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Abstract
GaN HEMTs plays a vital role in high-power and high-frequency electronics. Meeting the
demanding performance requirements of these devices without compromising reliability is a
challenging endeavor. Field Plates are employed to redistribute the electric field, minimizing
the risk of device failure, especially in high-voltage operations. While machine learning has
been applied to GaN device design, its application to field plate structures, known for their
geometric complexity, is limited. This study introduces a novel approach to streamlining the
field plate design process. It transforms complex 2D field plate 2 structures into a concise
feature space, reducing data requirements. A machine learning- assisted design framework is
proposed to optimize field plate structures and perform inverse design. This approach is not
exclusive to the design of GaN HEMTs and can be extended to various semiconductor de-
vices with field plate structures. The framework combines technology computer-aided design
(TCAD), machine learning, and optimization, streamlining the design process.
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Abstract— GaN HEMTs plays a vital role in high-power and high-frequency electronics. 

Meeting the demanding performance requirements of these devices without compromising 

reliability is a challenging endeavor. Field Plates are employed to redistribute the electric 

field, minimizing the risk of device failure, especially in high-voltage operations. While 

machine learning has been applied to GaN device design, its application to field plate 

structures, known for their geometric complexity, is limited. This study introduces a novel 

approach to streamlining the field plate design process. It transforms complex 2D field plate 
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structures into a concise feature space, reducing data requirements. A machine learning-

assisted design framework is proposed to optimize field plate structures and perform inverse 

design. This approach is not exclusive to the design of GaN HEMTs and can be extended to 

various semiconductor devices with field plate structures. The framework combines 

technology computer-aided design (TCAD), machine learning, and optimization, streamlining 

the design process. 

 
1. Introduction 

 

GaN High Electron Mobility Transistors (HEMTs) have found extensive use in high-

power and high-frequency electronic devices, including chargers,[1] RF,[2,3] and microwave 

power applications [4]. Meeting the performance demands of these applications without 

compromising reliability requires innovative design approaches. Particularly in high-voltage 

operation, the risk of device failure is concentrated near the gate edge due to the higher 

electric field. To mitigate this risk, Field Plates are employed to distribute the electric field 

along the channel, reducing the peak electric field and enhancing device reliability [6-10]. 

Recent efforts have combined Technology Computer-Aided Design (TCAD) with machine 

learning and optimization techniques to optimize GaN device design [11-14]. However, most 

of these endeavors have focused on relatively simple device structures, characterized by a 

limited set of design parameters. Field plates, on the other hand, exhibit substantial geometric 

variations that present challenges for applying artificial intelligence (AI) methods in their 

design. Previous study have demonstrated the optimization of field plates to achieve high 

breakdown voltage using Artificial Neural Networks [24]. However, these methods have 

proved less flexible in terms of the field plate structure and have not achieved the desired 

optimization for other crucial parameters such as gate-drain capacitance and leakage current. 

In this study, we present a novel approach for transforming complex field plate structures 

into a concise feature space, enabling their integration into machine learning models with 

minimal data requirements. We subsequently propose a machine learning-assisted design 

framework aimed at optimizing field plate structures to achieve a desired blocking voltage 

while ensuring reasonable gate-drain capacitance and leakage current. This approach, which 

includes inverse design, offers a promising solution to address this unique design challenge. 

This approach is not only effective for GaN HEMTs but also easily transferable to other 
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transistors featuring field plate structures, such as Si [15-16], SiC [17-19] and GaAs [20-22]. 

Through appropriate feature engineering, this methodology extends its applicability across a 

broad range of semiconductor devices. Compared to traditional response surface methodology 

(RSM) or other design of experiments (DOE) method, this TCAD+AI strategy largely reduces 

the technology development time and provide more functionalities. 

 

2. TCAD Simulation 

 

Sentaurus TCAD is used to simulate GaN HEMT device. The TCAD model, provided by 

Synopsys, has been meticulously calibrated to match experimental data [5]. Specifically, the 

relationship between carrier saturation velocity (vsat) and sheet charge densities (nsh) has been 

accurately calibrated against experimental results via high-field saturation model (Caughey-

Thomas model). Additionally, trap densities are used to calibrate the carbon profiles in the 

carbon-doped buffer and channel regions to match experimental data closely (3.30e18 cm-3 

acceptor defect, energy level 0.9 eV from valence band and 1.70e18 cm-3 donor defect, energy 

level 0.4 eV from conduction band in buffer region; 5.28e16 cm-3 acceptor defect, energy 

level 0.9 eV from valence band and 2.72e16 cm-3 donor defect, energy level 0.3 eV from 

conduction band in channel region; 3.8e12 cm-3 donor defect, energy level from 1.29 eV to 

1.45 eV from midgap using uniform distribution,  4.7e12 cm-3 donor defect, energy level from 

1.15 eV to 1.29 eV from midgap using uniform distribution,  2.4e12 cm-3 donor defect, energy 

level from 0.99 eV to 1.15 eV from midgap using uniform distribution,  1.4e12 cm-3 donor 

defect, energy level from 0.75 eV to 1.99 eV from midgap using uniform distribution at 

interface of GaN/Nitride). Other parameters, such as subthreshold swing (»210 mV/decade), 

drain-induced barrier lowering (DIBL) effects (»45 mV/V) and the sheet charge densities in 

these regions are also carefully calibrated (»7.4e12 cm-2). Furthermore, the relationship 

between carrier mobility under low electric field conditions and sheet charge densities 

simulated by the inversion and accumulation layer mobility model (IALMob) has been 

aligned with experimental observations. Doping-dependent mobility model is also turned on 

to further improve mobility values. The ID-VGS and ID-VDS curves show good agreement with 

experimental data (Fig. 1), ensuring the reliability of our simulation model for the GaN 

HEMT devices studied.  
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Figure 1. Calibration of TCAD simulation models based on experimental data from [5] (a) ID-
VGS (b) ID-VDS characteristics. All relevant physics models such as Doping Dependent Mobility, 
Caughey-Thomas Model, Fermi statistic for carrier density calculation, Thermionic emission 
for charge injection, SRH Recombination (both hole and electron capture cross sections are set 
to be 1e-15 cm2) and Piezoelectric Polarization (strain activation is 1.0 at barrier/channel, 0.1 
at cap layer/barrier and 0.05 at GaN/Nitride) are included [23]. An excellent match is observed. 

 

Using the calibrated model parameters for GaN HEMT mentioned before, a typical device 

structure was developed using Synopsys Sentaurus TCAD tool. The structure is shown in Fig. 

2. From bottom to top, the device consists of a SiC substrate, 0.1 mm AlN seed layer, 2.0 mm 

GaN buffer layer, 0.05 mm GaN channel layer built from epitaxy growth model, 0.02 mm 

AlGaN barrier layer built from epitaxy growth mode, 0.002  mm GaN cap layer, 0.1 mm Si3N4 

nitride layer and 0.2 mm oxide layer. Among these layers, channel layer, barrier layer, and cap 

layer are built from epitaxy growth model. To focus on field plate design, we fix the 

separation between source and gate to be 1.0 mm and separation between gate and drain to be 

2.0 mm. Lengths of source, gate and drain are fixed to be 0.5 mm, 0.35 mm and 0.5 mm, 

respectively. Intentional rounding of contact corners during gate formation is employed to 

facilitate controlled tunneling and achieve a closer resemblance to practical applications. 

 

 

Figure 2.  Schematic of GaN HEMT device structure in TCAD Simulation 
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Figure 3. A 3D representation of a GaN HEMT device featuring a field plate designed 

using the method described in this work. 

In Fig. 2, Two types of field plate structures are being considered: gate-connected field 

plate and source-connected field plate. The left side length of gate connected field plate Lgp is 

fixed to be 0.4 mm as it has a minimal impact on blocking voltage optimization. Conversely, 

the right-side length of the gate field plate and the thickness of the gate metal are adjustable. 

Regarding the source field plate structure, the horizontal location, vertical location, and field 

plate thickness can vary. A 3D representation of our designed GaN HEMT device is shown in 

Fig. 3. 

Three key device performance metrics are extracted from TCAD simulations: off-state 

blocking voltage (BV), gate-drain capacitance (Cgd), and gate leakage. We use a standard 

scheme from [23] to obtain BV. As for Cgd, an AC simulation is conducted at the threshold 

voltage under zero drain bias with a frequency of 5 GHz. The gate leakage measurement is 

performed with the device in an off-state and a drain voltage of 24 V. A total of 488 TCAD 

simulations were generated under these specific settings. 

 

3. Feature Engineering 

 

One of the key success factors for machine learning models is feature engineering. The 

challenge in this work is how to convert field plate structure into features which can be 

efficiently captured and learned in a ML model. To streamline the analysis, we initially 

project the 2D field plate structure and metal contact into one-dimensional arrays, as depicted 

in Fig. 4(a). Each unit within these arrays represents various aspects of the field plate, such as 

metal plate thickness and oxide thickness above or below it. This transformation results in a 3 

x N matrix, where N corresponds to the number of units in each array, based on the chosen 

resolution. The resolution N was selected based on a balance between computational 

feasibility and the ability to capture relevant geometrical features of the field plate structures. 
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For instance, with a transistor width of 4 µm and a resolution of 0.05 µm, which is sufficient 

to capture the geometrical features of field plates, each array comprises 80 features. This 

necessitates a substantial quantity of TCAD runs or experimental data to develop a reliable 

input to the machine learning model. The geometric aspects of field plates optimized in our 

study include metal plate thickness of gate and source-connected field plate (parameterized by 

Tgp and Tsfp), oxide thickness below the source connected field plate (parameterized by Toxide), 

length, horizontal and vertical positions of both gate and source connected field plates 

(parameterized by combination of Rgp, Locsfp_left and Locsfp_right). 

(a) 

 (b) 

 

Figure 4.  2D Field Plate Geometry Transformation Process 
 

To address this data challenge, we implement a second transformation, as depicted in Fig. 
4(b). We convert the 1D arrays into a series of pulse functions, which is particularly effective 
given the sparse nature of the 1D feature array. In the example provided earlier, the metal 
plate array is transformed into three rectangular pulse functions, each requiring only two 
parameters (the left and right electrode locations): 
 

!"#$%&'(&%$#)*+ = ',-./)*; '01-./234-'5-6/7 01-./234-'289:/+ 

The gate field plate array is transformed into two rectangular pulse functions, with just 

three parameters (Metal Thickness, Gate Field Plate Left and Gate Field Plate Right) for each 

function needed to represent the metal thickness and the field plate's location: 

!<%$#'(&%$#)*+ = '>-/?1'@:8.AB-CC D ',-./)*; 'E?/-'!8-14'F1?/-'5-6/7 E?/-'!8-14'F1?/-',89:/+ 
Similarly, the source 

plate pulse function 

requires three 

parameters:  

1D Arrays

to Pulses
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Figure 5. Convert slant field plate into a pulse function via coupling of rectangular and 
sawtooth pulse functions.

For more intricate field plate structures, such as a slant field plate shown in Fig. 5, we can 

employ triangular, sawtooth, Gaussian, or other pulse functions to decode the field plate's 

configuration. This method significantly reduces feature dimensions while retaining sufficient 

information for effective machine learning. It is important to note that as the complexity of 

the field plate structures increases, resulting in higher feature dimensions, more data is 

required to train the neural network surrogate model effectively. In our study, we considered 6

features, in which Tgp ranges from 0.2 µm to 0.6 µm, Tsfp ranges from 0 to 0.6 µm, Toxide 

ranges from 0 to 0.2 µm, Rgp ranges from 0.2 µm to 1.6 µm, Locsfp_left ranges from 2.35 µm to 

3.25 µm, Lsfp ranges from 0 µm to 1.2 µm (Locsfp_right = Locsfp_left + Lsfp), and Lgp is kept at 0.4 

µm. Slant field plate is not included. Around 500 TCAD simulations were sufficient to train a 

well-performing model, which took about a month of CPU time. When the number of features 

doubles, we anticipate that the required TCAD data will also double to achieve a robust 

model. However, running TCAD simulations on a computer cluster with multiple CPUs can 

significantly reduce the training time. While the training time of the neural network surrogate 

model increases with more data and features, this process takes less than 10 minutes on one 

GPU for our current model, and the execution time of the neural network model is faster, 

typically completed in 5 minutes. Therefore, we expect the most time-consuming step to be 

the TCAD data generation. Thus, while the generation of TCAD data is the most time-

consuming step, the overall process remains manageable. Based on our observations, we 

estimate that optimizing up to 70-80 metrics with acceptable complexity is feasible in one 

month if leveraging parallel computing resources (> 8 CPUs) for TCAD data generation.

4. AI-assisted Design Framework

Following the feature transformation, we utilized the TCAD dataset to train a robust 

neural network surrogate model, the hyperparameter of which is optimized via Bayesian 
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Optimization. The dataset was divided into 80% for training and 20% for validation and 

testing. Fig. 6 provides an overview of the neural network model's architecture, featuring 

three output layers, each responsible for predicting one of the performance metrics. The 

training and validation results are presented in Fig. 7 and Table 1. These results demonstrate 

the model's capability to well predict key metrics, including BV, Cgd, and gate leakage except 

for that the BV prediction in the high BV region is saturated due to the lack of BV data in 

high BV region. This is also reported in other literature [12]. 

Subsequently, we employ an AI-assisted framework, illustrated in Fig. 8 and Fig. 9, The 

neural network model is then integrated into the NSGA-II optimization framework as an 

optimization problem to co-optimize three key performance metrics of GaN HEMT devices: 

blocking voltage, gate leakage, and capacitance. These three metrics are optimized under the 

constraints of physical dimension of device structures. Optimizing gate leakage reduces 

power dissipation, leading to more efficient operation. Reducing Cgd capacitance increases the 

speed of operation and further improves efficiency. Additionally, a high BV allows 

MOSFETs to operate safely in high-voltage environments, which is critical for applications 

such as power supplies, motor drives, and inverters where high voltages are common. This 

comprehensive optimization ensures that the MOSFETs deliver enhanced performance across 

various metrics while maintaining reliability and efficiency. There are two optimization 

strategies. The first in Fig. 8 aims to optimize all three metrics, which involves maximizing 

BV while minimizing gate leakage and Cgd. The second strategy in Fig. 9 targets a specific 

BV value while minimizing gate leakage and Cgd. The latter approach is commonly known as 

inverse design. The algorithm is illustrated in following equations: 

O?*'6PQ)*;'!"#$%&'(&%$# 7 !<%$#'(&%$# 7 !GHIJK#'(&%$#'+!or!
min!?RC)@?29-/'ST U '6PQ)*;'!"#$%&'(&%$# 7 !<%$#'(&%$# 7 !GHIJK#'(&%$# '++!for!inverse!design!
O8B 6<%$#_&#%V%<#W*;'!"#$%&'(&%$# 7 !<%$#'(&%$# 7 !GHIJK#'(&%$# 'X!
O8B'6YZ[)*;'!"#$%&'(&%$# 7 !<%$#'(&%$# 7 !GHIJK#'(&%$# '+!
Subject!to:!
M3N2.-'!8-14'F1?/-',89:/ \ 5-6/'36']2?8B!
M3N2.-'!8-14'F1?/-'5-6/ ^ 'E?/-'!8-14'F1?/-'5-6/!
M3N2.-'!8-14'F1?/-',89:/ U 'M3N2.-'!8-14'F1?/-'5-6/ ^ `!
 
To further enhance the performance of surrogate model, we will let the surrogate model 

acquire new information from Usage I and II and do an Incremental Learning (shown in Fig.  

10). 

The framework can produce Pareto front points, as demonstrated as blue dots in Fig. 11 

and Fig. 12, representing potential optimal solutions. Subsequently, these solutions are 

subjected to validation via TCAD models. The validation results from TCAD provide 
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feedback to the system, which allows us to tune the neural network model to the best 

performance.  

 

 
Figure 6. Architecture of Neural Network Model. 

 

       

 
Figure. 7 Training (yellow) and validation (blue) parity plots of the NN model. Green 

lines show ideal predictions where NN Predication is equal to TCAD. The R2 of the whole 
dataset is shown on the top left. 

 
 Blocking Voltage 

(V) 
Gate Leakage 

(mA/mm) 
Cgd 

(pF/mm) 

Training 
RMSE 

20.83 0.36 1.76e-2 

Validation 
RMSE 

27.75 0.59 2.10e-2 

Table 1. Training and validation RMSE of the NN Model 
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Figure 8. AI-assisted Framework of GaN HEMT Device (Training and Usage I). 

 
Figure 9. AI-assisted Framework of GaN HEMT Device (Usage II). 

 
Figure 10. Incremental Learning of NN Surrogate Model. 

 
The validation results for both optimization strategies are provided in Tables 2 and 3. 

These results indicate that we have been able to slightly surpass the maximum BV value in 

the TCAD dataset (315 V) by 1%, while effectively suppressing gate leakage by up to 23% 

and reducing capacitance by up to 9%. A schematic and detailed dimensions of device 

structure for Pareto Front 2 is shown in Fig. 13 and Table 4. It's noteworthy that the predicted 

BV values in the table are slightly below the maximum BV value from the TCAD data due to 

insufficient training data at high BV region. This implies that while the surrogate model 

provides a good approximation, it may not fully capture the extreme values observed in 

TCAD simulations due to the saturation effect. Nonetheless, it's important to highlight that 

our approach demonstrates the capability to exceed the maximum BV value present in the 
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TCAD data, suggesting that saturation mentioned in previous discussion in this section and in 

[12], isn't a significant concern for our optimization process. The surrogate model's 

predictions are still valuable for guiding the design improvements. In the context of inverse 

design, we set the target BV value at 250 V and obtained several feasible solutions through 

this framework. This not only allows us to achieve the target BV value but also optimize gate 

leakage and capacitance concurrently. Importantly, once a reliable AI framework is 

established, it significantly reduces model iteration cycles and accelerates technology 

development compared to traditional methods. 

 

 
 

Figure 11. Pareto Front generated via AI-assisted model for device optimization. First plot 
shows BV vs. Cgd and second plot shows BV vs. gate leakage. Blue dots indicate Pareto 
Front, while green dots indicate TCAD simulation data. 

 

 
Figure 12. Pareto Front for Inverse Design of GaN HEMT with a target blocking voltage 
250V (Gate leakage vs. Cgd). Blue dots indicate Pareto Front, while green dots indicate TCAD 
simulation data with BV values close to 250V. 
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Pareto 
Front 

BV 
(NN) 

Gate 
Leakage 

(NN) 

Cgd 
(NN) 

BV 
(TCAD) 

Gate 
Leakage 
(TCAD) 

Cgd 
(TCAD) 

1 272.65 1.57 0.632 316.15 1.93 0.609 

2 280.22 1.65 0.635 317.75 2.35 0.633 

3 273.47 2.24 0.635 307.19 2.56 0.640 

4 285.09 1.49 0.638 303.67 1.84 0.620 

5 285.38 1.49 0.638 304.63 1.52 0.620 

6 284.76 1.49 0.639 308.23 1.68 0.573 

Table 2. NN predictions and TCAD validation results of a subset of Pareto Front for BV (V), 
gate leakage (mA/mm) and Cgd (pF/mm) optimization. 

 
Pareto 
Front 

Gate 
Leakage 

(NN) 

Cgd 
(NN) 

BV 
(TCAD) 

Gate 
Leakage 
(TCAD) 

Cgd 
(TCAD) 

1 1.77 0.764 267.11 1.94 0.765 

2 1.91 0.626 264.31 2.96 0.585 

3 1.98 0.625 247.19 3.20 0.610 

4 2.22 0.626 254.87 3.27 0.620 

5 1.86 0.626 247.83 4.66 0.642 

Table 3. NN prediction and TCAD validations results of a subset of Pareto Front for inverse 
design with target BV of 250 V. (We don’t include BV results from NN model since the 

difference between NN BV and target BV is very small.) 
 

 
Figure 13.  2D Schematic of GaN HEMT device structure of Pareto Front 2 in Table 2, where 
Lgp denotes left side gate field plate length, Rgp denotes right side gate field plate length, Tgp 
denotes gate field plate thickness, Locsfp_left denotes horizontal location of left side of source 
field plate, Locsfp_right denotes horizontal location of right side of source field plate, Tsfp 
denotes thickness if source field plate and Toxide denotes oxide layer thickness beneath source 
field plate. 

Pareto Front Value (mm) 

Lgp 0.40 

Rgp 0.20 

Tgp 0.59 

Locsfp_left 2.34 

Locsfp_right 2.74 

Tsfp 0.59 

Toxide 0.13 

Table 4. Dimensions of device structure in Fig. 13. 
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In summary, this work presents a groundbreaking method to optimize semiconductor devices, 

focusing on GaN HEMTs and their counterparts. By transforming complex field plate 

structures into a concise feature space and integrating them with machine learning, we have 

addressed a significant challenge in semiconductor device design. The proposed AI-assisted 

framework effectively enhances the design and performance of GaN HEMTs, even enabling 

inverse design capabilities. Both two usages successfully achieve their respective goals, with 

the first method providing a balanced optimization of all three metrics, and the second method 

effectively achieving a target BV value while optimizing the other two metrics. Moreover, the 

approach is versatile and can be applied to other transistors featuring field plate structures, 

making it a valuable tool for a broad range of semiconductor devices. This work represents a 

promising step forward in semiconductor device design, offering efficiency and reliability to 

meet the demands of high-power and high-frequency electronic applications. 
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