
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Chance-Constrained Information-Theoretic Stochastic Model
Predictive Control with Safety Shielding

Yin, Ji; Tsiotras, Panagiotis; Berntorp, Karl

TR2024-179 December 18, 2024

Abstract
We introduce a nonlinear stochastic model pre- dictive control path integral (MPPI) method
that considers chance constraints on system states. The proposed belief-space stochastic
MPPI (BSS-MPPI) applies Monte-Carlo sampling to evaluate state distributions resulting
from underlying systematic disturbances, and utilizes a Control Barrier Function (CBF) in-
spired heuristic in belief space to fulfill the specified chance constraints. Compared to several
previous stochastic predictive control methods, our approach applies to general nonlinear dy-
namics without requiring the computationally expensive system linearization step. Moreover,
the BSS-MPPI controller can solve optimization problems without limiting the form of the
objective function and chance constraints and is parallelizable. Results on a realistic race-car
simulation study show significant reductions in constraint violation compared to some of the
prior MPPI approaches, while being comparable in computation times.

IEEE Conference on Decision and Control (CDC) 2024

c© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Chance-Constrained Information-Theoretic Stochastic Model Predictive
Control with Safety Shielding

Ji Yin1, Panagiotis Tsiotras1, Karl Berntorp⋆

Abstract— We introduce a nonlinear stochastic model pre-
dictive control path integral (MPPI) method that considers
chance constraints on system states. The proposed belief-space
stochastic MPPI (BSS-MPPI) applies Monte-Carlo sampling to
evaluate state distributions resulting from underlying systematic
disturbances, and utilizes a Control Barrier Function (CBF)
inspired heuristic in belief space to fulfill the specified chance
constraints. Compared to several previous stochastic predictive
control methods, our approach applies to general nonlinear dy-
namics without requiring the computationally expensive system
linearization step. Moreover, the BSS-MPPI controller can solve
optimization problems without limiting the form of the objective
function and chance constraints and is parallelizable. Results on
a realistic race-car simulation study show significant reductions
in constraint violation compared to some of the prior MPPI
approaches, while being comparable in computation times.

I. INTRODUCTION

Over a span of 30 years, 37 robot-related accidents were
reported, with 27 incidents resulting in a worker’s death
between 1984 and 2013. This data underscore the necessity
of safety protocols to prevent workplace fatalities [1]. The
evolution of robotic systems from performing static manip-
ulation tasks into more collaborative and dynamic, further
emphasizes the need for robust safety processes [2]. To
address safety and increase robot reliability, it is crucial
to consider uncertainties in robot planning and control.
Uncertainties, such as dynamical disturbances, can lead to
unpredictable robot behavior, which, in turn, might pose
risks to human operators or other robots in the proximity.
For instance, an autonomous vehicle might fail to respond
adequately to unexpected road conditions, endangering the
safety of its occupants and other road users.

We propose a novel control approach that considers chance
constraints in belief space, using path integral and control
barrier functions (CBFs) theories. Specifically, we design
a heuristic in belief space inspired by discrete-time CBFs
(DCBFs) to push the probability of collision lower than
a user-specified threshold and integrate it with the Shield
Model Predictive Path Integral (S-MPPI) [3] to achieve real-
time planning. We call the resulting control method the
belief-space stochastic MPPI (BSS-MPPI). We use Monte-
Carlo sampling to estimate the state distributions and extract
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the first two moments into the state-dependent part of the
objective function of the optimization problem. Then, we
solve for a solution fulfilling chance constraints for safety.
However, BSS-MPPI can also integrate with other, non-
sampling based uncertainty-propagation schemes, such as
nonlinear Kalman filters. Our approach

a) solves a nonlinear stochastic optimal control prob-
lem by forward simulation, hence avoiding the
computationally-expensive explicit optimization and
linearization steps, and can be parallelized on multi-
threaded CPUs or GPUs;

b) can be applied to more general nonlinear stochastic
systems. Previous works that consider chance con-
straints mostly assume linear/linearized dynamics, lin-
ear constraints, and some specific form of disturbances
(e.g., Gaussian), which limit the range of applicability
in robotic systems;

c) designs CBF-inspired heuristics that provide improved
scalability at the cost of less formal guarantees and
apply them to high-dimensional belief space.

Related Work: The papers [4], [5] formulate covariance
steering as a convex optimization problem and plan trajec-
tories for linearized vehicle models with additive Gaussian
noise. The work [6] reformulates obstacle-avoidance chance
constraints using the signed distance function and applies
the sequential convex programming (SCP) algorithm, and
[7] considers the chance-constrained trajectory optimization
problem by integrating the constraints into the cost functions
and uses dynamic programming to obtain a solution. The
papers [8] and [9] propose stochastic CBFs (SCBF) with
safety guarantees, but with an implicit assumption that the
control inputs and the dynamical system must be unbounded.

Compared to many other nonlinear controllers, such as
SCP, iLQR, and iLQG, MPPI implements the optimal control
problem by forward simulation using the original nonlinear
dynamics and hence avoids the linearizations involved in the
explicit optimal control solvers. MPPI does not restrict the
form of the objective function, which can be nonconvex and
discrete. However, the base MPPI uses only deterministic
dynamics. To improve the robustness of MPPI, several vari-
ants of the algorithm have been developed [10], [11]. In
particular, [12], [13] introduce penalty costs for constraint
violations due to dynamical and environmental uncertainties
to the MPPI objective function, but they do not provide
theoretical guarantee for probablistic constraint satisfaction.
The work [14] also uses chance constraints, but it assumes
linear systems and Gaussian disturbances.



II. SHIELD-MPPI REVIEW

Consider a general nonlinear dynamical system,
xk+1 = f(xk, uk), (1)

where xk ∈ D ⊆ Rnx is the state, uk ∈ Rnu ∼ N (vk,Σϵ)
is the control input with the mean control vk at time step
k = 0, . . . ,K − 1 and constant covariance Σϵ. Let ϕ(x)
denote the terminal state cost, q(x) the step state cost, and
λ the weight for control cost. Then, S-MPPI solves

min
v
J(v) =E

[
ϕ(xK) +

K−1∑
k=0

(
q(xk) +

λ

2
v⊺kΣ

−1
ϵ vk

)]
, (2)

subject to (1) with initial condition x0 = x(0), and the first-
order DCBF safety condition,

sup
v∈U

h(f(xk, vk))− h(xk) ≥ −p(h(xk)), (3)

for k = 0, . . . ,K − 1, where the continuous DCBF h(·) :
Rn → R defines a safe set in the state space,

S := {x ∈ D|h(x) ≥ 0}. (4)

The class-κ function p(·) is strictly increasing and p(0) = 0.
Fulfilling (3) ensures that the system stays within S, and S-
MPPI achieves this by minimizing the violation of (3) using
path integral and gradient-based optimizations [3].

Compared to MPPI [15], S-MPPI typically requires an
order of magnitude less trajectories to achieve equivalently
satisfactory performance. Despite its attractive properties, S-
MPPI uses only deterministic dynamics. To remedy this, we
introduce a CBF-inspired heuristic to S-MPPI, such that the
resulting BSS-MPPI plans with model uncertainties.

III. PROBLEM FORMULATION

In this paper, the objective is to solve

min
v
J(v), subject to, (5a)

xk+1 = f(xk, uk, wk), uk ∼ N (vt,Σϵ), (5b)
Pr(xk ∈ F) > 1− Pfail, for k = 0, . . . ,K − 1, (5c)
x0 = x(0), (5d)

where the noise wk in (5b) can take arbitrary forms, F in
(5c) is the feasible region, and (5c) denotes the set of chance
constraints where the probability of violating the constraint
is below a specified threshold value Pfail.

IV. BELIEF-SPACE MPPI

We review the MPPI control update law and develop the
BSS-MPPI algorithm by integrating the chance constraint
(5c) using a proposed belief-space heuristic in discrete time.

A. MPPI Control

The novel BSS-MPPI controller has an objective function
in the same form as the original MPPI. Hence, we can use
the MPPI control update law. The MPPI algorithm solves an
optimization problem by sampling control inputs and forward
simulating a large number of trajectories. Assuming that the
algorithm has M trajectory samples with prediction horizon

K, for the problem (2) subject to (1), the MPPI algorithm
has the following control update law,

v+ =

M∑
m=1

ωmum/

M∑
m=1

ωm, (6)

where the mth sample control sequence um =
{um0 , . . . , umK−1}, umt ∼ N (vk,Σϵ), and where

ωm = exp
(
− 1

λ
(Sm − β)

)
. (7)

Note that β = minm=1,...,M Sm in (7) is introduced to
prevent numerical overflow, and Sm is the cost of the mth

sample trajectory, given by,

Sm = ϕ(xmK) +

K−1∑
k=0

q(xmk ) + γ(vmk )⊺Σ−1
ϵ umk . (8)

B. CBF-Inspired Heuristic Considering Chance Constraints

1) Safe heuristic in belief space: To fulfill the chance
constraint (5c), we combine x̄ = E[x] and state covariance
Σ to form a belief-space system,

ẑ =

[
x̄

vec(Σ)

]
, (9)

where ẑ ∈ Z ⊆ Rnz , nz = nx(nx + 1). We then choose a
safe set S ⊆ Z , such that,

ẑ ∈ S ⇐⇒ Pr(x ∈ F) > 1− Pfail, Pfail ∈ (0, 1], (10)

using the following assumption on the feasible region:

Assumption 1 The feasible region F is defined by the
intersection of Z inequalities, such that,

F :=

Z⋂
i=1

{x : ci(x) < 0}, i = 1, . . . , Z. (11)

Using Assumption 1 and the Boole-Bonferroni inequal-
ity [16], any state xk subject to the constraints,

Pr(ci(x) ≥ 0) ≤ pi, i = 1, . . . , Z, (12a)
Z∑
i=1

pi ≤ Pfail. (12b)

also satisfy the original constraint (5c). From (12), we can
approximate each chance constraint by

ci(x̄k) + νi

√
η⊺i Σkηi ≤ 0, (13)

where Σk ∈ Rnx×nx is the covariance of xk, ηi = ∇xci(x̄k),
and νi is the back-off coefficient [17]. Hence, following from
(4) and (13), we obtain the following heuristic,

hi(ẑ) = −ci(x̄)− νi
√
η⊺i Σηi, (14)

with a superlevel set Si containing all states satisfying (13),

Si = {ẑ ∈ Z|hi(ẑ) ≥ 0}. (15)

Consequently, the safe heuristic for Problem (5) is

h(ẑ) = min(h1(ẑ), . . . , hZ(ẑ)), (16)



with a corresponding safe set S ⊆ Z being the intersection
of all superlevel sets Si for i = 1, . . . , Z, given by,

S =

Z⋂
i=1

Si. (17)

Remark 1 The back-off coefficient value νi is computed to
ensure the probability level pi in the chance constraint. One
option is to use the Cantelli-Chebyshev inequality, which
holds regardless of the underlying probability distribution
resulting in νi =

√
1−pi
pi

. However, it can lead to relatively
conservative bounds [17]–[19]. Alternatively, for approxi-
mately normal-distributed state trajectories, we can set νi =√
2erf−1(1− 2pi) where erf−1 is the inverse error function.

The paper [20] discusses an alternative, sampling-based
approach for constraint tightening.

2) Safety condition: Assume the belief-space state follows
the system ẑk+1 = fz(ẑk, vk). The safety condition for the
heuristic (16) is given by,

h(ẑk+1)− h(ẑk) ≥ −p(h(ẑk)), (18)

where p(·) is a class-κ function. Satisfying (18) gives us two
properties (see [3] for proofs).

Property IV.1 Given an initial condition ẑ0 ∈ S and a
control sequence {vk}∞k=0 such that all (ẑk, vk) pairs sat-
isfy (18), then ẑk ∈ S for all k ∈ Z≥0.

Property IV.2 Let ẑ0 ∈ Z \ S and let a control sequence
{vk}∞k=0 such that, for all k ∈ Z≥0, the pair (zk, vk)
satisfies (18). Then the state zk converges to the safe set
S asymptotically.

Remark 2 If there always exists a control v such that (18)
is satisfied for all ẑ ∈ Z , h(ẑ) becomes a DCBF. The
HJ reachability analysis, which is commonly used to find
verified CBFs, is computationally intractable for systems
of high dimensions [21]. Hence, finding CBFs for belief-
space systems is difficult in many cases. The proposed BSS-
MPPI minimizes violation of (18) and achieves an average
98.7% satisfaction rate of (18) in our simulations, effectively
keeping system states within the safe set and significantly
reduces collision rates.

C. Augmented System

Note that the MPPI objective function (2) and the cor-
responding control update law (6)-(8) share the same state-
dependent step cost q(·), which can be of arbitrary form. To
integrate the DCBF with chance constraints into the MPPI
objective function and the control update law, we introduce a
system in belief space that includes the mean and covariance
of the system (5b), then augment the new system to combine
two states in one, such that the safety condition (18) can be
included in the step running cost q(·).

1) Belief-space system: We can separate the system state
following (5b) into the mean and disturbed parts,

xk = x̄k + x̃k. (19)

Given a sequence of sampled controls u = [u0, . . . , uK−1],
the mean state x̄k follows the nominal system,

x̄k+1 = f̄(x̄k, uk) = E[f(xk, uk, wk)], (20)

and the covariance propagation evolves according to

Σxk+1
= Cov[f(xk, uk, wk)] = fΣ(Σxk , uk). (21)

We can then describe (5b) using the belief-space system (9),

ẑk+1 =

[
x̄k+1

vec(Σxk+1
)

]
=

[
f̄(x̄k, uk)

vec(fΣ(Σxk , uk))

]
(22a)

= fz(ẑk, uk). (22b)

In some cases, as demonstraded in our simulations, only part
of the uncertainty covariance matrix is needed, thus a smaller
state space can be used. For linear systems with Gaussian
additive disturbances and for systems with nonlinearities on
a specific form, f̄ and fΣ can be expressed analytically
[22]. For nonlinear systems, data-driven approaches, such as
neural nets and Gaussian processes [23]–[25] can be used to
model the mean and covariance propagations. In this work,
we propose to apply Monte-Carlo sampling to estimate the
empirical mean and covariance propagation, such that,

x̄k+1 = E[xk+1] ≈
1

N

N−1∑
n=0

xnk+1, (23)

and,

Σxk+1
= E

[
x̃k+1x̃

⊺
k+1

]
≈ 1

N − 1

N−1∑
n=0

(xnk+1 − x̄k+1)(x
n
k+1 − x̄k+1)

⊺, (24)

where xnk+1 = f(xnk , uk, w
n
k ) is the state of the nth trajectory

sample following the control sequence u at time k + 1.
2) Augmented belief-space system: Since the costs ϕ(xK)

and q(xk) in the objective function (2) are only dependent
on the state at a single time step, it is difficult to integrate
the safety condition (18) directly, which includes two con-
secutive system states. To this end, we introduce, for each
k = 1, . . . ,K, the augmented state zk = (z

(1)
k , z

(2)
k ) =

(ẑk, ẑk−1) ∈ R2nz and the corresponding augmented belief-
space system.

zk+1 =

z(1)k+1

z
(2)
k+1

 =

[
fz(z

(1)
k , uk)

z
(1)
k

]
=

[
ẑk+1

ẑk

]
. (25)

D. Safety-aware Objective Function

We can apply the MPPI algorithm to the augmented
system (25) with cost,

min
v
J(v) = E

[
ϕa(zK) +

K−1∑
k=0

(
qa(zk) +

λ

2
v⊺kΣ

−1
ϵ vk

)]
,

(26)

to yield a sequence of optimal controls. Note that the step
running cost qa(·) is dependent on two consecutive states of



the belief-space system (22). Taking a linear class-κ function,
it follows from (18) that,

h(ẑk)− (1− β)h(ẑk−1) ≥ 0, (27)

where β ∈ (0, 1), and h(·) is designed following (14) and
(16). The resulting safe condition violation cost is

Csafe(zk) = C max{−h(z(1)k ) + (1− β)h(z(2)k ), 0}. (28)

Hence, the state-dependent costs are

qa(zk) = q(z
(1)
k ) + Csafe(zk), (29a)

ϕa(zK) = ϕ(z
(1)
K ) + Csafe(zK). (29b)

We set z(2)0 = ẑ−1 = ẑ0, such that Csafe(z0) = 0. The opti-
mal control sequence can be calculated by (6), (7), and (8),
using (29) as the state-dependent running costs. The modified
objective function (26) integrates the chance constraint (5c)
by converting it into a cost minimization problem, which
minimizes (5a) while penalizing any violations of the safety
condition (18) to fulfill (5c).

V. ALGORITHM

Algorithm 1 gives the pseudo-code for BSS-MPPI. Line 2
obtaines the estimated robot state, lines 3-4 initialize states
and trajectory costs, line 5-7 sample control sequences, and
lines 8-9 propagate the mean states and covariances.

In [4], [26], [27], the mean and covariance dynamics are
modeled analytically and can be used to directly compute the
next states. If the system is complex and highly nonlinear,
such that the mean and covariance dynamics are difficult
to model, lines 8-9 can be implemented by Algorithm 2,
which utilizes Monte-Carlo sampling to approximate mean
and covariance propagation and is generally applicable.

The disturbance wk in Algorithm 2 can be either from
a fixed or a conditional (e.g., state-dependent) distribution.
Lines 10-15 in Algorithm 1 use the augmented belief space
system (25) to evaluate the simulated trajectory costs S̃m,
and compute the optimal controls using the control update
law (6). Line 16 sends the safe control command to the
actuators, and line 17 resets the nominal control sequence
for the next control iteration.

VI. SIMULATION STUDY

We evaluate the proposed BSS-MPPI on a simulated car
racing example, where the objective is to conclude a lap
of a race course subject to minimizing a control objective.
We develop the CBF-inspired heuristic for the application,
and carry out a Monte-Carlo simulation study to evaluate
the performance of BSS-MPPI (BSS-MPPI). We compare it
with other MPPI-based control approaches, in particular, the
original MPPI (MPPI, [15]) and S-MPPI (S-MPPI, [3]).

A. Experimental Setup

We use the AutoRally racing platform [28] to evaluate
our method. The AutoRally is a 1m long, 0.4m wide electric
vehicle with mass 22kg whose dynamics mimic a real vehi-
cle. We model the dynamics using the discrete-time system
(1), based on the planar single-track vehicle model [29].

Algorithm 1: Belief-space stochastic MPPI Algo-
rithm

Given: Shield-MPPI costs q(·), ϕ(·), parameters γ,Σϵ;
Input : Initial control sequence v

1 while task not complete do
2 x̄0,Σx0

← GetStateEstimate();
3 for m← 0 to M − 1 in parallel do
4 x̄m0 ← x̄0, zm0 ←

[x̄⊺0 , vec(Σx0), x̄
⊺
0 , vec(Σx0

)]⊺, S̃m ← 0;
5 Sample ϵm ← {ϵm0 , . . . , ϵmK−1};
6 for k ← 0 to K − 1 do
7 umk ← vk + ϵmk ;
8 x̄mk+1 ← f̄(x̄mk , u

m
k );

9 Σmxk+1
← fΣ(Σ

m
xk
, uk);

10 zmk+1 ←
[(x̄mk+1)

⊺, vec(Σmxk+1
), (x̄mk )⊺, vec(Σmxk)]

⊺

11 S̃m ←
S̃m + q(x̄mk ) + γv⊺kΣ

−1
ϵ umk + Csafe(z

m
k );

12 end
13 S̃m ← S̃m + ϕ(x̄mK) + Csafe(z

m
K );

14 end
15 vsafe ← OptimalControl({S̃m}M−1

m=0 , {um}M−1
m=0 );

16 ExecuteCommand(vsafe
0 );

17 v← vsafe;
18 end

Algorithm 2: Mean and Covariance Propagation
Given: System with disturbance f(x, u, w),

noise distribution p(w|x).
Input : x̄k,Σxk , uk;

1 for n← 0 to N − 1 in parallel do
2 Sample xnk ∼ N (x̄k,Σxk), wk ∼ p(wk|xk);
3 xnk+1 = f(xnk , uk, wk)
4 end
5 x̄k+1 ← 1

N

∑N−1
n=0 x

n
k+1

6 Σxk+1
← 1

N−1

∑N−1
n=0 (x

n
k+1 − x̄k+1)(x

n
k+1 − x̄k+1)

⊺

The system state is x = [vX , vY , ψ̇, ωF , ωR, eψ, eY , s]
⊤,

where vX is the longitudinal vehicle velocity, vY is the
lateral vehicle velocity, ψ̇ is the yaw rate, ωF , ωR is the
front and rear wheel-speed, respectively, eY is the lateral
deviation from the centerline, eψ is the yaw-angle deviation
with respect to the centerline heading, and s is the path
coordinate in the road-aligned frame. The control input is
u = [δ, T ]⊤ where δ is the steering angle at the front wheel
and T is the throttle. We use the Pacejka tire model and the
friction ellipse to model combined slip [30].

We use the state-dependent running cost

q(xmk ) = (xmk − xg)⊤Q(xmk − xg) + 1(xmk ), (30)

where Q = diag(qvX , qvY , qψ̇, qωF , qωR , qeψ , ey, qs) is the



cost matrix, xg = diag(vg, 0, . . . , 0), and

1(xmk ) =

{
0, if xmk satisfies the constraints,
Cobs, otherwise, (31)

is the collision cost. Since BSS-MPPI extends S-MPPI by
introducing chance constraints into the problem formulation,
we mostly focused our evaluation on the ability of BSS-MPPI
to satisfy the constraints under uncertain dynamics. We have
executed 200 Monte-Carlo simulations where the vehicle is
tasked to complete a lap of the AutoRally racetrack subject
to zero-mean Gaussian process noise, wk ∼ N (0,Σw) with
the reference velocity vg = 6m/s.

B. Belief-Space Control Barrier Function Design

Assuming that the racing track has constant width 2wT, we
want to keep the vehicle’s lateral deviation ey from the track
centerline bounded by |ey| ≤ wT for some given collision
probability δ. Hence, we can write the chance constraints as

P (ey < wT) > 1− ϵ, P (ey > −wT) > 1− ϵ. (32)

The chance constraints (32) are equivalent to

P (ey ≥ wT) ≤ ϵ, P (ey ≤ −wT) ≤ ϵ. (33)

It follows from (12a), (13) that (33) can be converted to
deterministic chance constraints,

ēy − wT + νσy ≤ 0, ēy + wT − νσy ≥ 0, (34)

where σy is the standard deviation of ey , obtained from
the Monte-Carlo covariance propagation (see Algorithm 2).
Since (34) is symmetric, we can form a single inequality,
|ēy| ≤ wT − νσy. Hence, we formulate the DCBF h(x) =
(wT − νσy)2 − e2y, and the corresponding safe set is (4).
We implement the chance constraints with the back-off
coefficient ν =

√
2erf−1(1−2ϵ) (see Remark 1), which was

a good compromise between conservativeness and safety.

C. Simulation Results

Fig. 1 shows the trajectories for a set of runs produced
by S-MPPI and BSS-MPPI when trying to manuever a lap of
the race track. The trajectories produced by S-MPPI have a
tendency to go close to the track boundaries and on several
occasions also cross the track boundaries, indicating a sub-
sequent crash. In contrast, owing to the chance constraints,
BSS-MPPI trajectories tend to push closer to the track center,
thus yielding safer trajectories.

We have run the different controllers using different tuning
parameters, and for each set of parameters, we have executed
the scenario in Fig. 1 for 100 Monte-Carlo runs using
different noise realizations and initial conditions. Table I
shows the crash and collision ratios for different number of
trajectories for MPPI, S-MPPI, and BSS-MPPI, respectively.
We define a collision to occur when the vehicle deviates
from the middle of the lane with more than 1.8m (which
defines the chance constraint for the lateral deviation), and
similarly we define a crash to occur when the vehicle goes
outside of the (assumed constant) lanewidth wT = 2m from
the center of the lane, indicating a severe constraint violation.

Fig. 1: S-MPPI and BSS-MPPI trajectory visualization for a set of Monte-
Carlo runs where the objective is to conclude a lap clock-wise. The
trajectories generated by BSS-MPPI consider disturbances and are more
conservative, resulting in lower speeds but fewer collisions

TABLE I: Crash and collision ratio, and computational speed for 100 Monte-
Carlo runs for a given cost function with qey = 0.1, and a control horizon of
20 steps. When a crash occurs, the particular Monte-Carlo run is terminated.
The simulations use an Nvidia RTX2060 GPU and the computational speed
is the average time it takes to execute the respective method one time step.

Method Crashes Collisions Speed [Hz]

MPPI, M = 30, 000 93% 230% 58.1
S-MPPI, M = 5, 000 8% 13% 55.3
S-MPPI, M = 20, 000 8% 13% 42.9
BSS-MPPI, MN = 100 · 50 4% 10% 43.1
BSS-MPPI, MN = 500 · 40 0% 1% 39.7
BSS-MPPI, MN = 1, 000 · 20 0% 2% 39.1

With this notion, we can quantify the number of constraint
violations, in addition to quantifying the number of times the
controllers heavily violates the constraints.

Irrespective of the number of trajectories used, BSS-
MPPI experiences substantially fewer crashes and collisions
throughout the 100 Monte-Carlo runs. The vanilla MPPI
(MPPI) crashes at almost all of the 100 Monte-Carlo runs
and has on average 2.3 constraint violations per lap. The
number of crashes and collisions for S-MPPI is more or less
constant irrespective of the number of trajectories, while the
safety of BSS-MPPI improves as the number of trajectories
involved to approximately solve the optimal control problem
increases. With a sufficiently large MN , the collisions and
crashes almost diminish. Even if the number of trajectories
used to approximate the covariance propagation N is large,
BSS-MPPI is not able to recover appropriately if the number
of sampled control sequences M is small.

Fig. 2 displays heatmaps of the crash and collision rates
to traverse a lap of the track using BSS-MPPI with different
number of sampled control sequences M and uncertainty
evaluation trajectories N . It is clear that increasing N leads
to fewer crashes, as the belief space trajectories and chance
constraints are better approximated. However, only increas-
ing N is not sufficient, since using a small M implies limited
exploration of the optimal controls. Hence, the optimal
choice is a trade-off between control exploration, uncertainty
propagation, and computational resources.
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Fig. 2: Crash and collision rates as a function of the number of control
sequences M and covariance-propagation trajectories N , with qey = 0.1.

VII. CONCLUSION

We presented BSS-MPPI, which accounts for system
uncertainty by leveraging a CBF-inspired heuristic to sat-
isfy chance constraints. The method can handle nonlinear
dynamics and solves the underlying nonlinear stochastic
optimal control problem by forward simulation of control and
uncertainty trajectories, thus avoiding explicit linearization
and optimization steps. The results indicate that our method
effectively reduces the number of constraint violations, while
at the same time achieving computational times comparable
to previous MPPI approaches.
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