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Abstract— The design of advanced learning- and
optimization-based controllers requires selecting
parameters that balance performance objectives and
constraints. Bayesian optimization (BO) has proven
effective for resource-efficient calibration of such
controllers. Preference-guided BO incorporates user
preferences to prioritize areas of interest, but it lacks
a mechanism for users to specify desired outcomes
directly. This paper introduces a user-centric framework
for preference-guided BO, leveraging a novel knowledge-
gradient based coactive acquisition function that allows
users not only to select preferred outcomes but also
also propose alternatives to guide exploration. To
enable efficient implementation, we approximate the
acquisition function, avoiding costly bilevel optimization.
The approach is validated for control policy adaptation
in personalized plasma medicine, where it outperforms
standard preference-guided BO by effectively integrating
user feedback to personalize treatment protocol.

Index Terms— Biomedical; Optimization; Human-in-the-
loop control

I. INTRODUCTION

CONTROLLER calibration can be challenging in real-
world settings, particularly when controller parameters

influence closed-loop performance and constraint satisfac-
tion in highly non-convex ways. To address this challenge,
Bayesian optimization (BO) [1] has emerged as an effective
controller calibration technique, especially for learning-based
and optimization-based control strategies wherein the closed-
loop control performance is an implicit, black-box function of
control policy parameters [2], [3].

Multi-objective BO (MOBO) has been developed to handle
multiple, potentially conflicting, closed-loop performance ob-
jectives and constraint functions. MOBO expands the known
Pareto front (PF) by selecting query points based on their
potential to extend the PF or their expected information gain
[4], [5]. However, the efficiency of MOBO can be limited, as
it may expend effort exploring parts of the parameter space
unlikely to yield desired outcomes.
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Fig. 1: Schematic of the two-staged User-Centric Coactive
Preference-Guided Bayesian Optimization (uc-PGBO).

To better integrate user knowledge and preferences, pref-
erential BO has been introduced [6]–[8]. These approaches
learn a latent utility function in relation to design parameters,
aiming to maximize the utility value of queries. However,
they generally do not consider performance objectives directly,
which can hinder their effectiveness. BO with preference
exploration (BOPE) [9] addresses this limitation by employing
two Gaussian process surrogates to learn the relationship
between design parameters and performance objectives, and
the mapping from objectives to a latent utility. Despite these
advancements, existing approaches often constrain user input
to pairwise comparisons between objective sets. While some
methods allow users to rank multiple outcomes [10] or sug-
gest hypothetical outcomes [11], they do not systematically
incorporate this feedback into the acquisition function.

This paper presents a BO approach, termed user-centric
coactive preference-guided BO (uc-PGBO), featuring a novel
knowledge-gradient coactive acquisition function (KGCAF).
Our proposed uc-PGBO enables users to not only select
preferred outcomes from provided options but also suggest
alternative outcomes. The KGCAF incorporates the knowl-
edge of the proposed model for predicting user-proposed
alternatives based on historical data of user suggestions and
presented outcomes. This ensures that subsequent outcomes
presented to the user are chosen while anticipating user-
provided alternatives. To address the computational complexity
inherent in knowledge-gradient acquisition functions due to



nested optimization, we introduce an approximation called
one-shot KGCAF (os-KGCAF). This approximation elimi-
nates the nested optimization structure through the use of
two auxiliary variables, thereby enhancing the computational
efficiency of uc-PGBO. uc-PGBO’s main contributions are
the KGCAF and os-KGCAF acquisition functions, whose
effectiveness is demonstrated through a control policy learning
task in personalized plasma medicine [12].

II. USER-CENTRIC COACTIVEPREFERENCE-GUIDED BO
We aim to solve a multi-objective optimization problem,

which can be recast into a utility maximization problem:
max
x∈X

u (f(x)) , (1)

where x ∈ X ⊂ Rd are decision variables, and f : Rd →
Ro represents the multiple-objectives, termed outcomes. This
outcome function is expensive to evaluate and behaves as a
black-box oracle, meaning gradients of f are unavailable. We
assume certain outcomes are preferred by the user to others,
and this is modeled by an unknown utility function u : Ro →
R. Noisy observations of the outcomes are available: yi =
f(xi)+ϵ, where ϵ is independent Gaussian noise with variance
σ2
ϵ Io. To solve (1), we employ BO techniques, referring to the

approach as preference-guided BO (PGBO).

Algorithm 1: User-Centric Coactive Preference-
Guided Bayesian Optimization (uc-PGBO)

Input: DN0
,Pc

Ñ0
, QÑ0

Output: D
Parameter : Nx,M,Q

1 0. Initialization
2 Train f̂(·|DN0

) the multi-outcome model;
3 Train û(·|Pc

Ñ0
) the utility model;

4 Train ĥ(·|QÑ0
) the preference outcome model;

5 Set D = DN0
,Pc = Pc

Ñ0
,Q = QÑ0

;
6 for q=1:Q do
7 1. PGE Stage
8 for m=1:M do
9 predict ŷ3 = ĥ(f̂(x1), f̂(x2));

10 x1,m,x2,m = argmax
x1,x2

KGCAF(x1,x2, ŷ3);

11 y1,m,y2,m = f̂(x1,m), f̂(x2,m);
12 r(y1,m,y2,m)← pairwise preference;
13 y3,m ← coactive feedback based on y1,m,y2,m;
14 Update Pc = Pc ∪ {pm, c1,m, c2,m};
15 Update Q =

Q∪{((y1,m,y2,m),y3,m), ((y2,m,y1,m),y3,m)}
16 Train û(·|Pc) the utility model;
17 Train ĥ(·|Q) the preference outcome model;
18 end
19 2. EXP Stage
20 x1:Nx,q = argmax qEIUU(x1:Nx,q) optimal decision

variables;
21 y1:Nx,q = f(x1:Nx,q) outcome function evaluations
22 Update D = D ∪ {(xi,q,yi,q)}

Nx
i=1;

23 Train f̂(·|D) the outcome surrogate model;
24 end

A. User-centric Coactive PGBO (uc-PGBO) Framework
Herein, we describe our two-stage iterative method that

alternates the preference-guided exploration (PGE) and the

experimentation (EXP) stage.
PGE Stage: The PGE stage gathers information about user
preferences to improve the utility function approximation. It
maximizes the proposed knowledge-gradient co-active acqui-
sition function (KGCAF) M times. In the m-th iteration, a
pair of outcomes {(y1,m,y2,m)} is presented to the user,
who provides a two components preferential feedback: (i)
pairwise preference rm := r(y1,m,y2,m) ∈ {1, 2}, indicating
their preferred outcome; and (ii) coactive feedback y3,m,
a suggested vector outcome they prefer over the observed
(y1,m,y2,m). This feedback embeds user knowledge, guiding
the algorithm towards better outcomes in future iterations. We
assume that y3 is preferred, i.e., u(y3) ≥ max{u(y1), u(y2)}.
With this feedback, two surrogate models are updated: (i)
the utility model û(·), which learns from the preference
pair pm := {(y1,m,y2,m), rm} and coactive feedback pairs
c1,m := {(y3,m,y1,m), 1}, c2,m := {(y3,m,y2,m), 1}; (ii)
the preference outcome model h(·, ·), mapping (y1,m,y2,m)
to y3,m. Coactive feedback has been studied before, c.f. [13],
[14], however, in these works, the feedback y3 has been used
to improve the utility model, without explicitly accounting for
a preference outcome model h. A novelty of this work is
that y3 is explicitly used to update h, which in turn embeds
preference information into the maximization of the KGCAF;
therefore the maximizer of the KGCAF will yield outcome
pairs that should be strongly preferred by the user.
EXP Stage: This stage seeks decision variables x that yield
high utility values, ideally converging to the optimal. The
outcome function f is approximated by a surrogate model
f̂ , used to maximize the batch noisy expected improvement
under utility uncertainty (qEIUU). This results in Nx decision
variables {x}1:Nx

, which are passed to f to obtain the
actual outcome vectors y1:Nx

. The outcome model is then
updated with training pairs (x1:Nx ,y1:Nx

). The EXP stage is
implemented as proposed in [9]. The PGE and EXP stages
repeat for a finite budget of Q iterations, after which the user
selects their preferred outcome and decision variables.

B. Modeling Outcome, Utility and Preference outcome

We describe the modeling of the outcome function f , the
utility function u and the preference outcome model h using
Gaussian processes (GPs) [15], [16] and pairwise GPs [17].
Outcome model: Each objective in f is modeled by an
independent GP , fa(·) ∼ N (0, ka(·,x′)), ∀a ∈ {1, . . . , o}
where ka is the prior covariance (kernel). During the q-th
iteration of the EXP stage, the dataset Da is updated with
{(xi, y

a
i )}Ni=1, where ya = fa(x) + ϵ. The posterior at a new

decision variable x∗ becomes f̂a ∼ N (µa(x∗),Σa(x∗)):
µa(x∗) = kaN (x∗)(Ka

N + (σa
ϵ )

2IN )−1ya,

Σa(x∗) = ka(x∗,x∗)−kaN (x∗)(Ka
N +(σa

ϵ )
2IN )−1kaN (x∗)⊤,

where kaN (x∗) = [ka(x∗,x1), . . . , k
a(x∗,xN )] and Ka

N ∈
RN×N is the kernel matrix.
Utility model: The latent utility function u is modeled using
pairwise GP based on relative information. Observations from
user feedback Pc

n = {pj , c1,j , c2,j}nj=1 where n is the number
of human feedback, are used at each PGE iteration. The



pairwise comparisons follow a probit likelihood:
P (r (y1,y2) = 1 | u (y1) , u (y2)) = Φ

(
u(y1)−u(y2)√

2λ

)
,

where λ is a hyperparameter and Φ is the normal CDF, as
shown in [17]. The posterior of u is:

P(u | Pc
n) ∝ P(u)

n∏
j=1

Φ

(
u(yj,p)−u(yj,np)√

2λ

)
Φ

(
u(yj,3)−u(yj,p)√

2λ

)
Φ

(
u(yj,3)−u(yj,np)√

2λ

)
,

where P(u) is the prior of the utility, yj,p is the preferred
outcome over the non preferred yj,np outcome.
Preference outcome model: The user’s outcome prefer-
ence function h : R2o → Ro, mapping (y1,y2) to
the preferred outcome ŷ3, is also modeled by GP . It is
trained after n coactive feedback using the dataset Qn =
{((y1,j ,y2,j),y3,j), ((y2,j ,y1,j),y3,j)}nj=1.

C. Algorithm
The uc-PGBO is outlined in Alg. 1 and visually represented

in the flowchart in Fig. 1. At the start of the procedure decision
variables XN0 = {(xi)}N0

i=1 are sampled, either from a prior
distribution when available or uniformly in X. Given XN0

the true outcome function f is evaluated to generate noisy
observation that create the dataset DN0

= {(xi,yi)}
N0
i=1.

From this dataset we generate Ñ0 random pairs and ask the
user for the pairwise preference Pc

Ñ0
=

{
pj , c1,j , c2,j

}Ñ0

j=1

and the coactive feedback QÑ0
= {((y1,j ,y2,j),y3,j)}

Ñ0
j=1.

Then, the outcome model f̂ , the utility model û and the
preference model ĥ are trained on each respective dataset. The
number of BO loops, Q, the number of iterations within each
PGE stage, M , and the number of optimal decision variables,
Nx, generated in the EXP stage are defined as parameters.
Subsequently, the PGE and EXP stage described in Sec. II-A
are alternated for Q BO loops and the algorithm outputs a
dataset D with the optimal decision variables and associated
optimal outcomes that the user can choose from. Notice that,
in practice, preference or coactive feedback may be omitted.
However, this may deteriorate the performance, as KGCAF
relies on accurate utility and preference outcome model.

III. KNOWLEDGE-GRADIENT COACTIVE AF
The classical knowledge gradient (KG) AF seeks to max-

imize information gain from adding a new sample (in this
case, an outcome vector pair) by considering the difference
in utility models before and after incorporating the new sam-
ple. To mitigate the computational complexity of evaluating
KG, the expected upper bound optimization (EUBO) method
approximates the KG [9]. However, EUBO considers users’
pairwise feedback and, thus, is not suitable for handling users’
coactive feedback, as described in Sec. II-A. To this end, we
propose the knowledge gradient coactive acquisition function
(KGCAF), which incorporates coactive feedback as

VKGCAF(y1,y2)

= E
[
max
y∈Y

E
[
u(y)

∣∣Pc
n+1

]
−max

y∈Y
E
[
u(y)

∣∣Pc
n

]∣∣∣Pc
n

]
(2a)

≡ E
[
max
y∈Y

E
[
u(y)

∣∣Pc
n+1

]]
(2b)

=

2∑
i=1

P
(
r(y1,y2) = i

∣∣Pc
n,y3

)
max
y∈Y

E
[
u(y)

∣∣Pc
n+1

]
, (2c)

where Pc
n,y3

= Pc
n ∪

{(
y3,y1, 1

)
,
(
y3,y2, 1

)}
and

Pc
n+1 = Pc

n ∪
{(

y1,y2, r
)
,
(
y3,y1, 1

)
,
(
y3,y2, 1

)}
. (3)

Note that (2b) is equivalent from a optimization perspective
since the term maxy∈Y E

[
u(y)

∣∣Pc
n

]
is independent of the

optimization variables y1,y2, while (2c) is true because the
expectation accounts for two cases: y1 being preferred over
y2, and y2 being preferred over y1.

KGCAF aims to maximize the difference in expected maxi-
mum utility before and after the preference between outcomes
y1 and y2 is revealed, considering an alternative outcome y3.
However, KGCAF suffers from two challenges: it requires
future information, i.e., y3, and involves a nested optimization
that can be computationally prohibitive. We mitigate the first
challenge by integrating a data-driven preference outcome
model h, which predicts ŷ3 based on y1 and y2. Then, to
simplify the nested optimization, we propose a ‘one-shot’ ap-
proximation, termed os-KGCAF, which reduces computational
complexity by solving a single maximization problem, rather
than the nested optimization of KGCAF. The os-KGCAF is
defined as

V ∗
os-KGCAF = max

y1,y2,ỹ1,ỹ2∈Y
Vos-KGCAF(y1,y2, ỹ1, ỹ2), (4)

where
Vos-KGCAF = P(r = 1|Pc

n,ŷ3
)E[u(ỹ1)|Pc

n,ŷ3
∪ {(y1,y2, 1)}]

+ P(r = 2|Pc
n,ŷ3

)E
[
u(ỹ2)|Pc

n,ŷ3
∪ {(y1,y2, 2)}

]
(5)

In (5), two auxiliary decision variables ỹ1 and ỹ2 are
optimized concurrently with y1 and y2, enabling the AF to
be computed without solving expensive inner optimizations.
The computation of the os-KGCAF is described in Alg. 2. In
effect, os-KGCAF approximates KGCAF, significantly reduc-
ing computation by focusing on only two possible preferences
between y1 and y2, thus requiring just two auxiliary variables.

Let y⋆ ≜ argmaxY u(y) denote the optimally-preferred
function value. We look to show y⋆ is attainable by maxi-
mizing the os-KGCAF (5) as n → ∞. To show this, we must
first define a finite-sample approximation of (2) as follows

V̂KGCAF =
1

Nn

Nn∑
i=1

max
ζi∈Y

E[u(ζi) | Pc
n+1]− Ξ(y). (6)

Here, ζ1:Nn
are auxiliary variables, Ξ(y) = maxy∈Y E[u(y) |

Pc
n] is independent of ζ1:Nn

. Note that Pc
n+1 depends on

y1 and y2, as defined in (3). We observe that (6) is a
nested optimization problem that can be recast as a tractable
optimization problem, c.f. [18], as

y1:2, ζ1:Nn
= argmax

1

Nn

Nn∑
i=1

E[u(ζi) | Pc
n+1(y1:2)], (7)

where all ζ1:Nn
and y1:2 are solved concurrently; hence,

referred to as a ‘one-shot’ approach. We show that at the limit
n → ∞ we can recover u(y⋆) almost surely, under some
smoothness assumptions on the utility.

Proposition 1: Suppose Y is compact and u(·) has a GP
prior with continuously-differentiable mean and covariance
functions. Let Pc

n be the dataset obtained via maximization



of a finite-sample approximation of os-KGCAF and the corre-
sponding coactive feedback {y3,j}nj=1. Then u(yn)→u(y⋆)

as n → ∞ (a.s.), with yn ≜ argmaxy∈Y û
(
y|Pc

n

)
.

Proof: Consider a finite-sample approximation of (5)
defined as

V̂os-KGCAF =
1

Nn

Nn∑
i=1

E[u(yi)|Pc
n,ŷ3

∪ {(y1,y2, ri)}], (8)

where Nn is the number of approximating samples. Given that
r ∈ {1, 2} it follows from (8) that

Ṽ =
Nn|r=1

Nn
E
[
u(ỹ1)|Pc

n,ŷ3
∪ {(y1,y2, r = 1)}

]
+

Nn,|r=2

Nn
E
[
u(ỹ2)|Pc

n,ŷ3
∪ {(y1,y2, r = 2)}

]
, (9)

where Nn|r=1 and Nn|r=2 represent the count of instances
among the Nn samples where û1 ≥ û2 and vice versa. As
Nn → ∞, we recover
Nn|r=1

Nn
→P

(
r = 1 | Pc

n,ŷ3

)
,
Nn|r=2

Nn
→P

(
r = 2 | Pc

n,ŷ3

)
,

corresponding to the probabilities in (2c) and (5). Thus, (8)
asymptotically tends to (6) as Nn → ∞. Let P̄c

n be the
dataset obtained via maximization of os-KGCAF in (8) and
the corresponding coactive feedback {y3,j}nj=1 and define
ȳn ≜ argmaxy∈Y û

(
y|P̄c

n

)
. We now invoke [18, Theorem

4], by which if Nn is chosen such that lim supn∈N Nn = ∞,
we can compute ȳn that yields u(ȳn) → u(y⋆) a.s. Finally,
since ȳn → yn as Nn → ∞ then u(yn) → u(y⋆) a.s.

Remark 1: By introducing two auxiliary variables ỹ1,2, the
time complexity of KGCAF, originally O(k1 · ((k2 + k3 +1) ·
n2 + 3n3)), is reduced in os-KGCAF to O(k · (3n3 + 3n2)).
Here, k1 ∈ N+ is the number of iterations to optimize (2)
on y1,y2, and k2, k3 ∈ N+ are the iterations for the two
independent maximization in (2c), while k is the total iteration
count for os-KGCAF in (4). In the experiments we verified
that k is typically below the sum of k1, k2, and k3, which
means k < (k1 + k2 + k3) ≪ k1(k2 + k3 + 1). Therefore,
os-KGCAF, avoiding the multiplicative effect of the nested
loops in KGCAF, leads to a significative reduction of the
computational complexity. This aligns with measured wall-
clock times showing os-KGCAF an order of magnitude faster
than KGCAF while maintaining comparable performance.

IV. CASE STUDY: PERSONALIZED PLASMA MEDICINE

We demonstrate the performance of Algorithms 1 and 2
on an example plasma medicine application [12], where the
goal is to personalize the plasma treatment protocol based on
user feedback over a sequence of treatments. Specifically, we
aim to adapt the parameters of a model predictive controller
(MPC) that is used to control the thermal effects of a kHz-
excited atmospheric pressure plasma jet in helium on a target
substrate [19]. The dynamics of the plasma jet are given by

sk+1 = Ask +Bak + wk, (10)
where k is discrete-time step; the state consists of maximum
surface temperature T (◦C) and total optical intensity of
plasma I (a.u.), s = [T, I]⊤; the input consists of helium
flow rate q (SLM) and applied power P (W) to generate
plasma, a = [P, q]⊤; and the state-space matrices A and B
are identified via subspace identification, as detailed in [12].
The control objective is to control the cumulative thermal

Algorithm 2: One-shot Knowledge Gradient Coactive
Acquisition Function

Input: f̂ , û, ĥ,x1,x2, x̃1, x̃2,Pc
n

Output: Vos-KGCAF
1 y1,y2, ỹ1, ỹ2,= f̂(x1), f̂(x2), f̂(x̃1), f̂(x̃2);
2 ŷ3 = ĥ(y1,y2);
3 Update Pc

n,ŷ3
= Pc

n ∪ {(ŷ3, y1, r = 1), (ŷ3, y2, r = 1)}
4 Train ûŷ3

(·|Pc
n,ŷ3

) the utility model ;
5 Compute the joint distribution of the utility values of û1 and

û2 under y1 and y2: p(û1, û2) = N (µ̂, Σ̂)
6 For GP properties given ûŷ3

(·|Pc
ŷ3

), y1, y2 compute
7 µ̂ = [µû1 , µû2 ]

⊤, Σ̂ = [σ̂11, σ̂12; σ̂21, σ̂22]
8 Build the normal distribution of

û1 − û2 ∼ N (µû1 − µû2 , σ̂11 + σ̂22 − σ̂12 − σ̂21);
9 Calculate P(r = 2|Pc

n,ŷ3
) = Φ(

µ
û2

−µ
û1

σ̂11+σ̂22−σ̂12−σ̂21
) and

P(r = 1|Pc
n,ŷ3

) = 1− P(r = 2|Pc
n,ŷ3

);
10 Train two GP models ûy1≻y2 and ûy2≻y1 , using
Pc
ŷ3
∪ {y1,y2, r = 1} and Pc

ŷ3
∪ {y1,y2, r = 2},

respectively;
11 Obtain mean functions of two GPs: µûy1≻y2

, µûy2≻y2
;

12 Return
13 V = P(r = 1|Pc

n,ŷ3
)µûy1≻y2

(ỹ1) + P(r =

2|Pc
n,ŷ3

)µûy2≻y2
(ỹ2);

effects of plasma on a substrate, as quantified by the so-called
cumulative equivalent minutes (CEM) measure [19]

CEMk+1 = CEMk +K(Tref−Tk)δt, (11)
where K > 0 is an exponential base related to physical charac-
teristics of the target, Tref = 43◦C is a reference temperature,
and δt = 0.5 s is the sampling interval. Accordingly, the
following MPC problem is formulated

min
s(k),a(k)

(CEMsp − CEM(Np|k))2 (12a)

s.t. s(i+ 1|k) = Âs(i|k) + B̂a(i|k), (12b)

CEM(i+ 1|k) = CEM(i|k) + K̂(Tref−T (i|k)), (12c)
(s(i|k), a(i|k)) ∈ S ×A, s(0|k) = s(k), (12d)

∀i ∈ {0, . . . , Np − 1}, where s(k) = [s(0|k), . . . , s(Np|k)]⊤
and a(k) = [a(0|k), . . . , a(Np − 1|k)]⊤ are sequences of
predicted states and control actions over a prediction horizon
Np = 5; CEMsp is a desired CEM setpoint that dictates the
plasma treatment efficacy; S = [25◦C, 0 a.u.]×[35◦C, 80 a.u.]
and A = [1.5 W, 1.5 SLM] × [5 W, 5 SLM] define the state
and control constraints; and (12b) and (12c) represent a
model of the true dynamics (10) and (11). The resulting
MPC policy π(sk,x) = a∗0 is a function of the parameters
x = [Â11, Â12, Â21, Â22, K̂]⊤, which comprise the decisions
in Alg. 1. The MPC problem (12) is implemented in Python
using CasADi [20] and solved with IPOPT [21].

To ensure safe and effective plasma treatments, three inter-
twined treatment performance objectives must be taken into
account. The first is to minimize the treatment time τp to reach
the predefined CEMref . The second is to ensure that the max-
imum surface temperature T does not surpass a prespecified
threshold Tmax, which serves as a safety-critical constraint.
Given that the spatial distribution of CEM can extend beyond
the target area [22], the third aspect is to set a threshold
temperature Tref,outer for areas that should remain unaffected
by the plasma treatment. This threshold would mitigate patient



discomfort, or potential harm to regions outside the target area.
Hence, the plasma treatment performance objectives can be
formulated as

f1(x) = τp, f2(x) =

N∑
k=0

(T (k)− Tmax)
2, (13a)

f3(x) = max
k

2π

∫ r1

r0

r(Tref,outer − Tr(k))dr, (13b)

where Tmax = 45◦C; Tref,outer = 43.5◦C; r0 = 0.5 mm
and r1 = 2 mm delineate the boundary between treated
and untreated areas; and Tr(k) describes the spatial dis-
tribution of surface temperature at time step k: Tr(k) =

(T (k)− Tinf) e
− r2

σ2 +Tinf , with Tinf = 37 ◦C and σ capturing
the spread of temperature distribution, which is affected by the
maximum surface temperature T and helium flow rate q [22].
We seek to balance the objectives in (13) based on patient
feedback. We prioritize a 30-second treatment completion time
without violating the safety-critical constraint on Tmax, while
mitigating patient discomfort in non-target areas. Thus, the
utility function is defined as

u = −α|f1 − 30| − β|f2| − γ|f3|, (14)
with weights α = 1, β = 1000, and γ = 100, and it is used
to provide the pairwise feedback in Alg. 1. Additionally, we
model a probability of providing incorrect pairwise preference,
r, to reflect potential user’s judgment errors. Alg.1, Step 12,
provides an incorrect feedback with probability 5% when
|u(y1) − u(y2)| = 0.05 and this probability increases as the
difference between utilities of the outcomes decreases.

Since quantifying f3 directly based on a patient’s experience
may not be straightforward in practice, in this work, f3 is
characterized by the “physician” in terms of the measured
maximum surface temperature T and applied helium flow rate
q, which govern the spatial distribution of surface temperature
[22] and thus f3. As such, the observations of objectives uti-
lized for training the outcome model, f̂ , and the utility model,
û, as well as capturing patient’s feedback, are consolidated into
y = [f1, f2, T, q]

⊤. Accordingly, the coactive feedback from
a patient proposing a better alternative y3 than both y1 and
y2 is defined as

y3 = y+ + ζ∆y, y+ = [y1,y2]Iy , (15a)
∆y = [y∗ − y1,y

∗ − y2]Iy , (15b)
where Iy = argmin{abs(y∗−y1), abs(y

∗−y2)} is the index
vector from element-wise argmin, i.e., both argmin and abs
functions applied element-wise. The improvement vector y+

is derived from the vectors as per Iy . The factor ζ affects the
extent of proximity of the new suggestion y3 to y∗, as well
as to the initially proposed y1 and y2. With ζ set to 0.3 and
y∗ = [30, 0, 45, 1.5]⊤, we desire a utility u = 0 in plasma
treatments.

We consider the problem of adapting the parameters of the
MPC (12) to tailor the treatment protocols to an individual
patient. That is, the model parameters in (12b) are established
for a population of patients, whereas we aim to adapt the pa-
rameters x in (12) over a series of treatments to personalize the
treatment protocol to an individual patient while accounting
for their feedback encoded by the utility (14); see [12] for
the model specifications. To evaluate the performance of uc-

Fig. 2: Utility regret. Solid lines: Median across 256 runs,
deep/light shades are quartiles/5-95 confidence intervals.

PGBO, we consider a maximum treatment time of 120 s with
the setpoint CEMsp = 1.5 min. Note that the plasma treatment
is stopped once CEMsp is reached. The four entries in y are
observed after each full treatment, and are modeled as indepen-
dent GPs. In Algorithm 1, the number of pairwise comparsions
in the PE stage is M = 1, and the number of experiments in
the EXP stage is Nx = 3. Generally, selecting large values for
Nx or M carries the risk of making decisions in the absence
of accurate surrogate models. The models f̂ and û are initially
trained with N0 = 5 samples DN0

= {(yi,xi)}5i=1 obtained
via uniform random sampling, and Ñ0 = 3 pairwise com-
parisons Pc

Ñ0
=

{
pj , c1,j , c2,j

}3

j=1
and co-active comparsions

QÑ0
= {((y1,j ,y2,j),y3,j), ((y2,j ,y1,j),y3,j)}3j=1.1

For comparison, we consider the following six preference-
guided BO (PGBO) approaches: (i) PGBO with EUBO
[9] (EUBO), (ii) PGBO with EUBO and y3 feedback
(EUBO+y3), (iii) uc-PGBO with KGCAF, y3 feedback and ĥ
modeled as GP (KGCAF-GP), (iv) uc-PGBO with KGCAF,
y3 feedback and the true (15) (KGCAF-Oracle), (v) uc-PGBO
with one-shot KGCAF, y3 feedback and ĥ modeled as GP
(os-KGCAF-GP), and (vi) uc-PGBO with one-shot KGCAF,
y3 feedback and the true (15) (os-KGCAF-Oracle). For uc-
PGBO using KGCAF, the inner optimization iteration number
is restricted to 100 to ensure its solution in a reasonable
time; allowing unrestricted inner optimization, the solution
computation time could take several hours. Each method
is repeated 256 times, with different DN0

, Pc
Ñ0

and QÑ0

used to initialize the outcome, utility and preference outcome
surrogate model, and with Q = 50 BO loops of the PE and
EXP stages.

Fig. 2 shows the utility regret in relation to the 155 := N0+
Q × Nx number of iterations for the six PGBO approaches.
EUBO shows the highest regret due to ignoring y3. The dimin-
ished regret of EUBO+y3 indicates the benefit of introducing
the coactive feedback (even while maintaining the same AF),
which accelerates regret minimization by guiding the search
process more effectively. uc-PGBO based on KGCAF and
os-KGCAF markedly surpass the performance of EUBO+y3.
However, the performance of the uc-PGBO based on KGCAF
exhibits variability; surprisingly, KGCAF-GP outperforms
KGCAF-Oracle that uses the true coactive feedback (15) in
the initial iterations. This anomaly could stem from limited

1All implementations are done in BoTorch [18]. Training of multi-output
GP f̂ , pairwise GP û and preference GP ĥ is based on the default settings.



iterations in the inner optimization, where the GP surrogate of
ĥ introduces a level of stochasticity to the predicted ŷ3. On the
other hand, os-KGCAF-Oracle outperforms os-KGCAF-GP ,
as expected. Overall, comparing the performance of PGBO
approaches using a GP surrogate of ĥ versus the true Oracle
information suggests that precise prediction of y3 may not
be as critical, especially when the optimal user-defined y
lies outside the Pareto frontier. Finally, the accuracy of os-
KGCAF is demonstrated by an average normalized absolute
difference of 0.023 between the optimal values of KGCAF
and os-KGCAF, indicating a relatively minor discrepancy. In
terms of computational efficiency, the average optimization
time is 406.3 seconds for KGCAF, compared to the faster
58.0 seconds for os-KGCAF.

Fig. 3: Closed-loop control trajectories for MPC parameter adap-
tation using EUBO+y3 and uc-PGBO with os-KGCAF-GP and
os-KGCAF-Oracle. Trajectories represent the highest utility from
the least successful trial among 256 iterations. Top row: Time
profiles of CEM, plasma power, and helium flow rate, with the
blue line (os-KGCAF-Oracle) as the baseline. Bottom row: Surface
temperature distributions for EUBO+y3, os-KGCAF-GP , and os-
KGCAF-Oracle.

Fig. 3 shows the closed-loop control trajectories for the least
favorable achieved best final utility across 256 trials, com-
paring EUBO+y3, uc-PGBO with os-KGCAF-GP , and os-
KGCAF-Oracle. The blue line, representing the “best” profile
from os-KGCAF-Oracle, serves as the baseline with the short-
est treatment time while satisfying the comfort constraint (13).
This worst-case scenario are highlighted because the most
favorable achieved best final utilities are comparable across
approaches. However, both os-KGCAF-GP and os-KGCAF-
Oracle demonstrate superior performance over EUBO+y3,
which fails to complete the treatment within 120 seconds.
Further analysis of the five least successful trials indicates
that both os-KGCAF-GP and os-KGCAF-Oracle consistently
outperform EUBO+y3. uc-PGBO with os-KCGAF tends to
achieve faster treatment times without exceeding temperature
limits, while maintaining the surface temperature distribution
within the target area. That is, the MPC policy parameters are
adapted more effectively to maintain higher surface tempera-
ture and, thus, faster thermal dose delivery while honoring the
safety- and comfort-related constraints on surface temperature.

V. CONCLUSIONS

This paper introduces a preference-guided BO framework
with a novel knowledge-gradient-based acquisition function

that integrates two types of user feedback: pairwise prefer-
ence comparisons and coactive feedback. To ensure efficient
implementation, the acquisition function is approximated to
avoid the computational cost of bilevel optimization. Closed-
loop simulations of MPC policy learning in personalized
plasma medicine show that the proposed approach outperforms
alternative preference-guided BO methods.
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