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Abstract
We present an optimization-based method for the fuel-optimal powered descent of a six-
degree-of-freedom (6-DoF) lander while ensuring passive safety for a specified duration with
respect to an avoid set near the landing site. In other words, the ballistic trajectory of
the vehicle, in the event of unplanned engine failure, does not enter an avoid set (e.g., con-
taining critical infrastructure) for a specified time horizon. The proposed solution method
leverages the recently introduced CT-SCVX framework, wherein the set-based passive-safety
constraint is subjected to an isoperimetric reformulation. The resulting free- final-time opti-
mal control problem is solved through: 1) time-dilation, 2) multiple-shooting discretization, 3)
l1-exact penalization of nonconvexities, and 4) the prox-linear method, which is a convergence-
guaranteed sequential convex programming (SCP) algorithm for convex-composite minimiza-
tion. The proposed approach eliminates the commonly encountered inter-sample constraint
violation without the need for computationally expensive mesh-refinement heuristics; i.e., we
can generate a high-fidelity feasible solution on coarse discretization grids. We provide a
numerical demonstration of the proposed approach on a realistic lunar-landing example.
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We present an optimization-based method for the fuel-optimal powered descent of a six-
degree-of-freedom (6-DoF) lander while ensuring passive safety for a specified duration
with respect to an avoid set near the landing site. In other words, the ballistic trajec-
tory of the vehicle, in the event of unplanned engine failure, does not enter an avoid set
(e.g., containing critical infrastructure) for a specified time horizon. The proposed solu-
tion method leverages the recently introduced CT-SCVX framework, wherein the set-based
passive-safety constraint is subjected to an isoperimetric reformulation. The resulting free-
final-time optimal control problem is solved through: 1) time-dilation, 2) multiple-shooting
discretization, 3) ℓ1-exact penalization of nonconvexities, and 4) the prox-linear method,
which is a convergence-guaranteed sequential convex programming (SCP) algorithm for
convex-composite minimization. The proposed approach eliminates the commonly encoun-
tered inter-sample constraint violation without the need for computationally expensive
mesh-refinement heuristics; i.e., we can generate a high-fidelity feasible solution on coarse
discretization grids. We provide a numerical demonstration of the proposed approach on a
realistic lunar-landing example.

Notation

Rn set of real n× 1 vectors
Rn×m set of real n×m matrices

0n vector of zeros in Rn

0n×m matrix of zeros in Rn×m

1n vector of ones in Rn

en
k unit-vector in Rn where the kth element is 1

(a, b) concatenation of vectors a ∈ Rn and b ∈ Rm to form a vector in Rn+m

[A B] concatenation of matrices A ∈ Rn×m1 and B ∈ Rn×m2 to form a matrix in Rn×(m1+m2)

a ≤ b ai ≤ bi for each 1 ≤ i ≤ m, where a = (a1, . . . , am) ∈ Rm and b = (b1, . . . , bm) ∈ Rm

sdistC(z) signed distance of vector z ∈ Rn to set C ⊂ Rn

∥z∥ Euclidean norm of vector z
|z|+ max{0, z} (applied elementwise if z is not a scalar)
∥z∥+ ∥(|z1|+, . . . , |zn|+)∥, where z = (z1, . . . , zn) ∈ Rn

∇jF(v1, . . . , vm) partial derivative of F with respect to its jth argument, evaluated at
v1, . . . , vm, where 1 ≤ j ≤ m

∇F(x) ∇1F(x)
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I. Introduction
The renewed interest in space exploration missions, with an emphasis on satisfying safety- and performance-
critical constraints, has recently brought attention to optimization-based methods for trajectory generation [1],
[2, Sec. 3.1]. In particular, much attention is focused on powered-descent guidance (PDG) [3–5] for enabling
precision soft-landing on planetary surfaces, which is a key component of many space missions, e.g., SLIM
lander [6] on Moon and Mars Science Laboratory’s Curiosity rover [7] on Mars.

The PDG problem poses many challenging demands on the vehicle in the form of safety, operational, and
performance constraints, which optimization-based methods are well suited to handle. An increasingly
important constraint for PDG is passive safety [8], i.e., in the event of abrupt loss of actuation, the ballistic
trajectory of the vehicle must not collide with critical infrastructure near the landing site, e.g., the tower that
catches the SpaceX Starship vehicle [9]. Furthermore, generating guidance trajectories with guaranteed passive
safety can also lower the chances of losing the vehicle [10]. Sudden loss of actuation during powered descent,
i.e., due to loss of engine thrust, is a realistic failure mode [11]. For instance, liquid rocket engines shut off if
the throttle level is too low, and more recently, the SLIM lander’s engine structurally failed moments before
touchdown [12].

In order to handle advanced constraints such as passive safety, trajectory optimization is necessary. Trajectory
optimization for PDG typically involves solving a constrained optimal control problem (OCP). Direct methods
are a popular choice for solving OCPs because they are less sensitive to initialization than indirect methods
and offer the flexibility to impose various path constraints on the state and input [13, Sec. 4.3]. However,
direct methods can only impose constraints at finitely-many discrete time nodes, leading to potential con-
straint violation between the time nodes (also referred to as inter-sample constraint violation [14]). Thus,
computationally expensive mesh-refinement heuristics are necessary to curtail these violations [13, Sec. 4.7].

Besides the potential inter-sample violations, imposing the passive-safety constraint in a direct method poses
an additional challenge. The ballistic trajectory corresponding to each time node on the vehicle’s nominal
trajectory needs to be parameterized on a grid spanning a safety duration. Thus, the number of constraints in
the optimization problem is a factor of the discretization grid size, making mesh-refinement more expensive
[15].

In this work, we solve the fuel-optimal passively-safe PDG problem for a six-degree-of-freedom (6-DoF) lander
via the recently-introduced direct method, CT-SCVX [16], which addresses the aforementioned shortcomings
of the existing direct methods. The proposed approach leverages an isoperimetric reformulation [17] of the
passive-safety constraint. Thus, the fidelity of satisfying the passive-safety constraint becomes independent of
the discretization grid size. We can ensure continuous-time constraint satisfaction on coarse discretization
grids without the need for mesh refinement. Moreover, our work represents a tractable continuous-time
generalization of the discrete-time framework for passively-safe guidance presented in [15]. It also adds to
recent advancements in 6-DoF PDG via sequential convex programming, particularly in the modeling of
advanced constraints (e.g., due to perception [18], logical specifications [5, 19, 20], multi-phase dynamics [21],
dual quaternion parametrization [22, 23], and abort safety [24]).

This paper is organized as follows. Section II describes the problem formulation and the optimal control
problem in continuous time. Section III describes the CT-SCVX-based solution approach. Section IV provides a
numerical demonstration of the proposed approach on a realistic lunar-landing case study. Finally, Section V
provides concluding remarks.

II. Problem Statement
We consider the problem of powered-descent of a 6-DoF lander on the Moon while minimizing fuel con-
sumption and satisfying passive-safety and path constraints. We adopt the vehicle model and the underlying
assumptions from [5, Sec. II]. We assume a planetary-surface-fixed up-east-north inertial frame where the
origin coincides with the landing site, and a vehicle-body-fixed frame (or simply body frame) where the origin
coincides with the center of mass, the first coordinate is along the vertical body-axis, the second coordinate is
along an axis that points laterally out of the vehicle, and the third coordinate is along an axis that completes
the right-handed system. Further, we assume that the gravitational acceleration is constant throughout the
powered-descent maneuver.
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vI (t)

∥vI (t)∥ ≤ vmax

mwet

mdry

Avoid set

Ballistic trajectory after
engine failure does not
enter the avoid set for
duration ts

θ(t) ≤ θmax

ωB(t)

∥ωB(t)∥ ≤ ωmax

δ(t) ≤ δmax

TB(t)

Tmin ≤ ∥TB(t)∥ ≤ Tmax

γ(t) ≤ γmax

m(t)

Glide-slope cone

Fig. 1 Powered descent of a 6-DoF lander with path constraints (mass lower bound, position in glide-
slope cone, speed upper bound, body-axis tilt-angle upper bound, angular speed upper bound, engine
gimbal-angle upper bound, thrust magnitude upper and lower bound) and a passive-safety constraint with
respect to the avoid set (shown in blue).

A. Dynamical Model

The dynamics the 6-DoF lander over a time interval [ti, tf], referred to as the planning horizon, is governed by
the following nonlinear ordinary differential equation:

.
x(t) = f (t, x(t), u(t)), t ∈ [ti, tf], (1)

where
.
□(t) ≜ ∇□(t), the state x(t) ≜ (m(t), rI(t), vI(t), qB←I(t), ωB(t)) ∈ Rnx consists of vehicle mass

m(t) ∈ R, inertial-frame position rI(t) ∈ R3, inertial-frame velocity vI(t) ∈ R3, unit quaternion qB←I(t) ∈ R4

for parametrizing the transformation from the inertial to body frame, and the body-frame angular velocity
ωB(t) ∈ R3. The control input u(t) ∈ Rnu is the body-frame thrust TB(t) ∈ R3 resulting from a gimbaled
rocket engine.

The right-hand-side of (1) is given by:

f (t, x(t), u(t)) ≜



−α̌∥TB(t)∥
vI(t)

1
m(t)

CI←B(t)TB(t) + gI

1
2

Ω(ωB(t))qB←I(t)

J−1
B

(
rTB × TB(t)−ωB(t)× JBωB(t)

)


, (2)

where α̌ is the mass-depletion rate determined by the specific impulse of the rocket engine, CI←B(t) is the
direction cosine matrix corresponding to qB←I(t), gI is the constant inertial-frame gravitational acceleration,
Ω(ωB(t)) is a skew-symmetric matrix [25, Eq. 5.42], JB is the constant body-fixed inertia matrix of the vehicle
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about its center of mass, and rTB is the body-frame moment arm formed by the engine gimbal pivot point
with respect to the vehicle center of mass. Function f is continuously-differentiable except at points where the
thrust magnitude is zero. However, such points will not be encountered in the proposed optimization-based
method due to the thrust lower-bound constraint introduced subsequently.

While the vehicle model considered in the right-hand-side of (2) does not have an explicit time dependence,
the proposed framework can handle general time-varying nonlinear systems, as shown in (1). As a result, the
proposed framework allows higher fidelity vehicle models (e.g., with higher-order gravitational effects and
time variation in center of mass position and inertia matrix [26, Sec. II]).

B. Path Constraints

The vehicle state and control input are subject to the following path constraints: 1) lower-bound mdry on
vehicle mass, 2) conic glide-slope constraint on inertial-frame position, 3) upper-bound vmax on vehicle speed,
4) upper-bound θmax on body-axis tilt angle, 5) upper-bound ωmax on angular speed, 6) upper-bound δmax on
engine gimbal angle, 7) upper-bound Tmax on thrust magnitude, and 8) lower-bound Tmin on thrust magnitude.
Then the path constraints can be represented as:

g(t, x(t), u(t)) ≜



mdry −m(t)
∥ cot γmaxHγrI(t)∥2

2 − (rI(t)⊤e3
1)

2

−rI(t)⊤e3
1

∥vI(t)∥2 − v2
max

∥2HθqB←I(t)∥2 − (cos θmax − 1)2

∥ωB(t)∥2 −ω2
max

∥ cos δmaxTB(t)∥2 − (TB(t)⊤e3
1)

−TB(t)⊤e3
1

∥TB(t)∥2 − T2
max

T2
min − ∥TB(t)∥2



≤ 0ng , (3)

where ng = 10, Hγ =
[
e3

2 e3
3
]⊤, and Hθ =

[
e4

2 e4
3
]⊤ (if scalar-last convention is used for quaternions).

The body-axis tilt angle is θ(t) ≜ arccos (1− 2∥HθqB←I(t)∥), the angle between the inertial-frame position
vector and the axis of the glide-slope cone is γ(t) ≜ arctan

(
∥HγrI(t)∥/rI(t)⊤e3

1
)
, and the angle between

the body-frame thrust vector and the body-axis is δ(t) ≜ arccos
(
TB(t)⊤e3

1/∥TB(t)∥
)
. Figure 1 illustrates the

path constraints in (3). Despite the absence of time-variation in the right-hand-side of (3), we include a time
argument for g to ensure generality of the proposed framework.

We require g to be a continuously-differentiable function. To that end, the glide-slope and gimbal-angle
constraints, which are originally second-order-cone constraints, are equivalently represented as a combination
of quadratic and linear inequalities [27, Sec. 3.2.4] as follows:

∥ cot γmaxHγrI(t)∥ ≤ rI(t)⊤e3
1 ⇐⇒ ∥ cot γmaxHγrI(t)∥2 ≤ (rI(t)⊤e3

1)
2, rI(t)⊤e3

1 ≥ 0, (4a)
∥ cos δmaxTB(t)∥ ≤ TB(t)⊤e3

1 ⇐⇒ ∥ cos δmaxTB(t)∥2 ≤ (TB(t)⊤e3
1)

2, TB(t)⊤e3
1 ≥ 0. (4b)

C. Passive-Safety Constraint

We require the vehicle’s trajectory to be passively safe with respect to an avoid set A ≜ {z ∈ Rnx | Az < b}
for duration ts, where A = [a1 . . . am]⊤ and b = (b1, . . . , bm), with ai ∈ Rnx and bi ∈ R for i = 1, . . . , m.
Passive-safety is determined by the ballistic trajectory of the vehicle (i.e., without control inputs). Given γ > 0
and t ∈ [ti, tf], the ballistic trajectory over [t, t + γ] starting from x(t) is defined as:

Ffd(t, x(t), γ) ≜ x(t) +
∫ γ

0
f (θ + t, ξ(θ), 0nu)dθ, (5)
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where ξ(θ) satisfies the initial value problem (IVP):

∇ξ(θ) = f (θ + t, ξ(θ), 0nu), θ ∈ [0, γ], (6a)
ξ(0) = x(t). (6b)

Then the passive-safety constraint is:

Ffd(t, x(t), γ) /∈ A, ∀ γ ∈ [0, ts], ∀ t ∈ [ti, tf]. (7)

We refer to the time interval [0, ts] as the safety horizon.

D. Optimal Control Problem

The free-final-time optimal control problem for passively-safe fuel-optimal powered descent of the 6-DoF
lander can be stated in continuous-time as:

minimize
tf, x(t), u(t)

− x(tf)
⊤enx

1 , (8a)

subject to
.
x(t) = f (t, x(t), u(t)), t ∈ [ti, tf], (8b)
g(t, x(t), u(t)) ≤ 0, t ∈ [ti, tf], (8c)
Ffd(t, x(t), γ) /∈ A, γ ∈ [0, ts], t ∈ [ti, tf], (8d)
P(ti, x(ti), tf, x(tf)) = 0. (8e)

The boundary conditions at the initial and final times are encoded as a (potentially nonlinear) equality
constraint (8e), where tf is a decision variable and ti is a constant.

III. CT-SCVX Solution Approach
This section describes a solution approach for (8) based on the recently-introduced CT-SCVX framework [16]
which combines several key methods: 1) isoperimetric reformulation of path and passive-safety constraints, 2)
time-dilation for handling free-final-time problems, 3) multiple-shooting discretization, 4) ℓ1-exact penalization
or nonconvex constraints, and 5) the prox-linear method [28], which is a convergence-guaranteed sequential
convex programming (SCP) algorithm for convex-composite minimization.

A. Isoperimetric Constraint Reformulation & Time-Dilation

Imposing path and passive-safety constraints at discrete time instants, as is common in most direct methods
[29, Fig. 34], inevitably leads to inter-sample constraint violations. Alternatively, we can relate the pointwise
satisfaction of these constraints to their cumulative violation over the planning horizon, measured with
a continuously-differentiable exterior penalty function. Constraining the cumulative violation to zero is
equivalent to imposing the constraints pointwise within the planning horizon.

More precisely, the pointwise satisfaction of the path constraint can be equated to the cumulative violation of
the path constraint over the planning horizon as follows:∫ tf

0
∥g(t, x(t), u(t))∥2

+dt = 0 ⇐⇒ g(t, x(t), u(t)) ≤ 0ng , ∀ t ∈ [ti, tf], (9)

where the integral equation on the left is called the isoperimetric form of the path constraint [17, Eq. 6]. Note
that the exterior penalty function, □ 7→ |□|2+, is continuously differentiable.

The passive-safety constraint can be subjected to a similar transformation. First, constraint (7) is equivalently
stated in terms of signed distance to A as follows:

sdistA(Ffd(t, x(t), γ)) ≥ 0 ⇐⇒ Ffd(t, x(t), γ) /∈ A. (10)

Since numerical optimization methods cannot directly handle strict inequalities, we chose A to be an open set
in Section II.C. As a result, the left-hand-side of (10) is a non-strict inequality. Next, we define the cumulative
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violation of the passive-safety constraint at time t as:

Γ(t, x(t)) ≜
∫ ts

0
| − sdistA(Ffd(t, x(t), γ))|2+dγ. (11)

Then we obtain:

Γ(t, x(t)) = 0, ∀t ∈ [ti, tf] ⇐⇒ Ffd(t, x(t), γ) /∈ A, ∀ γ ∈ [0, ts], ∀ t ∈ [ti, tf]. (12)

We can solve the IVP:

∇ξ(γ) = f (γ + t, ξ(γ), 0nu), γ ∈ [0, ts], (13a)
∇ζ(γ) = | − sdistA(ξ(γ))|2+, γ ∈ [0, ts], (13b)

ξ(0) = x(t), (13c)
ζ(0) = 0, (13d)

to obtain Γ(t, x(t)) = ζ(ts).

Finally, we augment the chaser’s dynamical system with a new state to measure the cumulative violations of
the path and passive-safety constraints across the planning horizon.

.
x(t) = f (t, x(t), u(t)), t ∈ [ti, tf], (14a)
.
y(t) =

[
∥g(t, x(t), u(t))∥2

+
Γ(t, x(t))

]
, t ∈ [ti, tf]. (14b)

Observe that imposing the periodic boundary condition, y(0) = y(tf), ensures that g(t, x(t), u(t)) ≤ 0ng and
Γ(t, x(t)) = 0 hold for all t ∈ [ti, tf].

We adopt the time-dilation approach [30, Eq. 4.5], [16, Sec. 2.4] to transform (8) into a fixed-final-time optimal
control problem. Let the actual time t (within the planning horizon) be a strictly increasing, smooth function
of τ ∈ [0, 1], such that t(0) = ti and t(1) = tf. Let the derivative of this function (called the dilation factor) be
denoted by s(τ) for τ ∈ [0, 1]. Then we have:

◦
x(τ) = s(τ) f (t(τ), x(τ), u(τ)), τ ∈ [0, 1], (15a)
◦
y(τ) = s(τ)

[
∥g(t(τ), x(τ), u(τ))∥2

+
Γ(t(τ), x(τ))

]
, τ ∈ [0, 1], (15b)

◦
t(τ) = s(τ), τ ∈ [0, 1], (15c)

where
◦
□(τ) ≜ ∇□(τ). Due to the strict monotonicity of t(τ), we treat τ as the new independent variable

(i.e., we have replaced □(t(τ)) with □(τ), where □ ∈ {x, y, u}). We define an augmented state: x̃(τ) ≜
(x(τ), y(τ), t(τ)), and an augmented control input: ũ(τ) ≜ (u(τ), s(τ)). Then the augmented dynamical
system can be compactly represented as:

◦
x̃(τ) = f̃ (x̃(τ), ũ(τ)) ≜ s(τ)


f (t(τ), x(τ), u(τ))
∥g(t(τ), x(τ), u(τ))∥2

+
Γ(t(τ), x(τ))

1

, τ ∈ [0, 1]. (16)

Note that f̃ is almost-everywhere continuously differentiable. We define nx̃ ≜ nx + 3 after augmenting x
with y and t, nũ ≜ nu + 1 after augmenting u with s, and a selector matrix □E to select □ from x̃: □ = □Ex̃ for
□ ∈ {x, y, t}. Similarly, □ = □Eũ for □ ∈ {u, s}.

B. Discretized Nonconvex Problem

We use a zero-order-hold parametrization* for the augmented control input to discretize (16) over a grid of
size N within [0, 1], denoted by 0 = τ1 < . . . < τN = 1. For each k = 1, . . . , N − 1, we define:

F̃k(x̃k, ũk) ≜ x̃k +
∫ τk+1

τk

f̃ (ξ̃(τ), ũk)dτ, (17)

*Other parametrizations such as first-order-hold (FOH) and pseudospectral polynomials can be readily-handled without any
modifications.
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where ξ̃(τ) solves the IVP:

∇ξ̃(τ) = f̃ (ξ̃(τ), ũk), τ ∈ [τk, τk+1], (18a)
ξ̃(τk) = x̃k. (18b)

The representation in (17) is commonly referred to as multiple-shooting discretization [31] and is equivalent to
the differential form in (16). Then the discretized augmented dynamics constraint is:

x̃k+1 = F̃k(x̃k, ũk), k = 1, . . . , N − 1. (19)

After applying the isoperimetric reformulation, the time-dilation, and the multiple-shooting discretization
with zero-order-hold parametrization, the optimal control problem in (8) transforms into the finite-dimensional
nonconvex optimization problem:

minimize
x̃k , ũk

− x̃⊤Nenx̃
1 , (20a)

subject to x̃k+1 = F̃k(x̃k, ũk), k = 1, . . . , N − 1, (20b)
yEx̃k+1 = yEx̃k, (20c)
tEx̃1 = ti, (20d)
P(tEx̃1, xEx̃1, tEx̃N , xEx̃N) = 0. (20e)

The satisfaction of constraints (20b) and (20c) ensure dynamic feasibility, i.e., the satisfaction of (1), and
continuous-time feasibility of path constraints (3) and passive-safety constraint (7). In practice, we relax (20c)
into:

yE(x̃k+1 − x̃k) ≤ ϵ12, k = 1, . . . , N − 1, (21)

where ϵ is a small positive constant, to ensure that constraint qualification holds for (20) and to enable exact
penalization, see [16, Sec. 3.1] for a detailed discussion. Furthermore, for a given ϵ, we can estimate the
maximum pointwise violation of the path and passive-safety constraints, see [16, Sec. 3.3]. In practice, we
observe that even numerically significant values for ϵ, e.g., ϵ = 10−4, can yield physically insignificant
pointwise violation of the constraints.

Next we subject (20b) (and (20e) if P is nonlinear) to ℓ1 penalization, along with the relaxation of (20c), to obtain
a penalized problem with a closed, convex feasible set. We use the prox-linear method, an SCP algorithm
which is guaranteed to find a stationary point for the penalized problem. If such a stationary point is feasible,
then it is guaranteed to be a Karush-Kuhn-Tucker (KKT) point of (20) (with the relaxation for (20c)). We refer
the reader to [16, Sec. 4] for further discussion about the convergence guarantees. Appendix A describes the
linearization of (20b), which is a key step within CT-SCVX.

In a practical implementation, scaling of the decision variables and constraints, and tuning of the ℓ1 penalty
parameter play a key role in ensuring reliable numerical performance of the solution method, see the discussion
in [29, p. 78]. Furthermore, the consolidation of the state and control input constraints into a dynamical system,
i.e., the augmented system, simplifies the implementation of a customized CT-SCVX-based solver for (20), as
demonstrated in [32].

IV. Numerical Results
We demonstrate the proposed CT-SCVX-based framework for passively-safe fuel-optimal powered descent
on a lunar-landing case study. Table 1 shows the parameter values chosen for the problem. The boundary
conditions constraint function P is chosen to impose: 1) initial condition: mass (mwet), position (ri), velocity
(vi), angular velocity (03), 2) final condition: position (rf), velocity (vf), quaternion (qid), angular velocity (03),
and 3) upper-bound on final time (tf, max).

Figure 2 compares the position trajectories of safe powered-descent maneuver from the proposed approach
and the baseline maneuver without the passive-safety constraint. The continuous-time profiles of speed,
angular speed, and thrust magnitude for the safe maneuver shown in Figure 3 satisfy the constraints (dashed
red lines) at all times. The body-axis orientation (red line) and the thrust vector (green line) shown in Figure
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(a) Safe trajectory

!300!200!1000100200300400
Downrange [m]

0

100

200

300

400

500

A
lt
it
u
d
e

[m
]

!40!200204060
Downrange [m]

0

10

20

30

40

50

A
lt
it
u
d
e

[m
]

(b) Unsafe trajectory

Fig. 2 The powered-descent maneuver shown in (a) is passively-safe with respect to the avoid set (blue-
box) for ts = 20 s, while the baseline maneuver in (b) is unsafe since it is generated without the passive-
safety constraint. Altitude is along the third coordinate and downrange is along the second coordinate of
the inertial-frame coordinate axes. The light red curves denote the ballistic trajectories after engine failure
(shutdown), the red lines indicate the body-axis orientation, and the green lines indicate the thrust vector.

2, and the black dots shown in Figure 3, correspond to the discretization nodes of CT-SCVX. The black curves
correspond to the continuous-time evolution of (1) over the planning horizon using the computed control
input solution.

Observe that the ballistic trajectories (light red curves) corresponding to the safe maneuver in Figure 2a are
concentrated just outside the avoid-set (to the right side). Such a maneuver ensures safety without sacrificing
on fuel efficiency: the safe maneuver only consumes 12 kg more fuel than the (unsafe) baseline maneuver,
which is less than 0.5% of mwet.

The evaluation of the partial derivatives of f̃ , shown in Appendix A, involves solving a 240-dimensional
IVP (29). Therefore, the computation of the second derivatives of f̃ (if they exist) would involve an IVP with
dimensions more than 38000, which would dramatically increase the computation cost. Thus, it would be
prohibitively expensive to solve (20) using an IPM- or SQP-based solver that requires Hessian information,
compared to the proposed CT-SCVX-based approach that only requires gradient information.
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Fig. 3 The continuous-time profiles of speed, tilt angle, angular speed, and thrust magnitude for the
passively-safe powered-descent maneuver. Constraint bounds are shown as red dashed lines.

Table 1 Parameter values for problem (20)

Parameter Value
α̌ 4.53× 10−4 s m−1

gI (−1.61, 0, 0) m s−2

rTB (−0.25, 0, 0) m
JB diag(19150, 13600, 13600) kg m2

ti, tf, max 0, 90 s
mdry, mwet 2100, 3250 kg
ri, rf (433, 0, 250), (30, 0,−5) m
vi, vf (10, 0,−30), (−1, 0, 0) m s−1

qid unit quaternion
γmax 85◦

vmax 50 m s−1

θmax 60◦

ωmax 10◦ s−1

δmax 45◦

Tmin, Tmax 5000, 22000 N

A {z ∈ Rnx | Az < b}, A =

[
06

[
I3
−I3

]
06×10

]
, b = (30, 30, 60, 0, 30, 1)

ϵ 10−4

N 8
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V. Conclusion
We developed an optimization-based solution method for the fuel-optimal powered descent of a six-degree-
of-freedom (6-DoF) lander, which ensures passive safety with respect to an avoid-set near the landing site
for a specified time horizon. This method guarantees that the vehicle’s ballistic trajectory, in the event of
unplanned engine shutdown, does not enter an avoid set containing critical infrastructure within the specified
duration. These safety constraints must be satisfied in continuous time. Imposing them at finitely-many
time nodes, as is common in most direct methods, can cause inter-sample constraint violations. To address
this, the proposed approach leveraged the recently introduced CT-SCVX framework, wherein the set-based
passive-safety constraint was subjected to an isoperimetric reformulation to ensure continuous-time constraint
satisfaction. We provided a numerical demonstration of the proposed approach using a realistic lunar-landing
case study.

A. Linearization of Discretized Augmented System
Computing linearizations of (19) is a key step within CT-SCVX, see [16, Sec. 3.2] for further details. Given
reference augmented states and control inputs: ¯̃x1, . . . , ¯̃xN , ¯̃u1, . . . , ¯̃uN−1, a linear approximation for constraint
(19) is given by the first-order Taylor expansion of F̃k:

x̃k+1 = F̃k( ¯̃xk, ¯̃uk) +∇1 F̃k( ¯̃xk, ¯̃uk)(x̃k − ¯̃xk) +∇2 F̃k( ¯̃xk, ¯̃uk)(ũk − ¯̃uk), (22)
= Ãk x̃k + B̃kũk + c̃k, (23)

where:

Ãk ≜ ∇1 F̃k( ¯̃xk, ¯̃uk), (24a)
B̃k ≜ ∇2 F̃k( ¯̃xk, ¯̃uk), (24b)
c̃k ≜ F̃( ¯̃xk, ¯̃uk)− Ãk ¯̃xk − B̃k ¯̃uk. (24c)

Next we evaluate the partial derivatives of F̃k at ¯̃xk, ¯̃uk:

Ãk = Inx̃ +
∫ τk+1

τk

∇1 f̃ (ξ̃(τ), ¯̃uk)Φ̃(τ)dτ, (25a)

B̃k =
∫ τk+1

τk

∇1 f̃ (ξ̃(τ), ¯̃uk)Ψ̃(τ) +∇2 f̃ (ξ̃(τ), ¯̃uk)dτ. (25b)

Equivalently, the solution to the IVP:

∇ξ̃(τ) = f̃ (ξ̃(τ), ũk), τ ∈ [τk, τk+1], (26a)
∇Φ̃(τ) = ∇1 f̃ (ξ̃(τ), ¯̃uk)Φ̃(τ), τ ∈ [τk, τk+1], (26b)
∇Ψ̃(τ) = ∇1 f̃ (ξ̃(τ), ¯̃uk)Ψ̃(τ) +∇2 f̃ (ξ̃(τ), ¯̃uk), τ ∈ [τk, τk+1], (26c)

ξ̃(τk) = ¯̃xk, (26d)
Φ̃(τk) = Inx̃ , (26e)
Ψ̃(τk) = 0nx̃×nũ , (26f)

provides Ãk = Φ̃(τk+1) and B̃k = Ψ̃(τk+1).

A key step in solving (26) is the computation of the partial derivatives of f̃ . Given x̃ = (x, y, t) and ũ = (u, s),
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the partial derivatives of f̃ are:

∇1 f̃ (x̃, ũ) = s


∇2 f (t, x, u) 0nx×2 ∇1 f (t, x, u)

2|g(t, x, u)|⊤+∇2g(t, x, u) 0⊤2 2|g(t, x, u)|⊤+∇1g(t, x, u)

∇2Γ(t, x) 0⊤2 ∇1Γ(t, x)

0⊤nx 0⊤2 0

 , (27a)

∇2 f̃ (x̃, ũ) =


s∇3 f (t, x, u) f (t, x, u)

2s|g(t, x, u)|⊤+∇3g(t, x, u) ∥g(t, x, u)∥2
+

0⊤nu Γ(t, x)

0⊤nu 1

 , (27b)

=

s


∇3 f (t, x, u)

2|g(t, x, u)|⊤+∇3g(t, x, u)

0⊤nu

0⊤nu

 1
s

f̃ (x̃, ũ)

 , (27c)

where the partial derivatives of Γ and Ffd are given by:

∇iΓ(t, x) = − 2
∫ ts

0
| − sdistA(Ffd(t, x, γ))|+∇sdistA(Ffd(t, x, γ))∇iFfd(t, x, γ)dγ, i = 1, 2, (28a)

∇1Ffd(t, x, γ) =
∫ γ

0
∇1 f (θ + t, ξ(θ), 0nu) +∇2 f (θ + t, ξ(θ), 0nu)

∂ξ(θ)

∂t
dθ, (28b)

∇2Ffd(t, x, γ) = Inx +
∫ γ

0
∇2 f (θ + t, ξ(θ), 0nu)

∂ξ(θ)

∂x
dθ. (28c)

For notational convenience, we denote Φ(θ) =
∂ξ(θ)

∂x
and ψ(θ) =

∂ξ(θ)

∂t
. Then we solve the following initial

value problem:

∇ξ(θ) = f (θ + t, ξ(θ), 0nu), θ ∈ [0, ts], (29a)
∇ζ(θ) = | − sdistA(ξ(θ))|2+, θ ∈ [0, ts], (29b)
∇Φ(θ) = ∇2 f (θ + t, ξ(θ), 0nu)Φ(θ), θ ∈ [0, ts], (29c)
∇ψ(θ) = ∇2 f (θ + t, ξ(θ), 0nu)ψ(θ) +∇1 f (θ + t, ξ(θ), 0nu), θ ∈ [0, ts], (29d)
∇ω(θ) = − 2| − sdistA(ξ(θ))|+Φ(θ)⊤∇sdistA(ξ(θ))⊤, θ ∈ [0, ts], (29e)
∇λ(θ) = − 2| − sdistA(ξ(θ))|+∇sdistA(ξ(θ))ψ(θ), θ ∈ [0, ts], (29f)

ξ(0) = x, (29g)
ζ(0) = 0, (29h)

Φ(0) = Inx , (29i)
ψ(0) = 0nx , (29j)
ω(0) = 0nx , (29k)
λ(0) = 0. (29l)

to obtain:

Γ(t, x) = ζ(ts), (30a)
∇1Γ(t, x) = λ(ts), (30b)
∇2Γ(t, x) = ω(ts)

⊤. (30c)
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