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Abstract
We summarize the detailed class-specific performance results in the supplement. The complete
image-level AUROC results of 3DSR [55] are provided in Tab. 7, the complete image-level
AUROC results of BTF [24] are provided in Tab. 8, and the complete pixel-level AUPRO
results of BTF [24] and 3DSR [55] are provided in Tab. 9 and 10 respectively
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Supplementary Material — Towards
Zero-shot 3D Anomaly Localization

A. Detailed baseline results

We summarize the detailed class-specific performance
results in the supplement. The complete image-level AUROC
results of 3DSR [55] are provided in Tab. 7, the complete
image-level AUROC results of BTF [24] are provided in Tab. 8,
and the complete pixel-level AUPRO results of BTF [24] and
3DSR [55] are provided in Tab. 9 and 10 respectively.

B. Detailed ablation study results

For completeness, we summarize the detailed class-specific
performance results of the ablation studies on 3 training classes
bagel, carrot and peach in the supplement. The complete
pixel-level AUPRO results of 3DzAL without Ly, C,, or
input perturbation are provided in Tab. 11; the complete
pixel-level AUPRO results of 3DzAL without C, or input
perturbation are provided in Tab. 12; the complete pixel-level
AUPRO results of 3DzAL without input perturbation are
provided in Tab. 13. In addition, the complete pixel-level
AUPRO results of 3DzAL without “removing-point” type
pseudo anomalies are provided in Tab. 14 and the complete
pixel-level AUPRO results of 3DzAL without “adding-point”
type pseudo anomalies are provided in Tab. 15.

To have a more intuitive and explicit view of our pseudo
anomaly generation module, we visualize the normal sample
patches (positive samples in contrastive learning) and the
pseudo abnormal patches (negative samples in contrastive
learning) in Fig. 5, where our generated pseudo abnormal
3D point cloud patch is able to mimic unseen anomaly types
including contamination, bent, combined, hole, crack efc. In
contrast, the positive patch samples are relatively smoother
and have surface-like shapes. This partially explains why
3DzAL can work under the zero-shot 3D localization setting
as 3DzAL aims to learn the relative difference between
normal and abnormal 3D point cloud data locally and is not
particularly affected by the category prior or class information.

C. Visualization

D. Reproducibility

For all the experimental results reported, the number of algo-
rithm runs used to compute each reported result is 1. In our im-
plementation code, the random seed of the main body part is set
as 0 for reproducibility. In 3D pseudo anomaly generation part
for-loop, since we need to guarantee the diversity and variety of
the generated samples, we can not use the same random seed for
random sample selection, so we assign the for-loop index num-
bers as the random seed. Even if the random seed vary in the for-
loops, the sequence of the random seeds is fixed for each run. In
this way, the reproducibility of our paper can still be guaranteed.
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Figure 5. Visualization of the positive/negative examples. The posi-
tive patch samples are point parts (in gray) selected from the normal
training sample and the adding-point-type negative patch samples are
generated by attaching the places of interest (in red) from task-irrelevant
data. Please zoom in for details.

We search the percentage 7 in value set {0.01%,0.1%,1%}
and we search w4 in value set {0.1,1,10,100,1000,10000}.
We set wg = w, = 1. We run experiments on a machine
running CentOS Linux 7 (Core) with 503 GiB RAM, Nvidia
Tesla V100-SXM2-16GB GPUs and Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40GHz CPUs. The python packages and the
corresponding versions are listed here: Bottleneck 1.3.5, certifi
2022.6.15, charset-normalizer 2.1.1, click 8.1.3, cloudpickle
2.0.0, ConfigArgParse 1.5.3, cycler 0.11.0, cytoolz 0.11.0,
dask 2021.10.0, docker-pycreds 0.4.0, fonttools 4.37.1, fsspec
2022.3.0, gitdb 4.0.9, GitPython 3.1.27, idna 3.3, imageio 2.9.0,
importlib-metadata 4.12.0, joblib 1.1.0, kiwisolver 1.4.4, Imdb
1.3.0, locket 1.0.0, matplotlib 3.5.3, mkl-fft 1.3.1, mkl-random
1.2.2, mkl-service 2.4.0, networkx 2.6.3, numexpr 2.8.3, numpy
1.21.5, opencv-python 4.6.0.66, packaging 21.3, pandas 1.3.5,
partd 1.2.0, pathtools 0.1.2, Pillow 9.0.1, pip 21.2.2, promise 2.3,
protobuf 3.20.1, psutil 5.9.2, pyparsing 3.0.4, python-dateutil
2.8.2, pytz 2022.1, PyWavelets 1.3.0, PyYAML 6.0, requests
2.28.1, scikit-image 0.19.2, scikit-learn 1.0.2, scipy 1.6.2, sentry-
sdk 1.9.8, setproctitle 1.3.2, setuptools 61.2.0, shortuuid 1.0.9,
six 1.16.0, smilelogging 0.2.11, smmap 5.0.0, tabulate 0.8.10,
threadpoolctl 2.2.0, tifffile 2020.10.1, timm 0.6.7, toolz 0.11.2,
torch 1.8.1, torchaudio 0.8.0a0+e4e171a, torchsummaryX 1.3.0,
torchvision 0.9.1, tqdm 4.40.0, typing-extensions 4.1.1, urllib3
1.26.12, wandb 0.13.3, wheel 0.37.1, zipp 3.8.1.

E. Computational efficiency

We measure the inference time when testing on the cable
gland class. The average inference time of BTF/3DzAL is
212.8/327.8 (s) for 159 test samples. 3DzAL s inference time
is a little larger than that of BTF, mainly due to the additional
learnable 3D feature extraction and gradient computing for
perturbation. However, we believe that our significant anomaly
detection and localization performance gain outweighs the
additional inference time.



F. 3D attention overlay of the inductive bias

We provide the 3D inductive bias overlay corresponding
to Figure 3 in the main paper. Wer include the visualizations
of input 3D point cloud xyz data, the 2D RGB image, the
anomaly ground truth map, the inductive bias-based attention
2D visualization and 3D visualization in 5 columns respectively.
As illustrated in Fig. 6, we can see more concretely that the
inductive bias of a random network is to encompass the areas
of interest, which includes the locations identified in the ground
truth anomaly maps.

G. Ablation study of the random network
architecture for inductive bias generation

We perform additional ablation study of the different network
architectures for inductive bias generation. For our main paper
and all the reported result of our method, we use ResNet-50 [21]
for the random network architecture. We also show the inductive
bias visualizations generated using ResNeXt-50-32x4d [51]
and Wide-ResNet-50-2 [53]. As indicated in Fig. 7, inductive
bias exists across different network architectures for 3D point
cloud data and the attention maps typically cover the places of
interest despite not being exactly the same. This demonstrates
the robustness of our proposed 3DzAL framework for 3D
anomaly detection and localization and further verifies our
finding that an untrained CNN that is initialized randomly
has an inherent tendency to identify and locate points of
interest on 3D point cloud data, based on its inductive bias.



(a) 3D input
Figure 6. Attention overlay visualizations of four testing samples from the classes bagel, dowel, cookie, and rope.

(b) 2D input

(¢) Ground truth

(d) 2D attention

(e) 3D attention

train\test bagel cable carrot cookie dowel foam peach potato rope tire mean
bagel - 404 478 21.6 549 479 623 450 513 441 46.1
cable 41.8 - 39.7 39.0 4477 389 542 451 761 499 477
carrot 413 4938 - 38.5 531 446 475 445 413 535 460
cookie 519 484 512 - 547 366 540 532 558 495 506
dowel 331 456  48.1 46.5 - 545 442 359 668 509 473
foam 503 635 474 67.3 51.0 - 49.3 550 833 329 556
peach 396 479 540 30.0 543 454 - 432 584 322 450
potato 485 369 60.1 38.5 59.1 612 517 - 482 429 497
rope 538 554 515 32.6 561 568 599 356 - 490 50.1
tire 50.7 552 493 48.9 554 578 428 504 522 - 514

Table 7. The detailed image-level AUROC (%) of baseline 3DSR under the zero-shot setting.



train\test bagel cable carrot cookie dowel foam peach potato rope tire mean
bagel - 4477  59.8 67.5 5577 55.6 460 579 375 559 534
cable 553 - 529 543 619 515 503 485 389 371 50.1
carrot 513 453 - 50.6 460 573 505 480 592 492 50.8
cookie 366 483 495 - 538 472 417 489 665 531 495
dowel 539 495 400 51.7 - 612 479 628 396 547 3513
foam 61.3 460 446 389 54.0 - 474 538 465 562 499
peach 530 515 590 47.5 549 484 - 79.7 533 530 556
potato 477 507 672 49.1 53.1 460 480 - 483 58.6 521
rope 487 483 531 429 415 545 466 44.6 - 61.8 49.1
tire 48.1 544 477 443 531 563 512 505 492 - 50.5
Table 8. The detailed image-level AUROC (%) of baseline BTF under the zero-shot setting.
train\test bagel cable carrot cookie dowel foam peach potato rope tire mean
bagel - 76.1  91.7 88.4 81.8 488  90.7 %4 815 692 805
cable 327 - 86.9 46.4 809 556 650 89.1 804 772 682
carrot 446 752 - 56.7 83.7 359 66.7 912 829 80.7 68.6
cookie 632 728 909 - 802 306 825 941 785 720 739
dowel 146 713 900 20.3 - 31.7 469 82.1 782 8l4 574
foam 127 724  86.1 8.2 784 - 523 795 785 8l1.1 610
peach 814 788 925 844 826 421 - 979 81.8 688 789
potato 713 759  96.6 86.2 829 423 885 - 820 728 783
rope 7.2 663 841 34 792 307 387 75.0 - 83.6 520
tire 7.1 693 863 8.2 79.7  40.6  38.0 75.1 795 - 53.8
Table 9. The detailed pixel-level AUPRO (%) of baseline BTF under the zero-shot setting.
train\test bagel cable carrot cookie dowel foam peach potato rope tire mean
bagel - 23 4.7 10.5 16.1 11.0 0.4 0.0 216 45 79
cable 8.0 - 0.3 28.6 4.8 39 9.4 0.0 29 1.1 6.6
carrot 4.1 144 - 235 338 1.6 6.6 514 580 19 217
cookie 272 0.2 1.8 - 16.7 121 0.0 0.0 120 49 8.3
dowel 369 713 119 154 - 270 417 386 370 387 354
foam 4.6 0.0 0.0 0.2 0.0 - 0.0 0.0 00 00 0.5
peach 12.8 404 22 14.8 126  14.0 - 1.0 19.1 111 142
potato 14.2 14 0.7 8.7 6.8 19.7 24 - 284 365 132
rope 1.9 509 495 0.8 272 0.8 10.6 12.7 - 19.7 193
tire 655 216 102 46.5 6.0 159 333 7.2 7.6 - 238

Table 10. The detailed pixel-level AUPRO (%) of baseline 3DSR under the zero-shot setting.



train\test bagel cable carrot cookie dowel foam peach potato rope tire mean

bagel - 711 919 89.4 816 483 912 9.5 818 674 806
dowel 176  71.1  89.8 21.6 - 31.6  46.1 83.6 806 77.0 57.7
foam 171 739 860 3.6 794 - 54.6 80.2 792 838 620

Table 11. The detailed pixel-level AUPRO (%) of 3DzAL without L,C', or input perturbation.

train\test bagel cable carrot cookie dowel foam peach potato rope tire mean

bagel - 786 921 89.1 813 489 912 965 820 681 809
dowel 126 70.8  89.8 209 - 33.0 46.7 83.0 816 822 578
foam 181 746  86.0 6.6 79.2 - 57.1 794 794 820 625

Table 12. The detailed pixel-level AUPRO (%) of 3DzAL without C,, or input perturbation.

train\test bagel cable carrot cookie dowel foam peach potato rope tire mean

bagel - 712 925 89.3 81.6 486 912 9.5 81.8 859 827
dowel 169 70.6  89.8 209 - 462 493 86.2 823 89.1 613
foam 187 770  86.0 6.6 80.6 - 570 793 80.0 88.8 63.8

Table 13. The detailed pixel-level AUPRO (%) of 3DzAL without input perturbation.

train\test bagel cable carrot cookie dowel foam peach potato rope tire mean

bagel - 76.1 916 86.3 815 493 9038 %4 820 69.1 803

potato 715 756 965 86.2 82.1 428 - 879 828 822 793

rope 134 763  87.7 6.0 805 46.1 475 82.7 - 89.4  58.8
Table 14. The detailed pixel-level AUPRO (%) of 3DzAL with only “adding-point” pseudo anomalies.

train\test bagel cable carrot cookie dowel foam peach potato rope tire mean

bagel - 76.1  89.0 88.6 822 490 90.7 %4 816 754 810
potato 713 764 965 86.2 828 41.7 - 88.6 822 843 79.6
rope 133 762 877 6.4 805 46.1 475 82.8 - 894 589

Table 15. The detailed pixel-level AUPRO (%) of 3DzAL with only “removing-point” pseudo anomalies.




(a) 2D input (b) Ground Truth (c) ResNet-50 (d) ResNeXt-50 (e) Wide-ResNet-50
Figure 7. Attention overlay visualization comparison of different random network architectures for 3D inductive bias generation.
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