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Invariant Set Planning for Quadrotors:
Design, Analysis, Experiments

Marcus Greiff, Himani Sinhmar, Avishai Weiss, Karl Berntorp and Stefano Di Cairano

Abstract—We propose a motion planner for quadrotor un-
manned aerial vehicles (UAVs) implemented as a graph search
over robust positively invariant (PI) sets. We model the positional
error dynamics of the quadrotor in closed-loop with an onboard
controller as a second-order system with polytopic uncertainty in
the gains. We also consider bounded attitude tracking errors and
additive input disturbances. We propose a method for computing
ellipsoidal robust PI sets using linear matrix inequalities that are
expanded such that all trajectories therein remain safe, i.e., do
not intersect obstacles and ensure satisfaction of UAV constraints.
We construct a graph where the vertices are equilibrium positions
and the edges are transitions between equilibria occurring within
the PI sets. Hence, a graph search returns a sequence of setpoints
steering the UAV from an initial position to a target, while
remaining within the safe invariant sets. We show that, subject
to the properties of the graph, from any initial position within an
invariant set, any robust PI set in the graph is reachable in finite
time. The graph construction is offline, and the online graph
search and plan execution are simple and fast, thus allowing
for real-time planning. We demonstrate the method in extensive
simulations and in experiments with a Crazyflie 2.1 quadrotor.

Index Terms—Motion Planning, Invariant Sets, Constrained
Control, Uncertain Systems, Quadrotors, LMIs.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) are increasingly
investigated in industrial applications, such as indoor

surveying and factory automation, where the environment is
well known and largely static [1], [2]. Fully autonomous UAV
operations require motion-planning (MP) with rigorous safety
guarantees that enable fast planning, and replanning. Several
methods can be considered for this purpose, see, e.g., [3]–
[6] and the references therein. For factory automation [2] or
construction inspection [1], we seek planners that: provide
theoretical guarantees of safety in the presence of disturbances
and system modeling errors; ensure that relevant variables,
such as the maximal thrust of the UAV, are kept within their
bounds; and report a priori if safe flight in an environment
is possible. The last point is particularly relevant, as it can
be used to study the feasibility of system deployment, and to
determine appropriate operational limitations.

The dominating paradigm for UAV motion-planning lever-
ages convex optimization [5], [7]–[13]. The minimum-snap
planners in [8], [11]–[13] were designed to facilitate aggressive
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maneuvering [9], [12], and impressive efforts have been made
to ensure favorable scaling with the size of the workspace and
the number of obstacles [10]. These methods generally do not
account for structured uncertainties and disturbances acting on
the system, or assume that these take very particular forms [8].
To ensure safety, such methods generally inflate the obstacles,
but determining the amount of inflation that guarantees safety
is a nontrivial task.

When considering disturbances and structured uncertainty,
it is challenging to ensure rigorous safety guarantees with the
planning methods that are based purely on convex optimization
without significantly increasing the computational burden.
This motivates our exploration of graph-based planning, where
instead of optimizing over trajectories in space, the UAV
motions are encoded through a graph search by highly effi-
cient algorithms [3]. Often, graph-based planning associates
motions of the UAV to graph edges, and parameterizes them
explicitly [4], e.g., as motion primitives. Instead, we consider
the Invariant-Set Motion Planner (ISMP) [14]–[16], in which
the motions are encoded implicitly as the closed-loop response
to a sequence of setpoint commands leveraging positive invari-
ant (PI) sets, see Fig. 1. Such methods can provide guarantees
on robust constraint satisfaction and ensure convergence to
a target invariant set [17]. In this paper, we seek to extend
the framework in [18] and construct a Robust ISMP (RISMP)
tailored for UAVs.

ISMP approaches have been proposed for various appli-
cations [14]–[16], [18]–[21], most notably automated driv-
ing [16], [19], [22], and spacecraft orbit [14] and attitude
control [20], [21], [23]. Related invariance-based methods
have been suggested for UAVs [24], such as invariance-based
explicit reference governors (ERGs) [25], [26], experimentally
validated in [27], [28]. Due to the large state-space of the
quadrotor UAV and computational challenges in computing
its associated robust positive invariant sets, RISMP for UAVs
has not been developed yet, despite its appealing properties.
Here, based on some preliminary results from ERG [26] we
extend the ideas in [18] to develop an RISMP framework for
UAVs that addresses these computational challenges.

Although extensions to account for moving or initially un-
known obstacles are possible, see, e.g., [14], [22], the RISMP
method is particularly well suited for tasks in confined spaces
of moderate size containing several obstacles that are largely
static. This includes transport or monitoring in a factory setting
along the lines of [2]. Here, the extreme computational scaling
of the methods in [10], [13] is not required, and similarly,
there is no need for the aggressive maneuvers in [12]. Instead,
safety guarantees are critical, in particular when considering
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Fig. 1. Core idea of the RISMP: A sequence of reference points {rk}Kk=1
are computed using a graph search, where the transition rk → rk+1 occurs
if and only if the set Ok

U associated with rk (green) is contained in the
interior of the larger set Ok+1

I associated with rk+1 (blue). In addition to
the ellipsoidal (S1), polytopic (S2), and wall (S3) obstacles, the size of the
safe set (blue) is also constrained by bounds on the control inputs.

the realistic closed-loop disturbances and uncertainties of low-
cost UAVs. ERG approaches may also be suitable for these
purposes, but they are reliant on design choices such as the
navigation field, which limit objectives that can be encoded in
the planning problem [28].

A. Contributions

The main contribution of this paper is the design of an
RISMP for quadrotor UAVs, and its validation. We provide:

• A method for computing ellipsoidal robust PI (RPI)
sets for quadrotor UAVs using linear matrix inequalities
(LMIs), that accounts for bounded additive input distur-
bances, bounded attitude tracking errors, and polytopic
uncertainties in the positional error dynamics.

• A specialized RISMP that constructs a graph from a
finite collection of RPI sets offline, and performs online
planning using simple search algorithms with a priori
guarantees of safety and finite-time convergence to a
terminal set, subject to known properties of the graph.

• A validation of the designed RISMP in simulation and
experiments using the Crazyflie UAV, demonstrating its
theoretical properties in practice.

Initial studies on RISMP appeared in [29], which focuses on
describing the motion-planning algorithm. Compared to [29],
this paper refines the algorithm and details all the design steps,
especially the invariant set construction that handles uncer-
tainty, describes and proves the properties of the algorithm,
and validates the algorithm in simulations and experiments.

In the rest of this paper, after some preliminaries in Sec. II,
we introduce the UAV models in Sec. III, and the motion
planning problem and the general RISMP algorithm we use
to solve it in Sec. IV. Secs. V–VII describe the design of
the different components of the RISMP algorithm, Sec. VIII
reports our simulation results, Sec. IX reports the experimental

results with the Crazyflie quadrotor, and in Sec. X we provide
the conclusions.

II. PRELIMINARIES

R, R+, Z, Z+ are the sets of real, positive real, integer,
positive integer numbers, and we denote intervals with notation
such as Z[1,N ] = {1, . . . , N}. Vectors are denoted as x ∈ Rn,
[x]i is the ith element, ei is a unit vector where [ei]i = 1,
and for x ∈ Rn, y ∈ Rm, (x;y) = (x⊤,y⊤)⊤ ∈ Rm+n.
The identity matrix is Id ∈ Rd×d, and ⋆ is a block defined by
the context, and diag(A,B) is a block diagonal matrix of its
arguments. We let ∥x∥22 = x⊤x, ∥x∥2P = x⊤Px, and (Sn+)
Sn++ be the cone of n×n positive (semi)definite matrices. The
maximum and minimum eigenvalues of a real, symmetric ma-
trix M ∈ Rm×m are λ̄(M),

¯
λ(M) ∈ R, respectively. The set

of rotations is SO(3) = {R ∈ R3×3|R⊤R = I,det(R) = 1},
S(ν) is the skew symmetric matrix from vector ν, where
S(a)b = a × b. A directed graph G = (V,E) is a set
of vertices (or nodes) V = {v1, . . . vNv} with ordered pairs
E ⊆ V × V called edges. Vertices vi, vj ∈ V are adjacent if
(vi, vj) = ϵij ∈ E is an edge, and a path P is a sequence
of adjacent vertices, P = (vσ(k))

K
k=1 where σ : Z+ → Z+

defines the vertex sequence. We let E ∼ U(M) be a uniform
selection of an element E ∈M, with uniform probability.

Definition 1 (Ellipsoidal Set) An ellipsoidal set in Rn with
center c ∈ Rn, inverse shape matrix P ∈ Sn++ and level ρ is

E(c,P , ρ) = {x ∈ Rn|∥x− c∥2P ≤ ρ}

This is an over-parametrization, as the parameters P and
ρ can be combined. However, keeping these separate will be
useful in the construction of the graph.

Definition 2 (Polytopic Set) Given a set of points {θh}Nh=1,
a polytopic set is the convex hull

Co({θh}Nh=1)=

{
N∑

h=1

ζhθh

∣∣∣ N∑
h=1

ζh=1, ζh≥0, ∀h ∈ Z[1,N ]

}
.

Definition 3 (Robust positive invariant) Let ẋ = f(x,∆),
where x ∈ Rn is the state and ∆ ∈ D ⊂ R∆ is the
disturbance, a robust positive invariant (RPI) set O is such
that x(t◦) ∈ O ⇒ x(t) ∈ O, for all ∆(t) ∈ D for all t ≥ t◦.

Definition 4 (Ultimate and Inflated Sets) For the system
ẋ = f(x,∆(t)), two ellipsoidal RPI sets OU = E(c,P , ρU ),
OI = E(c,P , ρI) such that ρI > ρU , are called ultimate
set and inflated set, respectively, if for all x(t◦) ∈ OI ,
limt→∞ x(t) ∈ OU .

The conditions in Definition 4 imply that OU ⊂ OI and
that any ellipsoid E(c,P , (1 + ε)ρU ) ⊂ OI where ε > 0 is
finite, is entered in finite time from any x ∈ OI . In what
follows, ultimate and inflated sets are ellipsoidal sublevel sets
of a quadratic function V = ∥x− c∥2P .

Definition 5 (Projected Inflated Set) For an inflated set
OI = E(c,P , ρI), with inverse shape matrix

P =

[
P11 P12

⋆ P22

]
∈ Sn++,
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Graph Setpoint Update CP CA
G r (Rd,ωd, ω̇d)

f

τ

(R,ω)(p,v,R)(p,v)

Offline computation Online (50 Hz) Online, run on the embedded system (500 Hz)

Fig. 2. Sketch of the UAV control system considered in this paper. The RISMP is defined by the construction of the graph and conditions for updating the
setpoint rk . The figure depicts the controller in [30] implemented as a stabilizing controller, here partitioned into a positional controller CP whose gains are
not perfectly known, and an attitude controller CA, which is not ideal and results in a bounded attitude tracking error R̃ = R⊤

d R ∈ SO(3).

with P11 ∈ S3++, we define a projection on R as

OI = E(r,P11 − P12P
−1
22 P21, ρI) ⊂ R, (1)

where r ∈ R is the position sub-vector within c ∈ R×Rn−3.

III. MODELING AND PROBLEM FORMULATION

We consider the full nonlinear UAV dynamics from the
Euler-Lagrange equation [31] with a configuration manifold
(p,R) ∈ R3 × SO(3),

ṗ = v, (2a)
mv̇ = TRe3 −mge3, (2b)

Ṙ = RS(ω), (2c)
Jω̇ = S(Jω)ω + τ , (2d)

where {G} is a global frame with basis {ei}3i=1, and {B} is
the UAV body frame with basis {eBi }3i=1, where [e1, e2, e3] =
R⊤[eB1 , e

B
2 , e

B
3 ], p ∈ R is the position in the global frame

{G}, v ∈ R3 is the velocity in {G}, R ∈ SO(3) is the attitude,
ω ∈ R3 is the attitude rate in {B}, T > 0 is the rotor thrust,
τ is the torque in {B}. The thrust is upper bounded by T ≤
Tmax, and the inertia matrix J ∈ S3++, mass m > 0, and
gravitational acceleration g > 0 are parameters in (2).

Usually, the UAV control system is structured in a fast
attitude control loop, which operates on references computed
in a positional control loop [30]. PD/PID-like controllers
are often applied to a tracking error on special Euclidean
groups [30], [32]–[34], for both stabilization and tracking.
If there are discrete changes in setpoints, this will generate
bounded attitude tracking errors that act as disturbances on
the UAV motion. The overall control system architecture
considered in this paper is shown in Fig. 2, with CP denoting
a positional controller and CA denoting an attitude controller.

Therefore, it is natural to consider the positional subsystem
of (2) for motion-planning to account for realistic attitude
tracking errors due to non-ideal attitude control, see, e.g., [26],
and its validation [27]. Specifically, for a position reference
r ∈ R3 with corresponding equilibrium x̄(r), we consider
the error dynamics of (2) in closed-loop with a geometric

proportional derivative (PD) controller [30], [34] for setpoint
stabilization (see, e.g., [26]).

p̈ = −R̃⊤Kp(p− r)− R̃⊤Kvv +∆, (3a)

∆ = m−1f + g(I − R̃)e3, (3b)

where f ∈ R3 is the external disturbance force, R̃ ∈ SO(3)
is the attitude tracking error, Kv ∈ S3×3

++ , Kp ∈ S3×3
++ . Here,

R̃ = R⊤
d R, where Rd is a commanded rotation and R is

the response, see Fig. 2, so that perfect attitude tracking is
achieved when R̃ = I , i.e., Rd = R, see e.g., [30]. For our
purposes, it is relevant to consider the Euler axis angle of the
attitude error, α ≜ max∥ν∥2=1 arccos

(
ν⊤R̃ν

)
.

Assumption 1 Attitude error R̃ and disturbance force f have
known bounds supt≥t◦ |α(t)|≤αmax, supt≥t◦∥f(t)∥2≤Fmax.

The bounds on attitude errors and external forces result in
a bound on the additive disturbance in (3b), ∥∆∥ ≤ ∆max.
Unlike [26], we do not assume perfect knowledge of the
feedback gains Kv , Kp. This may seem counterintuitive,
but in practice the full control law of the UAV may be
a black/gray box, or it may be hard to model compactly
due to switching modes, nonlinearities, and high frequency
components. Adding uncertainty enables representing different
UAV responses about some approximate, nominal control law.

Assumption 2 The gains of (3) are not known, but satisfy

K ≜ (Kp,Kv) ∈ Co({(Kh
p ,K

h
v )}Nh=1) ≜ K, (4)

for known elements {(Kh
p ,K

h
v )}Nh=1.

Assumption 3 For all, possibly time-varying, values K ∈ K,
(3) is uniformly asymptotically stable (UAS) when ∆ = 0.

Assumption 3 is sufficient to ensure that the equilibrium
point is uniformly exponentially stable [35, Theorem 5.4],
see [36] for the definition of UAS. By converse Lyapunov
theorems, the trajectories of (3) are uniformly ultimately
bounded when ∆ is non-vanishing [36, Lemma 9.3]. Thus,
there exist an ellipsoidal ultimate set to the interior of which
all trajectories of (3) converge.

The UAV may be subject to additional constraints, and we
impose a constraint on the maximum thrust, Tmax. Since (3) is
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a closed-loop model with the controller in [30], the maximum
thrust constraint1 is

T = (mge3 −Kp(p− r)−Kvv)
⊤(Re3) ≤ Tmax (5)

which involves the UAV state and setpoint. Next, we formulate
the motion planning problem and present the structure of the
algorithm that we use for solving it.

IV. MOTION PLANNING PROBLEM AND ALGORITHM

We consider a three-dimensional environment R = R3,
where the UAV must move from an initial position to a
final position in the environment while avoiding obstacles. Let
x ∈ Rn = R×Rn−3 be the state of the UAV (3), for simplicity
we let the first three elements be the UAV position vector, p.

Definition 6 (Obstacle) The environment includes M known
obstacles with occupancy region {Sℓ ⊂ R}Mℓ=1, where each
Sℓ is either a polyhedral or an ellipsoidal set.

The restriction to polyhedral or ellipsoidal obstacles stems
from computational aspects, to make the problem tractable.
The occupancy region in Definition 6 includes all positions
at which the UAV may be in collision with an obstacle, i.e.,
it accounts also for the geometry of the UAV. Now, we can
formally state the problem.

Problem 1 Compute a setpoint trajectory r(t) = rk for
t ∈ [tk−1, tk], defined by a finite set of points {rk ∈ R|k ∈
Z[1,K]}, such that the resulting closed-loop trajectory of (3)
avoids the obstacles p(t) /∈

⋃
i Si for all t ≥ t◦, and x(t)

converges to an ultimate set associated with rK ∈ R in finite
time tK − t◦ ≥ 0.

In this paper, we solve Problem 1 by an invariant-set motion
planner. ISMP abstracts the continuous trajectory planning
problem for a dynamical system into a search over a graph
of discrete points by leveraging invariant sets. Specifically,
the algorithm first determines a set of grid points to be nodes
of a graph. For each point, it constructs a controller rendering
it a stable equilibrium, and an invariant set not intersecting
with obstacles such that the closed-loop trajectories starting
anywhere in the invariant set converge to the grid point. Then,
based on the membership of a grid point to the invariant sets
of other grid points, the algorithm constructs the graph edges.

Given initial and final points, ISMP constructs a path in the
graph, which is an abstract motion plan. The dynamical system
trajectory is obtained from the closed-loop system where the
grid point is used as a setpoint within the corresponding
invariant set, and the setpoint value changes to the next path
grid point when the corresponding invariant set is entered.

The general invariant planning algorithm needs to be mod-
ified if the system is subject to uncertainty as in (3). The
set construction needs to account for both, model uncertainty
and disturbances. The edge construction must account for
convergence to a set, rather than a point, see Fig. 1. As for
the execution, the batch, i.e., offline, computation of the entire
trajectory is no longer possible, since entering the invariant

1We do not enforce a lower bound T ≥ 0 because for T = 0 the UAV
falls at high acceleration due to gravity, and the controller already avoids that.

set of the next waypoint depends also on the effects of the
uncertainties, which are not predictable. Rather, the setpoints
are updated in real-time, based on the actual UAV state
entering the next invariant set.

Next, we develop a robust ISMP (RISMP) for UAV appli-
cation, summarized in Algorithm 1.

Algorithm 1 Robust invariant-set motion planning for UAV
Parameters: P (ellpsoid shape matrix), Nv (number of
nodes), ρs > 1 (scaling constant)
Data: p(0) (initial position), p∞ (target position)
Graph Construction:

1: Sample grid points {ri}Nv−1
i=1 , ri ∈ R, i ∈ Z[1,Nv−1]

2: for i = 1, . . . , Nv − 1 do
3: Construct Oi

U = E((ri;0),P , ρiU ) for (3)
4: Construct Oi

I = E((ri;0),P , ρiI) for (3) to be obsta-
cle free, OI

i ∩ Sℓ = ∅ for all ℓ = Z[1,M ], and constraints
admissible, if x(0) ∈ Oi

I , then x(t) ∈ X (r), for all t ≥ 0
5: end for
6: Construct G = (V,E) such that vi = ri, (vi, vj) ∈ E iff

ρsOi
U ⊆ O

j
I , ρs > 1

Motion Plan:
7: Add vNv

= rNv
= p∞ with ONv

U , ONv

I to G as in Step 6
8: Compute a path P = (vσ(k))

K
k=1, such that (p(0);0) ∈

Oσ(1)
I , vσ(K) = vNv

, (vσ(k), vσ(j+1)) ∈ E; set k ← 0
9: while k < K do

10: repeat
11: Apply r = rσ(h) to the closed-loop system (3)
12: until x(t) ∈ Oσ(k+1)

I
13: k ← k + 1
14: end while
15: Apply r = rσ(Nv) to the closed-loop system (3)

The steps of Algorithm 1 are detailed in the following
sections. Specifically, Sec. V describes the computation of the
set at Step 3, by considering first a nominal setting similar
to [18], and then extending it to the non-ideal attitude tracking
setting with polytopic feedback uncertainty. Sec. VI describes
the computation of the sets at Step 4. The construction of the
graph at Step 6, the computation of the path at Step 8, and the
trajectory generation at Steps 11, 15 are described in Sec. VII.

V. CONSTRUCTION OF THE ULTIMATE SETS

Next, we describe the computation of the ultimate sets Oi
U

for each node vi ∈ G for (3) to design the RISMP algorithm
that addresses Problem 1, where for simplicity we omit the
index i. The method presented in [26] can be applied when
the gains (4) are: (i) known, i.e. N = 1, (ii) diagonal, and
(iii) there is no variation in the diagonal elements. Thus, [26]
does not apply to (3) under Assumption A2, A3. The LMI-
based approach in [18], [37] is more easily generalized, but
does not accommodate the structured uncertainty due to the
bounded attitude tracking error in Assumption A1, which
may be necessary to consider in precise UAV planning and
control [26], [27].
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A. Perfect Attitude Tracking (Ideal Case)

First, we consider the computation of ellipsoidal ultimate
sets for (3a) in the ideal case of R̃ ≡ I . In this case we
have a stable linear system with polytopic uncertainty in the
dynamics by A2 and bounded input disturbances by A1, with
the tracking errors xe = (p− r;v) evolving by

ẋe = Axe +B∆, A =

[
0 I
−Kp −Kv

]
, K ∈ K. (6)

Remark 1 For system (6), when c = (r;0) the sets in
Definition 4 are translation invariant with respect to r ∈ R,
i.e., if OU = E((r;0),P , ρU ) is an ultimate set, then, for any
r′ ∈ R, OU = E((r′;0),P , ρU ) is also an ultimate set.

In the following, let V = ∥xe∥2P be a quadratic Lyapunov
function candidate, with P partitioned as

P =

[
Ppp Ppv

⋆ Pvv

]
∈ S6++, Ppp ∈ S3++, Pvv ∈ S3++.

There are multiple ways to compute RPI sets for (6), see,
e.g., [37]. We formulate the convex optimization problem

γ∗ = min
P∈S6×6

++

γ>0

γ (7a)

s.t.

[
A⊤

hP+PAh+P PB
B⊤P −γI

]
⪯ 0, h ∈ Z[1,N ],

(7b)
P ⪰ I, (7c)

where

Ah =

[
0 I
−Kh

p −Kh
v

]
, B =

[
0
I

]
.

Solving (7) implies the existence of a common Lyapunov
function V (p,v, r) = ∥xe∥2P for all closed-loop systems
characterized by the gains K ∈ K. By a straightforward
application of the comparison lemma [36, Lemma 3.4], the
level set ∥xe∥2P ≤ γ∗∆2

max is an ultimate bound for (6) for
the given setpoint r. Thus, E((r;0)),P , ρU ) is an ultimate set
with ρU = γ∗∆2

max for all ∥∆(t)∥ ≤ ∆2
max.

B. Discussion on Conservativeness

Computing ultimate sets by (7) is conservative, thus we
compare it to the method in [26, Sec. VI-A]. Consider a simple
case with known scalar gains kp, kv ,

d

dt

[
p
v

]
=

[
0 1
−kp −kv

] [
p
v

]
+

[
0
1

]
∆, p(t◦)=v(t◦)=0, (8)

where supt |∆(t)| ≤ 1. We compute δ = supt |p(t)| using:
• the system 1-norm, from the impulse response H from

input ∆ to output y = p, δA = ∥H∥1;
• the ellipsoidal set computed as in [26], δB ;
• the ellipsoidal set computed by (7), where

P =

[
Ppp Ppv

⋆ Pvv

]
∈ S2++,

2 4 6 8 10
1

1.5

2

2.5

Natural frequency ωn

C
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s

δB(ωn)/δA(ωn), PI sets in [27]
δC(ωn)/δA(ωn), PI sets by LMIs in (10)
Tuning parameters in [27]

Fig. 3. Conservativeness of the PI sets against the system 1-norm for (8)
with kk = ω2

n and kv = 2ξωn for variable ωn and fixed ξ =
√

1/2.

and the resulting margin using (1) as

δC =

√
ρU

Ppp − PpvP
−1
vv Pvp

.

for the same parameters as in [26], kp = 19.34, kd =
6.22, making a closed-loop system with a natural frequency
ωn = 4.4 and damping ratio ξ =

√
1/2, the results are

δA = 0.056, δB = 0.125, δC = 0.076. The system 1-norm
δA is a lower bound on the maximal positional perturbation
due to a bounded input. The margin δC computed by (7)
are closer to δA than the margin δB from [26]. Studying the
conservativeness over a wider range of tuning parameters, see
Fig. 3 for the results for varying ωn ∈ [1, 10] while keeping the
relative damping at ξ =

√
1/2, such relation appears to hold

more generally. Next, we generalize the method to incorporate
the bounded attitude tracking errors in the Assumption A1.

C. Imperfect Attitude Tracking (Non-ideal Case)

For the more realistic setting where the attitude tracking
error is non-zero but bounded, as in Assumption A1, we start
by giving two useful lemmas.

Lemma 1 Any R̃ = exp(S(αν)) ∈ SO(3) corresponding to
a rotation of α ∈ [0, π/2) about a unit vector ν ∈ R3, and
any matrices Φ,Ψ ∈ R3×m, satisfy the bound

C = Φ⊤(I − R̃⊤)Ψ+ (Φ⊤(I − R̃⊤)Ψ)⊤

⪯ (Φ⊤Φ+Ψ⊤Ψ)
√

2(1− cos(α)).

The full proof is reported in Appendix A, and follows by
writing C as a quadratic form in (Φ,Ψ), considering the
characteristic equation of the resulting block-structured matrix
using Schur complements, and geometric reasoning about the
singular values of (I − R̃⊤).

Lemma 2 For any K ∈ Co({Ki}Nh=1) and K̄ such that[
K̄ K⊤

h

Kh I

]
⪰ 0 ∀h ∈ Z[1,N ], it holds K̄ ⪰K⊤K.

The proof is given in Appendix B.
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With non-ideal attitude tracking, instead of (7) we solve

γ⋆ = min
P∈S6×6

++

K̄∈S6×6
+

γ≥0

(γ), (9a)

s.t. P ⪰ I, (9b)[
K̄ ⋆
Kh I

]
⪰ 0 (9c)A⊤

hP+PAh+P+βK̄ ⋆ ⋆
B⊤P −γI ⋆√
βB⊤P 0 −I

 ⪯ 0

h ∈ Z[1,N ], (9d)

where

Ah =

[
0 I
−Kh

p −Kh
v

]
, B =

[
0
I

]
.

Kh =
[
Kh

p Kh
v

]
, β =

√
2(1− cos(αmax)),

The characterization of an ellipsoidal RPI set based on the
solution of (9) is summarized in the following proposition.

Proposition 1 If Assumptions A1–A3 hold, αmax is the maxi-
mal attitude error, and there exists a solution to (9), there exists
a constant ρU = ∆2

maxγ
⋆ > 0 such that OU = E(c,P , ρU ) is

RPI for any c = (r;0).

The proof is in Appendix C, and follows the perfect attitude
case, using Lemma 1 and Lemma 2 to bound the term due
to the errors in attitude control. Each node vi ∈ G has
an associated ultimate set Oi

U . However, since Oi
U depends

only on the closed-loop dynamics, uncertainty, and chosen
Lyapunov function, and since in this paper these are equal for
all the nodes, Oi

U = OU , ρiU = ρU for all i ∈ Z[1,Nv]. Hence,
in the rest of this paper we drop the superscript. Proposition 1
allows for applying RISMP under realistic assumptions and
with quantities, e.g., αmax, Fmax,K, that can be estimated
from data for any UAV with a control system that stabilizes
its position about a setpoint.

VI. CONSTRUCTION OF THE INFLATED SETS

Next, we need to construct forward invariant inflated sets
Oi

I associated to nodes vi ∈ G according to Definition 4 such
that the trajectories of (3) within them are safe, i.e., satisfy the
input constraints and do not enter the obstacles sets {Sℓ}Mℓ=1.
Since a transition (vi, vj) ∈ E can be guaranteed to be safely
taken only if the set Oi

U associated with vi is contained in the
set Oj

I associated to the vertex vj , we want Oj
I to be as large

as possible. In what follows, we omit the indices to OI for
the ease of notation, and use the following lemma.

Lemma 3 ( [38, Proposition 1]) Let xe = (p − r;v),
V (p,v, r) = ∥xe∥2P with P computed in (9) and

Γ(r) =
(c⊤p r − d(r))2[
cp
cd

]⊤
P−1

[
cp
cd

] . (10)

If V (p,v, r) ≤ Γ(r) then c⊤p p+ c⊤v v ≤ d(r).

Fig. 4. Setpoints {rk ∈ R}Kk=1 in a world with M = 3 three obstacles
{Si ⊂ R}Mi=1 (gray). The ultimate set OU = E(c,P , ρU ) associated with
the equilibrium point c = (rk;0) is shown in green. Candidate inflated sets
{E(c,P ,Γi)}Mi=1 (blue) are computed, and the safe inflated set is OI =
E(c,P , ρI) with ρI = Γ2. These sets are used to compute the graph in the
RISMP method, as shown in Fig. 1 and discussed in Sec. VII.

Lemma 3 determines how much the ellipsoidal ultimate set
OU associated to a vertex of the graph can be enlarged to con-
struct OI where obstacle avoidance and actuator limitations
are satisfied. Given Mc input constraints, M obstacles and
OU = E(c,P , ρU ), we compute M + Mc candidate inflated
sets {E(c,P ,Γℓ)}M+Mc

ℓ=1 using Lemma 3, and select

ρI = min({Γℓ}M+Mc

ℓ=0 ), (11)

resulting in OI = E(c,P , ρI). The computation of Γℓ for
polyhedral obstacles, ellipsoidal obstacles, and thrust con-
straints is discussed in Sec. VI-A, Sec. VI-B, and Sec. VI-C,
respectively.

A. Polyhedral Positional Constraints

Consider a setpoint r ∈ R and let Q = Ppp−PpvP
−1
vv Pvp

be the inverse shape matrix of OI in Definition 5. Introducing
a coordinate transformation p̄ = Q1/2(p−r), if V (p,v, r) ≤
Γ is RPI, then ∥p̄∥22 ≤ Γ is also RPI. We apply the linear
transformation to the obstacles Sℓ = {p : AS

ℓ p ≤ bSℓ },
resulting in S̄ℓ = {p̄ : ĀS

ℓ p̄ ≤ b̄Sℓ } with ĀS
ℓ = AS

ℓ Q
−1/2,

b̄Sℓ = bSℓ −AS
ℓ r. In the transformed coordinates, we solve

p̄⋆
ℓ = argmin

p̄∈S̄ℓ

∥p̄∥22. (12)

The hyperplane passing through p̄ = p̄⋆ with normal p̄⋆ is

c⊤p,ℓp̄ = (p̄⋆
ℓ )

⊤p̄ ≤ (p⋆
ℓ )

⊤p⋆
ℓ , (13)

and hence for obstacle Sℓ, Γℓ = ∥p̄⋆
ℓ∥22. See Γ1 and Γ3 in

Fig. 4 for an example of two ellipsoidal obstacles.

B. Ellipsoidal Positional Constraints

As in Sec. VI-A, let Q = Ppp − PpvP
−1
vv Pvp, and

now consider ellipsoidal obstacle sets, Sℓ = {p ∈ R3 :
∥p− bSℓ ∥AS

ℓ
≤ 1}. In this case, the computation of candidate

inflated sets (12) is a quadratically constrained QP (QCQP).
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Using the change of coordinates from Sec. VI-A, S̄ℓ = {p̄ ∈
R3 : ∥p̄ − b̄Sℓ ∥ĀS

ℓ
≤ 1}, with ĀS

ℓ = Q−1/2AS
ℓ Q

−1/2,
b̄Sℓ = −Q−1/2(r − bSℓ ). By solving (12), we can construct
the linear constraint as in (13), and apply Lemma 3 to yield
Γℓ = ∥p̄⋆

ℓ∥22. This is a more computationally demanding
but less conservative than the approach in [25], that uses a
hyperplane as a constraint in Lemma 3.

Remark 2 The tightness of the approximation in [25] de-
pends on the spectrum of ĀS

ℓ . If the inflated sets and obstacles
are spherical, the difference between the method in [25]
and the solution of the QCQP in (12) is negligible. Thus,
under certain conditions of obstacle shapes and computational
limitations, the method in [25] can be used in the RISMP
algorithm proposed here.

Remark 3 If the obstacle sets do not account for the physical
shape of the UAV, one can find a covering ellipsoidal set of
the UAV shape E(p,Q, ρbnd) for some ρbnd > 0, where Q
is the projection of P in positions coordinates, and then set
Γℓ = (∥p̄⋆

ℓ∥2 −
√
ρbnd)

2.

C. Thrust Constraints

Bounds on the thrust of the UAV are more cumbersome
to enforce in the context of Assumption A2, and depend on
the UAVs low-level controllers (see Fig. 2). For the trajectory
tracking controller considered here [30] the commanded thrust
is T = (mge3 −Kp(p− r)−Kdv)

⊤(Re3), and for all the
states in OI it must hold that T ≤ Tmax. Standard approaches
such as [26] are difficult to apply if the gains K ∈ K are
dense. In this case, we bound the denominator in (10) as in
the following lemma

Lemma 4 Given Assumption A2, let K̄ = diag(Kp,Kv) and
K̄h = diag(Kh

p ,K
h
v ). There exists a γ > 0 such that[

ν
ν

]⊤
K̄P−1K̄

[
ν
ν

]
≤ γ ∀ν ∈ R3 s.t. ∥ν∥2 = 1. (14)

The smallest such γ is

γ⋆ = min
γ11,γ12,γ22

(γ11 + 2γ12 + γ22), (15a)

s.t.

[
P K̄h

K̄h Λ

]
⪰ 0, ∀h ∈ Z[1,N ] (15b)[

γ11I γ12I
⋆ γ22I

]
= Λ. (15c)

The proof is straightforward and follows by the definition of
convexity and the application of Schur complements. Exis-
tence of a bound γ follows as λ̄(K̄P−1K̄) is bounded for
any P ≻ 0, which is ensured by the constraint in (9b).

Using Lemma 3, Γ = (fmax − mg)2m−2(γ⋆)−1 ensures
that for the control law in [30], T < Tmax for all states in the
ellipsoid OI = E(c,P ,Γ). As we have one such constraint,
we let Mc = 1 and associate Γ0 with this thrust constraint.

VII. RISMP PLANNING AND EXECUTION

Using the ultimate sets from Sec. V and inflated safe sets
from Sec. VI, we proceed to construct a graph G with a vertex

set V. Let ri ∈ R be a position setpoint, Oi
U = E(ri,P , ρU )

the associated ultimate set, and Oi
I = E(ri,P , ρiI) the

associated inflated safe set. Thus, each vertex in G is associated
with a triple (ri,Oi

U ,Oi
I), and each edge (vi, vj) ∈ E ⊂ V×V

is associated with a weight cij ≥ 0. This weight is stored in
a sparse matrix C, such that [C]ij = cij if (vi, vj) ∈ E, and
[C]ij = 0 otherwise.

Next, we describe how to construct the graph edges in
Sec. VII-A. We show how to compute a path by searching
the graph in Sec. VII-B, and how to generate the UAV motion
that solves Problem 1 in Sec. VII-C.

A. Graph Building

As shown in Algorithm 1, the first step of RISMP is
to determine suitable reference positions, which become the
graph nodes, this is done by a lattice construction, random
sampling, or optimization methods [18]. Then, we compute
the ultimate sets and inflated sets. A node vi is pruned from
the graph if Oi

U ∩
⋃M

ℓ=1 Sℓ ̸= ∅, as its equilibrium is not safe.
The edges of the directed graph are determined from the sets

associated with each vertex. Specifically, if Oi
U ⊂ O

j
I , then

any trajectory starting in Oi
I eventually converges to Oi

U , and
from this it will be safe to change move towards rj . Thus,

(vi, vj) ∈ E if ρsOi
U ⊆ O

j
I . (16)

where ρs = 1 + εs is a scaling constant with εs > 0,
arbitrarily small, which ensures that the ultimate set Oi

U is
strictly in the interior of Oj

I with margin εs, and provides
an upper bound on the time to enable the transitions. A
larger εs reduces the number of edges in the graph and hence
the number of feasible paths, but provides a smaller upper
bound on the time to enable the transitions. In the coordinates
r̄i = (Ppp −PpvP

−1
vv Pvp)

1/2ri, condition (16) is efficiently
checked across V× V as

∥r̄i − r̄j∥2 <

√
ρjI −

√
ρsρU . (17)

Vertices that are disconnected or that have only inbound edges
may be pruned from the graph to reduce computations.

Remark 4 By geometry, two vertices for which ∥r̃i− r̃j∥2 >√
Γℓ −

√
ρsρU cannot be connected. This imposes an upper

bound on how coarsely the vertices of the graph are sampled,
where, for instance, ℓ is the index of the inflated set limited
by the thrust constraint (5), and can be used to optimize the
graph construction by only checking (16) for vertices that are
sufficiently close.

Remark 5 The edge weights can be defined in several ways.
For simplicity, we set the weight associated with (vi, vj) ∈ E
to cij = ∥r̄i − r̄j∥2. Different definitions are possible,
which may cause an increase of computational load. A more
extensive study of alternative computationally efficient weight
definitions is left to future work.

B. Graph Searching

A path from an initial vertex to a terminal vertex can
be determined efficiently using the Dijkstra algorithm [39],
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although any graph search method can be used within RISMP.
Before initializing the graph search, we choose the initial and
terminal vertices. The initial vertex is chosen as

σ(1) = arg min
i:vi∈V

∥x(t◦)− (ri;0)∥2P , (18a)

s.t., x(t◦) ∈ OI (18b)

such that ∥x(t◦) − (ri;0)∥2P ≤ ρiI . For a target position
p∞ ∈ R, we add to the graph vertex vNv with rNv = p∞.
For this new vertex, an inflated safe set is determined as in
Sec. VI, and the edges are added to the neighboring vertices
as in Sec. VII-A. The path P =

(
vσ(k)

)K
k=1

resulting from
the graph search is a sequence of K ≥ 1 connected vertices,
(vσ(k), vσ(k+1)) ∈ E for all k ∈ Z[1,K−1] leading from the
initial node to the terminal node, vσ(K) = vNv

.

C. RISMP Execution

Online, the RISMP algorithm determines the setpoint for the
UAV in closed-loop with the controller (3) using the inflated
sets Oi

I associated to the nodes vi. Initially, we set t1 = t◦,
and r(t1) = rσ(1). Given t > tk−1, if x(t) ∈ Oσ(k)

I , we let
tk = t and r(t) = rσ(k), otherwise r(t) = rσ(k−1).

Remark 6 We consider motion planning in a known map with
known obstacles. However, RISMP can be used in partially
known maps with moving or previously unknown obstacles by
adding and removing graph nodes during execution based on
online information on the map and obstacles. These have been
explored for an invariant-based planner in [22], and can be
easily integrated with the RISMP method described here.

The construction (16) ensures that tk − tk−1 is finite and
that the RISMP solves Problem 1. Specifically, we give the
following result.

Result 1 (Finite-time Guarantees and Safety) Given the
quadrotor model (3) and Assumptions A1–A3, if:
(i) there exist a triple (γ, K̄,P ) solving (9);

(ii) G is computed as in Sec. VII-A and is fully connected;
(iii) the initial condition satisfies x(t◦) ∈

⋃Nv

i=1Oi
I;

(iv) the setpoint rk is updated as in Sec. VII-C;
then for every vσ(K) ∈ G there exists δ > 0 and a time

tK ≤
K∑

k=1

log(δ−1(ρ
σ(k)
I −ρsρU )) ≜ tmax, (19)

such that x(t) ∈ Oσ(K)
U for all t > tK . In addition, the state

trajectory (x(t))t≥t◦ satisfies:

(P1) finite-time convergence: x(t) ∈ Oσ(K)
U for all t > tmax;

(P2) collision avoidance: p(t) /∈ (
⋃M

ℓ=1 Sℓ) for all t ≥ t◦;
(P3) constraint satisfaction: T (t) ≤ Tmax for all t ≥ t◦.

The constant δ comes from the closed-loop motion model
being UAS, from the strict inequality in (17) and from Oi

U
being strictly in the interior of Oj

I , and the existence of
a finite K follows from (ii). The bound on tK and (P1)
follows directly from repeated application of the comparison
lemma [36, Lemma 3.4] given the setpoint update in (iv).
Since the sets Oi

I are forward invariant as per (i), they yield

collision avoidance (P2) as p(t) ∈
⋃

iOI
i

for t ≥ t◦, and
OI

i ∩ (
⋃M

ℓ=1 Sℓ) = ∅ by construction. Similarly, constraint
satisfaction (P3) follows the state trajectory x(t) ∈

⋃
iOi

I for
all t ≥ t◦ and within Oi

I the constraints, here (5), are satisfied
by construction.

The graph G may not be fully connected even if the
physical space is, e.g., if there is a passage too narrow to
be navigated safely when accounting for the uncertainty. In
this case the method may still be successfully applied within
each connected subgraph.

Remark 7 In Result 1, the success or failure in computing a
feasible state trajectory between any initial condition x(t◦) ∈⋃

iOi
I and target vertex in the graph depends entirely on the

connectivity of G, which is known offline. The connectivity
requirement of G can be removed, and substituted with the
existence of a path in the graph G for the specific target, i.e.,
on the graph search in Section VII-B returning a feasible path.
However, in such case the success or failure of the algorithm
is only known after executing the graph search, and multiple
instance of search must be executed with different initial nodes,
specifically for all vσ(1) = vi, such that x(t◦) ∈ Oi

I .

VIII. VALIDATION IN SIMULATIONS

First, we validate the RISMP method in simulations, where
we can inject specific disturbances and uncertainty and run
Monte-Carlo analysis of the closed-loop behavior. We consider
a scenario where the space is cluttered by polyhedral obstacles
in the shape of buildings, see Fig. 8.b, which will be also
used for experiments. In the scenario, the RISMP receives the
current UAV location and a target grid point, computes the
trajectory from the current location to the target, and controls
the UAV to reach the ultimate set associated to the target.

A. Model Identification and Offline Processing

In order to relate the simulation results to the subsequent
experimental results, we identify the parameters in (3) from
quadrotor data obtained by flying a Crazyflie 2.1 UAV with
the controller in [30] to follow prescribed setpoints. By gray-
box identification [40] we find that the motion model is well
approximated by second-order system (3) with gains

K⋆
p = diag(7.78, 7.38, 11.30), (20a)

K⋆
v = diag(3.28, 3.27, 3.75). (20b)

The sequence of setpoints, real response, and simulated re-
sponse from (3) with the gains (20) are shown in Fig. 5. To
assess robustness with respect to imperfectly known gains, we
construct K by sampling N = 3 gains around the nominal one
found by identification (20)

(Ki
p,K

i
v) = (K⋆

p ,K
⋆
v )diag(η), η ∼ U([0.9, 1.1]6). (21)

For the subsequent simulation results the gains are

K1
p = diag(7.77, 7.38, 11.30), K1

v = diag(3.28, 3.27, 3.75),

K2
p = diag(7.66, 7.45, 10.79), K2

v = diag(3.14, 3.12, 3.71),

K3
p = diag(7.90, 7.16, 11.73), K3

v = diag(3.26, 3.31, 3.67).
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Fig. 5. Reference trajectory r(t) (blue), real system response p(t) (red), and
simulated system response with the identified gains p̂(t) (green).

From first principles, UAV specifications, and data we obtain
the parameters g = 9.81m/s2, m = 0.03kg, αmax = 0.1rad,
Tmax = 2mg = 0.2943N (see Sec. III), and Fmax = 0.02N.
The synthesis of a common Lyapunov function by (9) yields
ρU = 0.233 with

P =


6.052 0 0 0.956 0 0
0 5.798 0 0 0.935 0
0 0 9.798 0 0 1.343

0.956 0 0 1.202 0 0
0 0.935 0 0 1.182 0
0 0 1.343 0 0 1.301

, (22)

resulting in the worst-case position margins of 0.21m, 0.21m,
0.17m for x, y, z, respectively, when projecting OU on each
dimension. We compute OU by solving the LMIs (9) using
CVX with SDPT3 and default numerical tolerances [41], [42].
The graph is then constructed as in Sec. VII-A starting from an
initial set of 4000 vertices (20×20×10), equidistantly sampled
in a 3m×3m×1m rectangular region. The graph construction
takes approximately 24.38s in a Lenovo Carbon X1 laptop
with 2.8GHz Intel i7-1165G7 4-cores CPU and 32MB RAM
for a non-optimized Matlab implementation using quadprog
to solve the QPs in (12) for polyhedral obstacles. After pruning
infeasible, disconnected, and sink vertices, a total of 1939
vertices remain with an average of 52.72 directed edges each,
resulting in a memory occupancy on the order of 1MB. This
can be significantly reduced, as hinted in Remark 4.

B. Online Processing and Simulation Setup

In simulations, we consider two different scenarios, referred
to as Scenario A and B, respectively, that differ only in size
of the obstacles. In scenario A, the obstacles are 0.8m tall,
which allows for flights above them, whereas in Scenario B
the obstacles are 1.5m tall, that forces the quadrotor to navigate
between them due to the maximum altitude in the graph being
1m. When solving the graph-search problem, this results in
different paths as shown in Fig. 6.

We run a total of 100 simulations for each scenario, where
we vary: (i) the controller gains K ∼ U(K); (ii) the initial
conditions in the boundary of the initial inflated set, x(t◦) ∼
U(bnd(O1

I)); (iii) the input disturbance realization ∆(t),
which is constructed as follows. First, we randomly sample a
unitary vector ν ∈ R3 and apply the maximal rotation around

Scenario A Scenario B

Fig. 6. Sequence of setpoints {rk}Kk=1 and associated 1-hop neighborhood
of the vertices {vk}Kk=1 visualized for scenario A and B, respectively.

it, obtaining the rotation matrix R̃ = eS(αmaxν). Then, the
disturbance signal ∆(t) is applied in a direction such that
f is aligned with (I − R̃)e3, see (3), as a sinusoid with
the amplitude obtained from Fmax, and the frequency that
maximizes the H∞ gain from disturbance to position error for
the closed-loop UAV model, i.e., the worst case frequency. For
the parameters used in this paper, the worst case disturbance
is low frequency, so that it may be applied as a constant at
maximum amplitude.

In the simulations and subsequent experiments, the graph
is searched using the Boost Graph Library [43] with a
standard Dijkstra algorithm [39]. In this setting, it takes less
than 2ms to find an optimal solution in both scenarios, with
K = 18 in scenario A and K = 19 in scenario B. The resulting
state trajectories from 100 simulations are shown in Fig. 7.

C. Discussion

The quadrotor reaches the target invariant set Oσ(K)
U in

less than 10s in all the 200 simulations and remains there
afterwords, as expected by invariance. When changing the
obstacle height changes, we obtain very different paths. In
scenario A, the UAV navigates over the obstacles, while in
scenario B the UAV navigates between the obstacles. We
verified that x(t) ∈

⋃K
k=1O

σ(k)
I , in all simulations, and at all

times. This is shown for two of the 200 Monte-Carlo runs, one
for each scenario, in Fig 7.g–h, where for t ∈ [tk, tk+1], the
Lyapunov function V σ(k)(t) (blue) is bounded by the associated
ρ
σ(k)
I (red) demonstrating that the trajectory remains safe at

all times. Furthermore, V σ(k)(t) decays monotonically on each
such time interval, and enters the ultimate set at tK . The time
instant tK is different between scenario A and B, and also
differs in the different trajectory realizations for each scenario,
since it is affected by disturbances and model errors.

IX. EXPERIMENTS WITH A CRAZYFLIE 2.1

To further validate the approach, we implement a real-time
experiment using a Crazyflie 2.1 quadrotor UAV. For this
purpose, the RISMP was implemented in C++ and interfaced
with the CrazySwarm driver in ROS [44], for a scenario
similar to that in Sec. VIII. The physical obstacles are shown
in Fig. 8.b. A random selector determines randomly a target
vertex (black) in G, RISMP computes the motion plan, and
then control the UAV along the path using the on-board
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Scenario A Scenario Ba b

c d e f

g h

Fig. 7. Two scenarios where the RISMP computes a solution from a position close to the origin to a target position on the other end of the scene. (a)–(b) The
geometry of the world (red) with the 2D-projections of the invariant sets in the xy-plane and 100 realizations of the UAV state trajectory for different initial
conditions x(t◦) ∈ bnd(O1

I) at the time t◦ = 0 and different realizations of the disturbance (black, thin). (c)–(f) Side and top views of the same plots.
(g)–(h) Time-series of the Lyapunov function in scenarios A and B, respectively. The plots illustrate ρ

σ(k)
I (t) (red) and ρU (black dotted) and the exponential

decay of the Lyapunov function V σ(k)(t) (blue) associated with the vertex vσ(k) in the path computed by the RISMP. The sequence of setpoint update times
{tk}Kk=1 are shown in gray, and the final time tK when the UAV enters the target PI set is shown in green.

controller, which is of the form of [30], with the update
logic implemented in ROS, see Fig. 2 and executed at 50Hz.
The position of the UAV is obtained from an OptiTrack
motion capture system, while the remaining variables in (3)
are estimated by an extended Kalman filter (EKF) that uses the
position from the OptiTrack and inertial measurements. When
the UAV reaches the target ultimate set (see the green lines in
Fig. 8.j), a new random target is selected, which corresponds
to running several missions akin to those in Sec. VIII in series.
The computation of the optimal path never exceeds 2ms in a
desktop computer with a 3.4GHz AMD Ryzen 9 5950X 16-
cores CPU, and 128GB RAM.

The path in G (gray) and the UAV motion (blue) are
shown in Fig. 8.a. During the flight comprising 17 consec-
utive missions, the quadrotor remains airborne and avoids the
obstacles at all times. A video of the experiment is available
at https://youtu.be/ewIcOwDwZC8. As shown by the posi-
tional response, this entails significant variation in elevation

when avoiding the buildings (see Fig. 8.f). Throughout the
experiment, the tracking performance is consistent with the
performance in Fig. 5. The jumps in the position tracking error
in Fig. 8.g-h are induced by setpoint changes, and they indicate
that even in cluttered environments, the RISMP can modify
the setpoint by sizable amounts while ensuring safety. In this
environment, the geometric constraints are the main limitation
on how large the inflated sets can be. For the Crazyflie, the
thrust limit Tmax = 2mg is never violated, see Fig. 8.i.

Analyzing the Lyapunov function V σ(k)(t) in Fig. 8.g–h in
relation to the level sets Oσ(k)

I for t ∈ [tk−1, tk], we confirm
that the UAV remains safe since V σ(k)(t) ≤ ρ

σ(k)
I < Γ0 for

t ∈ [tk−1, tk], for all k ∈ Z[1,K]. Zooming in, we see that the
Lyapunov function is monotonically decreasing for constant
setpoint, but not quite exponentially, as the disturbances, pri-
marily imperfect model of the controller, thrust misalignment
due to non-ideal attitude tracking, and airflow in the room,
are time-varying. These signals estimated from EKF indicates

https://youtu.be/ewIcOwDwZC8
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a b

c

d e f

g h i

j

k l

Fig. 8. System response from an experiment with the Crazyflie 2.1 UAV using the RISMP. (a) The world consists of polyhedral obstacles (red) and
the Crazyflie UAV is navigating along a path between an initial vertex vσ(1) and a terminal vertex vσ(K) (both black) with each corresponding solution
{rσ(k)}Kk=1 highlighted in gray. (b) Picture of the experiment setup. (c) Picture of the Crazyflie 2.1 used in the experiments. (d) – (f) Positional setpoints
(red) and the system response (blue) in the three positional dimensions. (g) Positional setpoint tracking errors. (h) Zoom on the positional tracking errors at
the end of the last maneuver. (i) Thrust used by the UAV. (j) Lyapunov function V σ(k) (blue) and level sets ρ

σ(k)
I (red) on t ∈ [tk−1, tk] as a function of

time. Green lines indicate the times at which a new target vertex is selected when a path is computed in the RISMP, and gray lines indicate every time instant
where the constant setpoint is updated. (k) – (l) Zoom on the Lyapunov function, showing the transient behavior when the setpoint is updated and the decay
of the errors.

constraint satisfaction at all times.

Thus, the results demonstrate the validity of the modeling
assumptions A1–A3 and the effectiveness of RISMP. The

control system implemented as in Fig. 2 may improve further
by implementing the setpoint update logic on the quadrotor
embedded system, as this would avoid communication delays.
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However, since the control system is implemented on the
embedded system and RISMP uses positive invariant sets, the
only impact of such delays is to add unnecessary time to the
setpoint update, increasing the total time for completing a
mission, but it does not compromise the stability or safety
of the flight.

X. CONCLUSIONS

We developed an invariant set-based motion for quadrotors
that is robust to modeling errors, imperfect attitude tracking,
and polytopic uncertainty in the closed-loop gains, which
safe planning and control when the UAVs closed-loop control
system can only be modeled approximately.

The proposed robust invariant set-based motion planner
achieves finite time convergence from the initial position
to a neighborhood of the target while avoiding obstacles.
The existence of solutions is related to the properties of
a graph constructed from the possible target locations and
can be analyzed offline. We evaluated the method both in
Monte-Carlo simulations and in experiments for a real-time
implementation on a Crazyflie 2.1 in ROS.

The RISMP has been primarily developed for motion plan-
ning in static environments where both online safety and
offline certification of feasibility are important. However, it
can be extended to handle initially unknown map and time-
varying/initially unknown obstacles based on our previous
results, by sampling the grid points and modifying the graph
connectivity in real-time [14], [22]. Additionally, the edge
weights can be made to encode perception or control perfor-
mance objectives, which may be the subject of future work.
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APPENDIX

A. Proof of Lemma 1

Proof 1 As C is symmetric, it can be written as

C =

[
Φ
Ψ

]⊤ [
0 (I − R̃⊤)
⋆ 0

]
︸ ︷︷ ︸

≜D

[
Φ
Ψ

]
⪯ (Φ⊤Φ+Ψ⊤Ψ)λ̄(D).

To compute the spectrum of D, let E = 2I − R̃⊤ − R̃. Then

det(xI −D) = det(x2I − (I − R̃⊤)⊤(I − R̃⊤))

=
∏
i

(x2 − λi((I − R̃⊤)⊤(I − R̃⊤)))

=
∏
i

(x2 − λi(E))

=
∏
i

(x−
√

λi(E))(x+
√
λi(E)),

where the last equality holds if λi(E) ≥ 0 for all i (which we
can indeed show to be the case). For any unit vector w ⊥ ν,
we have that w⊤R̃w = w⊤R̃⊤w = cos(α), thus

w⊤(2I − R̃− R̃⊤)w =

{
(w⊤w)2(1− cos(α)) if w ⊥ ν

(w⊤w)0 if w ∥ ν

as illustrated in Fig. 9. The spectrum of 2I−R̃−R̃⊤ is char-
acterized by one eigenvalue 2(1−cos(α)) of multiplicity 2, and
one eigenvalue 0 of multiplicity 1. As a result, the spectrum
of D has eigenvalues of ±

√
2(1− cos(α)) of multiplicity 2,

and 0 with multiplicity 2. Thus, λ̄(D) =
√
2(1− cos(α)),

concluding the proof.

2(1− cos(α)) α

2w

(2I − R̃⊤ − R̃)w

R̃⊤wR̃w ν

e2e1

-e3

Fig. 9. Geometric intuition of the proof of Lemma 1.

B. Proof of Lemma 2

Proof 2 Under the assumptions
N∑

h=1

ζh

[
K̄ K⊤

h

Kh I

]
⪰ 0, ∀ζh : ζh ≥ 0,

N∑
h=1

ζh = 1,

and as a consequence,[
K̄ K⊤

K I

]
⪰ 0 ∀K ∈ K. (23a)

By taking the Schur complement, we obtain

K̄ ⪰K⊤K ∀K ∈ K

concluding the proof.

C. Proof of Proposition 1

Proof 3 For simplicity, we drop the sub-index of the reference
rk and let xe = (p− r;v). The error dynamics are

ẋe = Āxe +B∆, (24)

where

Ā =

[
0 I

−R̃⊤Kp −R̃⊤Kv

]
, K ∈ K. (25)

Let A = Ā when R̃ ≡ I , we can consider the effect of
the attitude tracking error as a perturbation of some nominal
dynamics,

PĀ = PA+N⊤(I − R̃⊤)K, (26)

where

N⊤ =

[
Ppv

Pvv

]
= P

[
0
I

]
= PB. (27)

Differentiating the Lyapunov function V = ∥xe∥2P along (3),

(d/dt)V ≤ G(xe,∆)︸ ︷︷ ︸
nominal

+x⊤
e Mxe︸ ︷︷ ︸
att.pert.

,

where the nominal part G(xe,∆) is similar to the expressions
with perfect attitude tracking, and the component that is due
to the bounded attitude tracking error is

M = (N⊤(I − R̃⊤)K)⊤ +N⊤(I − R̃⊤)K. (28)

We use Lemma 1 to bound M for all K ∈ K and α ≤ αmax,

M ⪯ [N⊤N +K⊤K]
√

2(1− cos(α))

⪯ β(P⊤BB⊤P +K⊤K),

where β =
√
2(1− cos(αmax)), which holds for any R̃ ∈

SO(3) with a rotation angle α ≤ αmax < π/2. The depen-
dence on α can be eliminated as

√
2(1− cos(α) increases

monotonically in α ∈ [0, π], attaining a maximum at α =
αmax. By Lemma 2, we obtain

M ⪯ β(P⊤BB⊤P + K̄), (29)

for any K̄ ∈ S6++ that satisfies[
K̄ K⊤

h

Kh I

]
⪰ 0 ∀h ∈ Z[1,N ]. (30)
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Using (30) and taking the Schur complement we obtainA⊤
hP + PAh + P + βK̄ PB

√
βPB

B⊤P −γI 0√
βB⊤P 0 −I

 ⪯ 0 ∀h,

⇒
[
A⊤

hP + PAh + P +M PB
B⊤P −γI

]
⪯ 0 ∀h

(31)

Assume that (P , γ) ∈ S6++ × R>0 solves (9). Given the
definition of K in Assumption A2, there exists a set {Ah}Nh=1

such that A =
∑

h ζhAh for some ζh > 0 such that
∑

h ζh =
1. Differentiating the Lyapunov function V = ∥xe∥2P along
the solutions of (3),

(d/dt)V (p,v, r) = x⊤
e P ẋe + ẋ⊤

e Pxe

= x⊤
e P (Āxe +B∆) + (Āxe +B∆)⊤Pxe

=

[
xe

∆

]⊤ [
Ā⊤P + PĀ PB

B⊤P 0

] [
xe

∆

]
=

[
xe

∆

]⊤ [
A⊤P + PA+M PB

B⊤P 0

] [
xe

∆

]
=

N∑
h=1

ζh

[
xe

∆

]⊤ [
A⊤

hP + PAh +M PB
B⊤P 0

] [
xe

∆

]

≤ −
N∑

h=1

ζh

[
xe

∆

]⊤ [
P 0
0 −γI

] [
xe

∆

]
= −x⊤

e Pxe + γ∆⊤∆

≤ −V (p,v, r) + γ∆2
max,

where the first inequality follows by (31). Thus, OU is an
ultimate set as per Definition 4 with ρU = γ∆2

max for all
constant r.
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