0 if we assume quasistatic,
and to be Mo if we assume quasidynamic, where M is the
inertia matrix of the object O and v is the velocity of the
object.

4) Instantiation of MPCC problem: With these definitions,

the nonlinear programming problem Py that needs to be solved
at the k*" iteration of STOCS is the following:

qn}lilnz f(q,v,u,z) (12a)
s.t. qo € Qinit, 9T € Qgoal (12b)
G — G+1 + 1 At=0 Ve T\{T} (12¢)
@ €Q, u eEU, v EV VLET (12d)
Pmnptns — (ui; +ug;) >0 VieC, VteT  (12)
0< 2 Lglge,ye:) >0 Vi€L, VteT (12f)
22 >0 Vi€, VteT (12g)
fenvzty — (28 +20,) >0 Yie€Z, vteT  (12h)
Ve + Pi(ge,ve) >0, e — Yi(ge,ve) >0
Viel, VteT (12i1)
(s — (2 +20) i =0 VieZ, vteT (12))
(Vi +Yilge,ve)) 2l =0 VieZ, VteT (12K
(vt — Yilge,ve) 20, =0 Vi€, VteT (12D
Zt,i:ZtNZ n”—i—z“ n:rf—t—zt_zn,_f
Viel, VteT (12m)
Ut i =ui\g-ni\2“ —l—uzrlnf;‘ +u;i~n;f
VvieC, VteT (12n)

c I,
mg + Z Ut,; + Z zt; = 00 MiransUtrans VEET

2 i

(120)
c .
Z(Qt . (Cmnp,z — COM)) X Ut,it+
I
Z(qi . (ytai - COM)) X Zt,i = 0 of MyotUrot Vte T
. (12p)
where 7 = {0,---, T}, Zt = {0,...,|Yi|}, vi(qe,ve)
is the relative tangential velocity at contact point y;,. C =
{0,--- ,|c™"P|}, ¢™mP: s the i*" contact point between the

robot and the object in the object’s frame, C'oM is the center
of mass of the object, vy.qns 1S the translational velocity of the
object, My,qns 1s the translational part of the inertia matrix of
the object with appropriate dimension, and v,.,;+ and M,.,; are
the corresponding terms for the rotational part.

B. 3D

1) Geometry modeling: To handle collision avoidance, like
in the 2D scenario, we establish a semi-infinite constraint
9(q,y) between the object and the environment. The object
is represented as a densely sampled point cloud on its surface,
and the environment is represented as a signed distance field
(SDF) (z) : R® — R which supports O(1) depth lookup.
We define g(q,y) = ¥(Ty - yp) with T, the object transform
at configuration gq.

2) Friction force modeling: In 3D scenario, following [5],
to preserve the MPCC structure of the resulting optimization
problem, we use a polyhedral approximation of the friction
cone [25]. The force variable of the " index point at time
step t is 2, = (275 zgl, -+, zP1), which is expressed in a
reference frame with zt_’2 normal to the contact surface, and

ztDll, -+, zP4 tangent to the contact surface. The convex hull
of the un1t Vectors along the directions of zt L zﬂd in

R? forms the polyhedral approximation. The normal vector
nff; is along the outward surface normal of the environment,
and nD S ntDzd are perpendicular to 1} ;- Each of the
components of z;, is required to be non-negative, and given
the friction coefficient ey, the friction cone constraint is
given by fienvzty — (205 4+ 208) > 0.

Similarly, for the ith contact between the robot and the
object, we define the force variable at time step t to be

,ub i ). The normal vector niv * is along

N D1
Ui = (utz’utz LA
the inward surface normal of the object, and nD lu ... ,ntD id“

are perpendicular to n,fvl

The same heuristic is used to reduce the number of
constraints in the complementarity condition and accelerate
solve times. By only applying complementarity to the normal
component of force variables, g(q¢, ¥1.4) - Zth = 0, we reduce
the number of distance complementarity constraints from
So(d + 1|V o S0 |Yt\, and the problem is unchanged
because z; = 0 = zt[y =0Vj e {1, -,d} due to the
friction cone constraint.

3) Instantiation of MPCC problem: With these definitions
the nonlinear programming problem P, that needs to be solved
at the k" iteration for this pivoting task is the following:



min_ f(q,v,u, 2) (13a)
q,v,u,z
s.t. qo € Qinith S ngal (13b)
G — @41 F o1 At =0 Ve T\{T} (13¢)
q €Q, u EU, €V VEET (13d)
Hmnpui\,lz‘ - Zufij >0
i
vieC, Vje{l,---,d}, VteT (13e)
0<ZiviLg(qt,y”)zo VieT, VteT (13f)
z“ >0 Viel, VYje{l,---,d}, vteT (139

:u’STL’UZt'L Zztlj Z 0

Vi € Iy, V]E{l,---,d}, VteT (13h)
Ve +(qr, ve, Y - Tlff >0

Viel, Vje{l,---,d}, VteT (131)
(20 = > 20/ )7 =0

J
Viel, Vje{l,---,d}, VteT 13
Dj\ Dj

(’Yt,i + w(qﬁvﬁyt,’b) nt i )Zt i
VieTIy, Vje{l,---,d}, VteT (13k)

E: Dj
thfztzntz+ thntzz

Vi € Iy, Vje{l ceedy, VteT (131)
utlntz +Zut1ntDzju
VieC, v]e{l,--‘,d} vteT (13m)
C T
mg + Z Ut,i + Z 2t — 0 or MiransUtrans vteT
' ' (13n)
C

> (gr - (€™ — CoM)) X uy it
I
> (@ (g, — CoM)) x 206 = 0 or Myoriror V€T
' ~ (130)
where 7 = {0,--- , T}, Zy = {0,..., Y2} ©(qe,ve, yei)
is the relative tangential velocity at contact point y; ;. C =
{0,---,|c™"P|}, ¢™mP: s the i*" contact point between the
robot and the object in the object’s frame, C'oM is the center
of mass of the object, vy.qns 1S the translational velocity of the
object, My,qns 1s the translational part of the inertia matrix of
the object with appropriate dimension, and v, and M,.,; are
the corresponding terms for the rotational part.
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