
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

A Model-Based Approach for Improving Reinforcement
Learning Efficiency Leveraging Expert Observations
Ozcan, Erhan Can; Giammarino, Vittorio; Queeney, James; Paschalidis, Ioannis Ch.

TR2024-178 December 18, 2024

Abstract
This paper investigates how to incorporate expert observations (without explicit information
on expert actions) into a deep reinforcement learning setting to improve sample efficiency.
First, we formulate an augmented policy loss combining a maximum entropy reinforcement
learning objective with a behavioral cloning loss that leverages a forward dynamics model.
Then, we propose an algorithm that automatically adjusts the weights of each component in
the augmented loss function. Experiments on a variety of continuous control tasks demon-
strate that the proposed algorithm outperforms various benchmarks by effectively utilizing
available expert observations.

IEEE Conference on Decision and Control (CDC) 2024

c© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

A Model-Based Approach for Improving Reinforcement Learning
Efficiency Leveraging Expert Observations

Erhan Can Ozcan1, Vittorio Giammarino1, James Queeney2, and Ioannis Ch. Paschalidis3

Abstract— This paper investigates how to incorporate expert
observations (without explicit information on expert actions)
into a deep reinforcement learning setting to improve sample
efficiency. First, we formulate an augmented policy loss combin-
ing a maximum entropy reinforcement learning objective with
a behavioral cloning loss that leverages a forward dynamics
model. Then, we propose an algorithm that automatically
adjusts the weights of each component in the augmented
loss function. Experiments on a variety of continuous control
tasks demonstrate that the proposed algorithm outperforms
various benchmarks by effectively utilizing available expert
observations.

I. INTRODUCTION

Deep Reinforcement Learning (RL) has shown its potential
to solve complex sequential decision making problems with
its impressive success in learning to play video games [1], au-
tonomous driving [2], and robotics applications [3]. Among
RL algorithms, model-free approaches are appealing since
they can serve as general-purpose tools for learning complex
tasks [4], [5]. However, these approaches are generally not
sample efficient, and often require a significant number of
interactions with the environment during learning. Since this
process can be costly, time-consuming, and unsafe, the use
of these algorithms can be limited in real-world problems
[6], [7].

The efficiency issue of RL algorithms can be mitigated
by leveraging available expert data. Unfortunately, expert
data contain limited information, possibly having only ac-
cess to observations of the expert (e.g., states), but not to
their private decision making (e.g., actions). This mandates
estimating expert actions or rewards before employing an RL
algorithm to learn a policy [8], [9]. Since the performance of
these types of algorithms can be susceptible to estimation er-
rors, leveraging expert observations remains as a challenging
task [10], [11].

In this study, we focus on improving the performance of
an RL algorithm by leveraging expert observations. First,

ECO, VG, and ICP were partially supported by the DOE under grants
DE-AC02-05CH11231 and DE-EE0009696, the NSF under grants CCF-
2200052, DEB-2433726, EECS-2317079, and IIS-1914792, and by the
ONR under grants N00014-19-1-2571 and N00014-21-1-2844. JQ was ex-
clusively supported by Mitsubishi Electric Research Laboratories (MERL).

1Erhan Can Ozcan and Vittorio Giammarino are with Division of
Systems Engineering, Boston University, Boston, MA 02215, USA
{cozcan,vgiammar}@bu.edu

2James Queeney is with Mitsubishi Electric Research Laboratories
(MERL), Cambridge, MA 02139, USA queeney@merl.com

3Ioannis Ch. Paschalidis is with the Department of Electrical and
Computer Engineering, Division of Systems Engineering, and Department
of Biomedical Engineering, Boston University, Boston, MA 02215, USA
yannisp@bu.edu

we define a policy loss function by combining a maximum
entropy RL objective with a behavioral cloning loss to imitate
the state transitions of the expert. This behavioral cloning
loss leverages a forward dynamics model, which is learned
in an online manner, to address the absence of expert actions.
Next, to mitigate the detrimental effect that an inaccurate
forward model can have on policy learning, we propose a
practical algorithm that automatically adjusts the weight of
the behavioral cloning loss during policy learning based on
the accuracy of the model. Finally, by conducting experi-
ments in the DeepMind Control Suite [12], we demonstrate
that utilizing available expert data can significantly accelerate
the training of RL algorithms.

II. RELATED WORK

One possible way to simplify policy learning in RL is to
consider a set of expert data and utilize offline RL algorithms
[13], [14], [15], [16]. However, all these studies assume that
the expert dataset is collected in a demonstration format,
i.e., sequences of states, actions, and reward tuples, which
is unrealistic in many scenarios. Therefore, it is important
to consider alternative algorithms that can work with expert
datasets containing limited information.

Imitation Learning (IL) is another field that investigates
how to incorporate expert data into policy learning in the
absence of reward information. The goal in Inverse Re-
inforcement Learning (IRL), a popular sub-field of IL, is
to retrieve a reward signal based on the expert data and
utilize this information to learn a policy [11]. Various IRL
approaches utilize the expert’s state-action pairs [17], [18],
[19]. However, data showing both expert states and actions
on a specific task can be either limited or unavailable, which
hinders the deployment of these types of algorithms in real-
world problems. On the contrary, expert observations can be
easily accessible in today’s world, thus attention has shifted
towards studies that focus on learning a policy by using
only expert states. In [20], Generative Adversarial Imitation
Learning proposed in [18] has been extended to a state-
only setting. In [21], an algorithm that relies only on expert
states has been developed to learn a non-stationary policy for
discrete actions. In [22], a model-based framework, which
promotes exploration in the face of uncertainty, is proposed
to learn a policy solely from expert states. Finally, two recent
works explore the possibility of adversarial imitation from
expert’s visual observations [23], [24]. However, all these
approaches optimize an adversarial min-max problem during
policy learning since they lack a reward signal, making
optimization difficult [11], [25], [26].

Behavioral Cloning (BC) is another sub-field of IL, where
the goal is to learn a direct mapping from states to actions in
a supervised manner. In this field, one group of work assumes
that there exists an expert providing the optimal action for
any given state, and propose BC approaches based on dataset
aggregation [27], [28]. However, having this type of an expert
can be either extremely costly or unrealistic in many cases.
In [11], [29], BC algorithms that can be trained on offline
expert demonstrations are outlined, where the agent does not
need to interact with the environment during policy learning,
but requiring access to expert actions along with the states.
Similar to IRL, studies that focus on learning a policy by
using only expert states are of interest in BC. In [30], a
BC approach is introduced where an expert can be imitated
by learning a latent forward dynamics model. Finally, in
[31], a BC approach is proposed that utilizes only expert
states. Unfortunately, pure BC approaches may suffer from
compounding errors as a result of distribution shift [27], [32].
Therefore, the performance of BC can be poor in domains
where consecutive actions are required for success [20].

In order to address the shortcomings of both IL and RL
approaches, combining these two disciplines is an appealing
strategy when possible, i.e., a reward signal can be received
from the environment after the interaction. In [33], a first-
order oracle provides policy update information for any given
state during the policy imitation stage, which is followed
by traditional RL steps. In [34], policy learning begins
with IL on available expert demonstrations, and then the
learned policy is refined via RL to achieve a human level
performance. Finally, in [35], an actor-critic algorithm is
proposed by optimizing an RL objective combined with a
behavioral cloning loss defined on expert demonstrations.
This is similar to the augmented loss considered in this
work, but the approach in [35] utilizes expert actions during
policy training that we assume are not available. Finally, the
approaches that combine IL and RL introduce a pre-training
phase before policy learning [33], [34], [35]. However, in
our case, it is not possible to perform these pre-training
techniques since expert actions are unknown.

State-only expert data can be incorporated into policy
optimization by learning a world model, which reflects the
transition dynamics. Neural networks are powerful function
approximators that can model complex non-linear dynamics
even in high-dimensional problems; thus, they can be good
candidates for modeling the dynamics in real-world problems
[36], [37]. Most of the existing model-based approaches
utilize the learned model as a simulator to generate huge
amounts of data, which is how they achieve sample effi-
ciency during policy optimization [38], [39]. One common
drawback of this strategy is the challenge of determining
the length of the counterfactual trajectories generated by
the model since the model errors accumulate as the model
horizon increases. Therefore, contrary to existing work, we
utilize the learned predictive model solely to facilitate the
use of expert observations in our work.

III. PRELIMINARIES

Consider an infinite horizon Markov Decision Process
(MDP) characterized by the tuple (S,A, p, r, γ, ρ0). Follow-
ing the standard notation, S ⊆ Rn and A ⊆ Rm denote the
continuous state and action spaces, respectively, p : S×A →
P (S) is the transition model where P (S) denotes the space
of probability measures over S, r : S×A → R is the reward
function, γ ∈ (0, 1) is the discount rate, and ρ0 is the initial
state distribution.

The agent interacts with the environment by following
a stochastic policy parameterized by θ, πθ : S → P (A),
and the expected sum of discounted rewards η(π) can be
expressed as follows:

η(π) = E(st,at)∼ρπ

[∞∑
t=0

γtr(st, at)

]
,

where (st, at) ∼ ρπ denotes a trajectory sampled according
to s0 ∼ ρ0, at ∼ πθ(· | st), and st+1 ∼ p(· | st, at).

Then, the goal of standard RL is to find a policy maximiz-
ing the expected sum of discounted rewards. By augmenting
the standard reinforcement learning objective with an en-
tropy term, the maximum entropy objective can be obtained
[40]. Accordingly, the optimal policy π∗ of this problem
maximizes the entropy visited at each state as well as the
discounted reward:

π∗ = argmax
π

E(st,at)∼ρπ

[∞∑
t=0

γtr(st, at) + αH(π(· |st))

]
,

where H represents entropy and α is the temperature pa-
rameter adjusting the relative weight of the entropy term
with respect to the discounted reward. Soft Actor-Critic
(SAC) [41] is an effective off-policy algorithm within this
maximum entropy RL framework, and it alternates between
estimating a soft Q-value function Qψ(s, a) using the soft
Bellman backup operator and a policy improvement step to
improve the current policy πθ. Using a replay buffer D that
stores previously sampled states and actions, the soft Q-value
parameters, ψ, can be obtained by optimizing the following
soft Bellman residual error:

JQ(ψ,D) = E
(st,at)∼D

[
1

2
(Qψ(st, at)− (rt + γVψ̄(st+1)))

2

]
,

where
Vψ̄(st+1) = E

at+1∼πθ

[Qψ̄(st+1, at+1)− α log πθ(at+1|st+1)],

(1)

and ψ̄ are delayed target parameters that are maintained via
exponential smoothing with coefficient τ . Then, SAC updates
the policy towards the exponential of soft Q-value based on
the following maximum entropy policy loss:

Jπ(θ,D) = Est∼D,at∼πθ
[α log πθ(at|st)−Qψ(st, at)] .

(2)
The final ingredient in SAC is to devise a mechanism to
automate the temperature selection for each task based on

a target entropy value H̄ . Therefore, α is updated based on
the gradients of the following function:

J(α,D) = Est∼D,at∼πθ

[
−α log πθ(at|st)− αH̄

]
. (3)

The algorithm proposed in this paper builds on top of this
maximum entropy RL framework. While we incorporate the
same Q-value estimation step and temperature update rule
into our algorithm, we modify the policy loss given in (2)
to utilize expert observations during policy updates, thereby
significantly accelerating training.

IV. MAXIMUM ENTROPY POLICY LEARNING
WITH EXPERT OBSERVATIONS

We now present our algorithm Soft Actor-Critic with
Expert Observations (SAC-EO), which learns a policy with
maximum entropy RL while also minimizing deviations
from the expert’s state trajectory. The algorithm has two
essential components: (1) We learn a forward dynamics
model that allows us to utilize expert observations to improve
policy learning without requiring expert actions, and (2) we
propose an augmented policy objective that combines the
maximum entropy RL objective with a behavioral cloning
loss, leveraging expert observations.

Incorporation of Expert Data: Although we only
observe the expert states, it is still possible to utilize this
information during policy optimization by learning a forward
dynamics model. Learning a global model that can accurately
predict the next state and the reward for any given state-
action pair can be impractical, as it requires exploring all
parts of the state space. Furthermore, learning a globally
accurate model can be impossible when the system dynamics
are complex [38]. However, this is not necessary for the
success of our algorithm since we employ our model solely
to incorporate expert data into the policy improvement.

Our goal is to modify the policy πθ by utilizing a learned
model so that the policy can generate transitions similar
to the expert. We model the transition dynamics using a
probabilistic feed-forward neural network parameterized by
ϕ, whose outputs represent the mean vector µ and diagonal
covariance matrix Σ of a Gaussian distribution. Then, for
a state-action pair (st, at) at time t, the trained model m̂ϕ

estimates the state at time t+ 1:

ŝt+1 ∼ m̂ϕ(st, at) = N (µϕ(st, at),Σϕ(st, at)) .

Similar to model-based RL algorithms, we refine the learned
model gradually as the policy improves to overcome the
state distribution shift issue [38], [39]; more details related
to model learning can be found in [42].

Suppose we are provided a set of expert observations
(states) De ≡ {set}Nt=0. Then, for any given expert state set ,
we can estimate the next state of our policy by utilizing
the learned model: ŝt+1 ∼ m̂ϕ(s

e
t , πθ(s

e
t)). Note that ŝt+1

is a function of the policy parameters θ, and our goal is
to imitate the state transitions of the expert. Therefore, for
a given model, policy and expert dataset, we can define a

term measuring the deviation from the state trajectory of the
expert by using our model:

MSE(ϕ, θ,De) =
∑N−1
t=0 ∥ŝt+1 − set+1∥2

N
, (4)

where ∥ · ∥ denotes the ℓ2 norm of a vector throughout the
paper. Since we learn a parametric policy and model, we can
calculate the gradient of the MSE term with respect to θ, and
utilize this information during policy optimization. Finally,
note that our learned model is only used to calculate the MSE
term in (4), unlike model-based RL methods that utilize the
learned model as a simulator to generate additional data for
training.

Augmented Policy Objective: Similar to [41], our algo-
rithm optimizes an RL objective, namely the maximum en-
tropy RL objective given in (2), based on data available in the
replay buffer D. In addition to this, our algorithm takes into
account the expert data with the help of the learned model,
and minimizes the deviations from the state trajectory of the
expert defined in (4). The augmented function minimized by
our algorithm at the policy improvement stage is as follows:

Jπ(θ, ϕ,D,De, ϵ) = (1−ϵ)Jπ(θ,D)+ϵMSE(ϕ, θ,De), (5)

where ϵ is the expert state matching parameter controlling
the relative importance of the MSE term compared to the
soft policy improvement term. Next, we describe how to
automatically adjust ϵ throughout training.

A. Automatic Adjustment of the Expert State Matching Co-
efficient

The ingredients above describe how we can incorporate
expert observations into a maximum entropy RL algorithm.
Nevertheless, the success of our algorithm heavily depends
on the quality of the learned model, which is used to calculate
the MSE term in (5). In the early stages of training, the
learned model may not be able to accurately represent tran-
sition dynamics in states visited by the expert. In addition, it
may be difficult to learn an accurate model in environments
with complex dynamics. In these scenarios, we want to place
more emphasis on the RL objective.

To integrate this concept into our framework, it is impor-
tant to devise a strategy that determines the importance of
each term based on the accuracy of the model on the expert
dataset, and automatically adjusts the value of the expert state
matching parameter. However, evaluating the performance of
the model on the expert trajectories requires knowledge of
both expert actions and states. Since we only have access to
expert states, evaluating the performance of the model is not
trivial.

In model-based RL frameworks, it is common to learn
a model ensemble and to define a discrepancy measure
between models to assess their accuracy. For example, [43]
utilizes a discrepancy measure to prevent policies from
visiting states where transition dynamics are uncertain, while
[22] utilizes a discrepancy measure to incentivize the policy
to explore unknown parts of the state space. In our study,
we want to assess the reliability of our models on the states

visited by the expert. Therefore, we design a rule based on
this measure.

Suppose that we have a pair of dynamics models, m̂ϕ1

and m̂ϕ2 , that are initialized with the parameters ϕ1 and ϕ2,
respectively, but trained on the same data. We can define
the maximum discrepancy δmax between models on expert
dataset De as follows:

δmax(De) = max
s∈De

∥m̂ϕ1(s, πθ(s))− m̂ϕ2(s, πθ(s))∥. (6)

Using this discrepancy measure, we can define an adaptive
expert state matching coefficient by

ϵk =
1

1 + βδmax(De)
, (7)

where β ≥ 0 is a tunable parameter to scale the discrepancy.
Then, the policy loss with an adaptive epsilon ϵk can be
expressed as follows:

Jπ(θ,ϕ,D,De, ϵk) =

(1− ϵk)Jπ(θ,D) + ϵk

∑2
i=1 MSE(ϕi, θ,De)

2
.

(8)

Finally, we assume that our algorithm is trained by collecting
K trajectories, each of length E, and we update the models
and adaptive state matching coefficient at the end of each
trajectory. The pseudocode showing the steps of SAC-EO is
given in Algorithm 1.

Algorithm 1 SAC-EO
Input: Scale parameter β ≥ 0, Expert observations De.

1: Initialize policy πθ, predictive models m̂ϕ1
and m̂ϕ2

,
critics Qψ1

and Qψ2
, target critics Qψ1

and Qψ2
, replay

buffer D, model training buffer Dm.
2: for k = 1 ... K do
3: Train models m̂ϕ1

and m̂ϕ2
on Dm via maximum

likelihood.
4: δmax = maxs∈De ∥m̂ϕ1

(s, πθ(s))− m̂ϕ2
(s, πθ(s))∥.

5: Set ϵk = 1
1+βδmax .

6: Sample a mini-batch of expert states from De, and
store them in Deb .

7: for E steps do
8: at ∼ πθ(·|st)
9: st+1, rt ∼ EnvironmentStep(at)

10: D ← D ∪ (st, at, rt, st+1)
11: Dm ← Dm ∪ (st, at, st+1)
12: Sample a mini-batch of environment data from
D, and store them in Db.

13: Split Deb into two parts randomly: Deb,1 and Deb,2.
14: ψi ← ψi − λQ∇ψi

JQ(ψi,Db) for i ∈ {1, 2}
15: Lθ = (1− ϵk)Jπ(θ,Db) + ϵk

∑2
i=1 MSE(ϕi,θ,De

b,i)

2
16: θ ← θ − λπ∇θLθ
17: α← α− λ∇αJ(α,Db)
18: ψi ← τψi + (1− τ)ψi for i ∈ {1, 2}
19: end for
20: end for
21: return πθ.

Note that setting β = 0 in Algorithm 1 results in a
modified version of the algorithm Behavioral Cloning From
Observation (BCO) proposed in [31], and the algorithm
converges to classic SAC as β →∞.

V. EXPERIMENTS

We analyze the use of expert observations within a
maximum entropy RL framework over 6 tasks available in
the DeepMind Control Suite [12]. The tasks we consider
include cheetah-run, hopper-hop, hopper-stand, walker-run,
walker-walk, and walker-stand, which all have fixed-length
horizons of 1000 steps with rewards in the unit interval,
i.e., r(s, a) ∈ [0, 1]. We obtain expert observations by
training a different model-free RL algorithm Maximum a
Posteriori Policy Optimization (MPO) [5] for 5 million steps.
The full details of the SAC-EO algorithm, including network
architectures, model training, and all hyperparameters are
summarized in [42]. Finally, the source code is available on
GitHub to promote reproducibility1.

A. Performance Comparison on DeepMind Control Suite

Although our strategy to incorporate expert data into
policy improvement can be generalized into any model-
free RL algorithm, we build our algorithm on top of SAC
due to its flexibility to learn complex tasks. Therefore, the
first benchmark we consider in our experiments is SAC.
Another benchmark we consider in our experiments is MPO
since expert data required by our algorithm are generated by
employing an MPO agent. We consider a problem setting
where only expert states are available during training, thus
offline RL algorithms cannot be used as baselines. However,
we include a modified version of BCO, obtained by setting
β = 0 in Algorithm 1, among the benchmarks for a fair
comparison. The reason to use modified-BCO is to ensure
a one to one correspondence between methods, and one
fundamental difference between modified-BCO and BCO
is that modified-BCO utilizes a forward dynamics model
instead of an inverse model during policy optimization.
Figure 1 shows the average of total reward obtained by our
algorithm across 5 seeds on different tasks, compared to
SAC, MPO, and modified-BCO.

According to Figure 1, SAC-EO matches the performance
of the expert, which was trained for five millions steps, in
less than one million steps for 4 out of 6 tasks. Furthermore,
utilizing expert observations during policy updates acceler-
ates the training of SAC in all tasks. We further analyze
this point in Table I, which reports the number of steps
each algorithm needs to reach a percentage of the expert
performance. Lastly, the poor performance of modified-BCO
in all tasks reveals that the behavioral cloning loss defined
on expert observations alone is insufficient to learn a good
policy, since it is not possible to learn a model that reflects
the transition dynamics on the expert states unless the agent
explores this part of the state space. This highlights the
importance of utilizing this type of a loss within an RL
framework.

1https://github.com/noc-lab/sac-expert.

Fig. 1. Comparison of algorithms across tasks. Horizontal blue line represents the expert performance. SAC-EO and modified-BCO are supplied four
expert trajectories during training. Shading denotes one standard error across policies.

TABLE I
STEPS TO REACH X PERCENTAGE OF THE EXPERT PERFORMANCE2

75% of the Expert 95% of the Expert

MPO SAC SAC-EO MPO SAC SAC-EO

cheetah-run 577K 368K 265K NA NA 770K
hopper-hop NA NA NA NA NA NA
hopper-stand 508K 250K 227K 799K 627K 287K
walker-run 571K NA 330K NA NA NA
walker-walk 190K 139K 83K 376K 357K 185K
walker-stand 160K 47K 29K 187K 268K 48K

B. The Benefit of Adaptive Epsilon

Next, we show the benefit of utilizing an adaptive ϵk, as
we describe, over a fixed ϵk in our algorithm. Therefore, we
train our algorithm by setting ϵk to 0.1, 0.01, and 0.001,
respectively, and compare them with our adaptive algorithm.
The average performance of each version after one million
interactions with the environment is summarized in Table II.

According to Table II, it is promising to utilize our
adaptive strategy, as the adaptive version performs better

2In Table I, NA means that the specified percentage of the expert
performance cannot be achieved by the corresponding algorithm in one
million steps.

TABLE II
THE BENEFIT OF UTILIZING ADAPTIVE ALGORITHM

Fixed vs Adaptive ϵk = 0.1 ϵk = 0.01 ϵk = 0.001 Adaptive
cheetah-run 614±93 808±33 843±34 867±11
hopper-hop 38±77 86±96 196±32 191±42
hopper-stand 910±24 564±435 602±419 919±25
walker-run 23±2 253±169 623±127 695±62
walker-stand 963±30 981±9 982±9 985±10
walker-walk 23±1 948±28 955±41 967±11

compared to using a fixed ϵk in most tasks.

VI. CONCLUSION

In this paper, we demonstrated how to increase the sample
efficiency of an RL algorithm by utilizing expert observa-
tions without access to expert actions. We introduced the
algorithm SAC-EO, which performs policy updates based
on a loss function combining a maximum entropy RL ob-
jective with a behavioral cloning loss that utilizes a learned
forward dynamics model. Based on our experiments, SAC-
EO significantly accelerates training compared to standard
model-free RL algorithms. Although our algorithm is built
upon SAC, the strategy we present to incorporate expert
observations into policy improvement is a general framework
that can work with many RL algorithms. Therefore, it can

be interesting to explore the effect of employing our idea on
different RL algorithms in future work. Furthermore, since it
does not need explicit action information from experts, the
proposed algorithm may have the potential to take advantage
of large amounts of video available online during policy
improvement. Hence, another interesting future direction can
be to extend our work by incorporating visual observations.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[2] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 4909–4926, 2021.

[3] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 3, pp. 297–330,
2020.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[5] A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess,
and M. Riedmiller, “Maximum a posteriori policy optimisation,” arXiv
preprint arXiv:1806.06920, 2018.

[6] J. Queeney, Y. Paschalidis, and C. G. Cassandras, “Generalized prox-
imal policy optimization with sample reuse,” In Advances in Neural
Information Processing Systems, vol. 34, pp. 11 909–11 919, 2021.

[7] J. Queeney, E. C. Ozcan, I. Paschalidis, and C. Cassandras, “Optimal
transport perturbations for safe reinforcement learning with robustness
guarantees,” Transactions on Machine Learning Research, 2024.
[Online]. Available: https://openreview.net/forum?id=cgSXpAR4Gl

[8] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from ob-
servation: Learning to imitate behaviors from raw video via context
translation,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 1118–1125.

[9] V. Giammarino, J. Queeney, L. C. Carstensen, M. E. Hasselmo, and
I. C. Paschalidis, “Opportunities and challenges from using animal
videos in reinforcement learning for navigation,” IFAC-PapersOnLine,
vol. 56, no. 2, pp. 9056–9061, 2023.

[10] R. F. Prudencio, M. R. Maximo, and E. L. Colombini, “A survey on
offline reinforcement learning: Taxonomy, review, and open problems,”
IEEE Transactions on Neural Networks and Learning Systems, 2023.

[11] B. Zheng, S. Verma, J. Zhou, I. Tsang, and F. Chen, “Imita-
tion learning: Progress, taxonomies and challenges,” arXiv preprint
arXiv:2106.12177, 2021.

[12] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas,
D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, et al., “Deepmind
control suite,” arXiv preprint arXiv:1801.00690, 2018.

[13] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[14] Y. Gao, H. Xu, J. Lin, F. Yu, S. Levine, and T. Darrell, “Rein-
forcement learning from imperfect demonstrations,” arXiv preprint
arXiv:1802.05313, 2018.

[15] A. Nair, A. Gupta, M. Dalal, and S. Levine, “AWAC: Accelerating
online reinforcement learning with offline datasets,” arXiv preprint
arXiv:2006.09359, 2020.

[16] H. Xu, X. Zhan, J. Li, and H. Yin, “Offline reinforcement learning
with soft behavior regularization,” arXiv preprint arXiv:2110.07395,
2021.

[17] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” In Proceedings of the 33rd
International Conference on Machine Learning, pp. 49–58, 2016.

[18] J. Ho and S. Ermon, “Generative adversarial imitation learning,” In
Advances in Neural Information Processing Systems, vol. 29, 2016.

[19] N. Baram, O. Anschel, and S. Mannor, “Model-based adversarial
imitation learning,” arXiv preprint arXiv:1612.02179, 2016.

[20] F. Torabi, G. Warnell, and P. Stone, “Generative adversarial imitation
from observation,” arXiv preprint arXiv:1807.06158, 2018.

[21] W. Sun, A. Vemula, B. Boots, and D. Bagnell, “Provably efficient
imitation learning from observation alone,” In Proceedings of the 36th
International Conference on Machine Learning, pp. 6036–6045, 2019.

[22] R. Kidambi, J. Chang, and W. Sun, “Mobile: Model-based imitation
learning from observation alone,” In Advances in Neural Information
Processing Systems, vol. 34, pp. 28 598–28 611, 2021.

[23] V. Giammarino, J. Queeney, and I. C. Paschalidis, “Adversarial imita-
tion learning from visual observations using latent information,” arXiv
preprint arXiv:2309.17371, 2023.

[24] M. Liu, T. He, W. Zhang, S. Yan, and Z. Xu, “Visual imitation learning
with patch rewards,” arXiv preprint arXiv:2302.00965, 2023.

[25] A. Tucker, A. Gleave, and S. Russell, “Inverse reinforcement learning
for video games,” arXiv preprint arXiv:1810.10593, 2018.

[26] D. Brown, W. Goo, P. Nagarajan, and S. Niekum, “Extrapolating
beyond suboptimal demonstrations via inverse reinforcement learning
from observations,” In Proceedings of the 36th International Confer-
ence on Machine Learning, pp. 783–792, 2019.

[27] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” In Proceedings
of the 14th International Conference on Artificial Intelligence and
Statistics, pp. 627–635, 2011.

[28] B. Kim and J. Pineau, “Maximum mean discrepancy imitation learn-
ing.” in Robotics: Science and Systems, 2013.

[29] M. K. Hanawal, H. Liu, H. Zhu, and I. C. Paschalidis, “Learning
policies for Markov decision processes from data,” IEEE Transactions
on Automatic Control, vol. 64, no. 6, pp. 2298–2309, June 2019.

[30] A. Edwards, H. Sahni, Y. Schroecker, and C. Isbell, “Imitating latent
policies from observation,” In Proceedings of the 36th International
Conference on Machine Learning, pp. 1755–1763, 2019.

[31] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from obser-
vation,” arXiv preprint arXiv:1805.01954, 2018.

[32] M. Laskey, S. Staszak, W. Y.-S. Hsieh, J. Mahler, F. T. Pokorny, A. D.
Dragan, and K. Goldberg, “SHIV: Reducing supervisor burden in dag-
ger using support vectors for efficient learning from demonstrations in
high dimensional state spaces,” In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pp. 462–469, 2016.

[33] C.-A. Cheng, X. Yan, N. Wagener, and B. Boots, “Fast pol-
icy learning through imitation and reinforcement,” arXiv preprint
arXiv:1805.10413, 2018.

[34] V. Giammarino, M. F. Dunne, K. N. Moore, M. E. Hasselmo, C. E.
Stern, and I. C. Paschalidis, “Combining imitation and deep reinforce-
ment learning to human-level performance on a virtual foraging task,”
Adaptive Behavior, 2023.

[35] V. G. Goecks, G. M. Gremillion, V. J. Lawhern, J. Valasek, and N. R.
Waytowich, “Integrating behavior cloning and reinforcement learning
for improved performance in dense and sparse reward environments,”
arXiv preprint arXiv:1910.04281, 2019.

[36] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” In
Advances in Neural Information Processing Systems, vol. 29, 2016.

[37] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” In Proceedings of the 4th
Conference on Robot Learning, pp. 1101–1112, 2020.

[38] A. Rajeswaran, I. Mordatch, and V. Kumar, “A game theoretic frame-
work for model based reinforcement learning,” In Proceedings of the
37th International Conference on Machine Learning, pp. 7953–7963,
2020.

[39] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model:
Model-based policy optimization,” In Advances in Neural Information
Processing Systems, vol. 32, 2019.

[40] B. D. Ziebart, Modeling purposeful adaptive behavior with the princi-
ple of maximum causal entropy. Carnegie Mellon University, 2010.

[41] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[42] E. C. Ozcan, V. Giammarino, J. Queeney, and I. Paschalidis, “A
model-based approach for improving reinforcement learning efficiency
leveraging expert observations,” arXiv preprint arXiv:2402.18836,
2024.

[43] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims, “Morel:
Model-based offline reinforcement learning,” In Advances in Neural
Information Processing Systems, vol. 33, pp. 21 810–21 823, 2020.

	Title Page
	page 2

	A Model-Based Approach for Improving Reinforcement Learning Efficiency Leveraging Expert Observations
	page 2
	page 3
	page 4
	page 5
	page 6

