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Fig. 1: Autonomous Robotic Assembly: We present an autonomous robotic assembly system that can assemble a gear box
from any given initial condition, as shown in the first column. The assembly system can reason about grasp feasibility and
slide selected objects out of a clutter to create grasp affordances for the assembly parts. Then it performs the pose manipulation
and grasping required for the downstream assembly task. Finally, using various different controllers, it performs the required
insertion and meshing of gears to assemble a functioning gear box. The proposed system works in a closed-loop fashion,
where it can deliberate on the success and failure of individual steps and react accordingly.

Abstract— Imagine a robot that can assemble a functional
product from the individual parts presented in any configura-
tion to the robot. Designing such a robotic system is a complex
problem which presents several open challenges. To bypass
these challenges, the current generation of assembly systems
is built with a lot of system integration effort to provide the
structure and precision necessary for assembly. These systems
are mostly responsible for part singulation, part kitting, and
part detection, which is accomplished by intelligent system
design. In this paper, we present autonomous assembly of a gear
box with minimum requirements on structure. The assembly
parts are randomly placed in a two-dimensional work environ-
ment for the robot. The proposed system makes use of several
different manipulation skills such as sliding for grasping, in-
hand manipulation, and insertion to assemble the gear box.
All these tasks are run in a closed-loop fashion using vision,
tactile, and Force-Torque (F/T) sensors. We perform extensive
hardware experiments to show the robustness of the proposed
methods as well as the overall system. See supplementary video
at https://www.youtube.com/watch?v=cZ9M1DQ23OI.
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I. INTRODUCTION

Designing robots that can achieve human-like dexterity
and reasoning while performing complex, long-horizon tasks
has been the long-standing goal of robotics. While robots
have been getting very good at performing repetitive pick-
and-place kind of operations, achieving reliable & high
degrees of dexterity remains elusive. Consequently, robots
require a lot of structure to perform tasks that require
complex and long-horizon reasoning. Imagine a factory floor
where assembly blueprints and parts are presented to a robot
in arbitrary configurations, and the robot can autonomously
assemble the desired product [1]. While this task is effortless
for humans, it is quite challenging for robotic systems. In this
paper, we study a simplified assembly problem to understand
the challenges of the underlying long-horizon manipulation.

Assembly is arguably the single biggest application of
robots in current society. However, this generally requires
creating a complex system for singulation and manipulating
the pose of parts. Robots are simply used as machines to



perform a very precise pick-and-place task. Robots with
intelligent manipulation skills can simplify the design and
operation of these systems on factory floors. However,
manipulation is a complex problem from the aspects of
planning, sensing, and control. Despite being an active area
of research for decades, it still remains a widely open
and challenging problem to all of robotics community [2].
Through a simplified example of the assembly of a gear
box (see Fig. 1), we highlight the challenges associated with
designing agents that can achieve high levels of dexterity and
autonomy with simple hardware.

Robotic assembly is a challenging, long-horizon manip-
ulation problem. Thus, performing autonomous assembly
requires reasoning about various sub-goals given a particular
instance of the environment. Apart from reasoning about a
feasible plan, it also presents the challenge of achieving very
high accuracy and precision to make a tight tolerance assem-
bly feasible. Another major challenge is to allow robustness
to various initial conditions so that the system can always
achieve the desired goal regardless of the initial condition.
To demonstrate all these challenges, we present the assembly
of a gear box shown in Fig. 1. Under some mildly restrictive
assumptions, we present solutions to the problems in order to
create an autonomous agent that can perform assembly with
a perfect success rate. We make use of three different kinds
of sensors – an RGBD camera, vision-based Gelsight tactile
sensors, and a six-axis F/T sensor mounted on the wrist of
the manipulator.

As shown in Fig. 1, our system can perform part singula-
tion, part manipulation, as well as assembly in a closed-loop
fashion while using an array of controllers and perception
methods for individual steps. In particular, this paper has the
following contributions:

1) We present a benchmark assembly task which can
be used to test the dexterity and precision of related
manipulation techniques.

2) We present an autonomous assembly system which
can combine various sensing modalities such as vision,
touch, and F/T while running in closed-loop feedback.
The proposed system is extensively tested on hardware
and has been shown to achieve an almost perfect
success rate.

To the best of our knowledge, an autonomous, multi-modal
system that can perform high-precision multistep assembly
task has not been presented earlier in the literature. We hope
that the proposed system can be used as a benchmark in the
near future for testing manipulation algorithms and methods.

II. RELATED WORK

Robotic manipulation primitives. Autonomous assembly
has been one of the most challenging and widely studied
problems in robotics in the past several decades [3], [4],
[5], [6]. Several challenges related to assembly tasks have
been widely studied in the literature, including grasping in
clutter [7], [8], part singulation [9], pose estimation [10],
[11], [12], [13], part insertion [14], etc. Similarly, in-hand
manipulation and non-prehensile manipulation have also

been widely studied in the literature [15], [16], [17], [18],
[19], [20]. However, all these work would require an external
point of contact for manipulation. In-hand pose estimation
using tactile sensors has also been explored recently [12],
[13]. Similarly, insertion using force or tactile feedback has
also been explored [14], [21]. However, these methods could
struggle for cases with very tight tolerances required during
assembly. Furthermore, these primitive skills have not been
composed for long horizon tasks with sensory feedback.

Robotic assembly benchmarks. Long-horizon manip-
ulation involves many challenges, including the need to
dynamically switch skills based on observations and the
ability to recover from failures. Recent robotic benchmarks,
such as furniture assembly [3], [5], [22], irregular block
stacking [23], and manufacturing tasks [5], [6], [22], pro-
vide reproducible environments to evaluate the manipulation
performance. Our task is inspired by the NIST robotic ma-
nipulation benchmark [6], employing a simplified insertion
tolerance of approximately 1 mm as opposed to the submil-
limeter tolerance (0.029 mm and 0.005 mm) of the standard
board. This simplication was explored similarly in the NIST-i
benchmark, but focused only on gear insertion [24]. Previous
approaches to solve these assembly benchmarks typically
omit tactile feedback, relying heavily on vision sensors,
leading to issues with occlusion or kinematic constraints
imposed by extra links for vision sensors mounted on robot
links. Although tactile feedback has been explored for pick-
and-place tasks [25], we believe that its integration with
diverse visuotactile techniques for the design of autonomous
assembly systems represents a significant and novel contri-
bution to the existing literature.

III. PROBLEM STATEMENT

While the autonomous assembly problem in its entirety is
a very complex problem, we make certain assumptions to
solve it in a limited scope. This section briefly describes it.

A. Task Assumptions

The main objective of the paper is to evaluate the manip-
ulation capability and robustness of the proposed system. In
order to evaluate these, we make some simplifying assump-
tions to limit the scope of this study.

1) The positions of the holes are known and fixed.
2) The surface for the manipulation of parts and the base

plate for assembly is perfectly leveled (see Fig. 1).
3) The assembly order of the parts is known.

Assumption (1) is not very restrictive. We can easily relax
this by using a vision system to track holes, as shown earlier
in our previous work [21]. The tray is kept leveled so that
the parts do not slide under gravity. However, in the most
general case, the manipulation primitives can be generalized
to an inclined one. Assumption (3) can also be relaxed by
using a Large Language Model [26] or a graph planner [1].

B. System Description

Robot platform. The MELFA RV-5AS-D Assista robot,
a 6 DoF collaborative robot, is used in this study. Two



Fig. 2: This figure shows the assembly parts with two
identical pegs and two gears. Accurate dimensions of the
parts are provided up to machining tolerances. The holes in
the base plate are 15 mm in diameter and 70 mm apart.

tactile sensors are mounted on the WSG-50 gripper, and a
Force-Torque (F/T) sensor is mounted on the wrist (see the
supplementary video for the system). The robot fingers also
have a silicone gel padding at the bottom, which is used
during contact interactions.

Tactile sensor. We use commercially available GelSight
Mini tactile sensors, which provides 320×240 compressed
RGB images at a rate of approximately 25 Hz, with a field
of view of 18.6 × 14.3 millimeters.

Vision sensor. An Intel Realsense L515 camera is used as
a vision sensor for the RGB-D input of the scene. This vision
sensor is used to observe the table-top used for manipulation
of assembly parts. The assembly location is known to the
robot and is not observed by the vision sensor.

Assembly Parts. Figure 2 shows the assembly parts. The
gear box consists of two pegs, a small and a large gear, and a
baseplate that has two holes for the pegs. The dimensions of
the individual parts are shown in Figure 2. The tolerance for
the various insertion tasks is approximately 1 mm. While
the tolerances are much higher than what is expected in
assembled products [6], we believe the proposed approaches
could be used for tighter assembly. We denote the parts by
p1, p2, gl, gs for the pegs, the large gear, and the small gear,
respectively.

Assembly Task. Imagine a task where assembly parts are
presented in any given configuration in the robot workspace.
The robot has to assemble a functional gear box by manipu-
lating these parts. As shown in the first column of Fig. 1, we
present the parts in any planar configuration to the robot. The
task for the robot is to perform the required manipulation
and assemble a functioning gear box using these parts. It
is noted that the parts are always presented in a workspace
that is visible to an overhead camera (the black boundaries in
Fig. 1 show this workspace). As specified earlier, the location
of the base plate where the assembly has to be performed is
known to the robot.

What makes this task challenging? There are multiple
tasks that an agent needs to reason about for the assembly

task. The first task is to reason about grasp affordances when
the parts are presented in a clutter. In case the parts cannot
be grasped directly, the robot has to reason about how it can
move them apart or singulate them for grasping. The second
challenge is for the robot to reason about how it should
grasp the individual parts so that it is suitable for the desired
downstream assembly task. Consequently, how should the
robot achieve the precision required for assembly when the
grasp pose is not fixed? Furthermore, how can the system
be designed to achieve extremely robust performance? We
address some of these challenges in this paper.

IV. SYSTEM DETAILS

A system-level flow chart of the designed assembly system
is shown in Fig. 3. As could be seen, most steps use multi-
modal feedback during execution of the task. We believe
that this provides robustness to the system to perform the
task reliably.

A. Vision System

Achieving reliable robotic grasping hinges on accurately
determining the pose of target objects within the input data.
Recent advancements in deep learning-based object pose
estimation [10], [11], [27] have garnered attention for their
ability to achieve centimeter-level accuracy across diverse
datasets. Nevertheless, these methods are often insufficient
for meeting the stringent requirements of precise robotic
manipulation tasks at the sub-millimeter level. Moreover, in
our scenario, assembly parts are initially placed in arbitrary
configurations, involving multiple instances of the same
object type.

In our settings, the workspace of the robot for autonomous
assembly is constrained in that the parts lie on a planar
workspace, and thus, the grasp synthesis can be constrained
from one direction. Therefore, the synthesis of the grasp of
each object can define a pose output, g = (p, ϕ, q), where
p = (x, y, z) is the position of the object, ϕ is the singular
rotation angle around the vertical axis, and q represents the
label of the object class. We adopt a hybrid approach that
involves deep learning for part detection and segmentation,
combined with analytical pose computation. The network
architecture is built on a backbone convolutional neural
network architecture for feature extraction. We use a feature
pyramid network (FPN) based on ResNet-50 [28]. Mask-
RCNN [29] is based on region proposals that are generated
through a region proposal network. It adds a network head,
a fully convolutional neural network, to produce the desired
instance segmentation. Finally, mask and class predictions
are decoupled; the mask network head predicts the mask
independently from the network head predicting the class.
Typically, this involves using a multitask loss function L =
Lcls+Lbbox+Lmask. For training the network, we perform
transfer learning from the MS COCO dataset pre-trained
weights in a supervised manner. We capture 380 images of
size 640×480 under different initial conditions and annotate
the data to indicate segmentation pixels and class labels. A
5:1 ratio was used to divide the dataset into training and



Fig. 3: System level overview of the assembly controller. The color codes indicate the feedback modality for the particular
related operation. Multiple color blocks for the same operation indicate that multiple sensors are used for feedback and/or
controller design for the particular operation. [Best seen in color].

validation sets. We selected the maximum iterations of 4000.
We identify the resulting segmentation masks for parts with
the network prediction. The detected segmentation masks
are utilized with depth estimation to compute the corre-
sponding registered point cloud data points. These clusters
are then processed to perform analytic pose estimation [30]
for grasping and part singulation. We analyze the principal
components of a covariance matrix created from the nearest
neighbours of the point pi in a local neighbourhood of size
n. We denote the centroid p̄ of the neighbours of pi, given
by Eq. (1). The covariance matrix C ∈ R3×3 is computed
as in Eq. (2) and the eigenvector problem is presented in
Eq. (3). The eigenvalues λj ∈ R and the eigenvectors v⃗j
form an orthogonal frame, corresponding to the principal
components of the point set in the neighbourhood n.

p̄ =

∑n
k=1 pk

n
, (1)

C =
1

n

n∑
i=1

(pi − p̄)(pi − p̄)T , (2)

C · v⃗l = λl · v⃗l, l ∈ {0, 1, 2}. (3)

The eigenvalue λl quantifies the variation of pi along the
direction of the corresponding eigenvector and the smallest
eigenvalue λ0(λ0 ⩽ λ1 ⩽ λ2) corresponds to the variation
along the surface normal vector (i.e. the eigenvector v⃗0) of
the surface patch of neighbourhood size n. The object pose
is then represented with p̄ and the singular rotation angle
around the vertical axis ϕ computed from the angle between
the minor eigenvector and the horizontal axis. The object
class label q is obtained from the Mask-RCNN output.

B. Part Singulation

The assembly parts are placed in any initial configuration
in a clutter to allow generalization. Consequently, the robot
first has to reason about grasp afforandance of the assembly
parts. We design a model-based method using random-
shooting to reason about part singulation.

Model-based Singulation using Random Shooting.
Given the pose of all the objects from the vision system,
we create the manipulation environment in simulation using
the MuJoCo physics engine [31]. We use a simple random
shooting method in this simulation environment to optimize
the robot’s action using a suitable cost function. More con-
cretely, we sample a fixed number of actions and choose the
one that minimizes the cost function. The action is described

as a = {o,dx,dy}, where o ∈ {p1, p2, gl, gs} is the object
to interact with and dx, dy are the relative planar positions
on the manipulation surface to which the selected object o
is moved. We sample actions from a uniform distribution
independently, specifically setting dx, dy ∼ U(−0.3, 0.3)
[m] to sample a direction and a distance to move.

While pushing provides a good manipulation primitive to
move the object on the table top surface, it is susceptible to
uncertainty in friction and point of contact [32]. To allow
better robustness, we use the sliding manipulation primitive
to move objects on the table-top [33]. To imitate the sliding
behavior in the simulation, we divide the direction dx,dy
into smaller steps and check the collision during the move
of the object. We then compute the cost of the sampled action
using the following function:

c = −λ1Icollision + λ2Igear − λ3dobj − λ4dcenter, (4)

where Icollision and Igear are indicator functions of whether
a collision between the selected object and other objects
happens during sliding and whether a gear is selected. dobj
and dcenter are the distance between the selected object
and others before and after the sliding operation and the
distance between the selected object from the center of the
manipulation surface, respectively. The first term encourages
optimization to avoid collisions, and the second one encour-
ages the agent to interact with the gears since they have
larger contact surfaces than pegs, resulting in fewer chances
of losing contact during sliding on the real system. The third
term encourages the selected object to have more affordance
after the sliding operation. The final term avoids the part
from dropping from the manipulation surface. We sample
NRS = 100 actions and choose the one with the minimum
cost as the action to apply in the real system.

Singulation execution by sliding. We do not consider the
frictional interaction for sliding in simulation to simplify the
sim2real transfer. Rather, we design a reliable and compliant
sliding controller that can execute sliding for simple linear
paths (see Fig. 4 right). We use the object pose estimate from
vision feedback to establish contact with the chosen object
and then slide the object using a predefined normal contact
force. The normal force is optimized on the real system to
minimize slipping between the object and the manipulator
end-effector. We terminate the singulation process if all pegs
can be grasped without colliding with other objects. This is
checked in the physics engine based on the vision feedback
after every sliding action performed by the robot.



Fig. 4: Singulation procedure. Given part pose from vision module (left), we
first reconstruct the manipulation environment in the MuJoCo physics engine
and generate an action using the random shooting method (middle). We then
apply the action in the real system by sliding the target object using a suitable
impedance controller with the F/T sensor (right).
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Fig. 5: For performing the peg ma-
nipulation, we design a grasp that
allows in-hand rotation as the peg is
grasped from the table-top. The grasp
is defined as gp = gp(lp, fp), where
lp = (xp, zp) as shown in the figure.

C. Peg Grasping and Manipulation

Once the parts are singulated, the objective is to grasp the
singulated parts and perform the downstream assembly task.
In order to assemble the gear box, the peg has to be inserted
in the correct hole. Thus, apart from grasping the peg, it
has to be re-oriented so that it could be inserted (see the
third column of Fig. 1). There are several possibilities one
can choose from. There is a wealth of work on using non-
prehensile manipulation using extrinsic contacts that could
be used to re-orient the peg [15], [16], [17]. However, non-
prehensile manipulation is generally difficult to track online
as one would need to estimate the slip, which requires a more
careful design of tactile sensors and fingers.

The other option we investigate is in-hand manipula-
tion [20], [18], as it could be tracked easily using tactile
sensors co-located at the gripper fingers. We search for a
grasp such that the peg re-orients in grasp as the peg is lifted
from the table-top. In particular, we find a parameterized
grasp denoted as gp = gp(lp, fp), where lp is the grasp
location in the local peg frame and fp is the grasping force
that results in the desired peg re-orientation. This is shown
in Fig. 5.

D. In-hand Pose Estimation

One of the biggest challenges with assembly is to localize
the hole w.r.t. the peg after the robot has been able to grasp
the peg. This presents a big challenge as with variation
in grasp, achieving very tight localization between the peg
and the hole could be challenging [14]. Previous approaches
to performing tight tolerance insertion have tried to correct
relative pose using force or tactile observations during con-
tact formation with the environment (see [14], [21], [34]).
However, allowing grasp to be a variable for the underlying
problem makes learning challenging. An alternative approach
could be to localize the peg in the grasp using a reliable in-
hand pose estimation method. Vision-based tactile sensors
co-located at the gripper fingers are very convenient for this
task and have previously been explored for similar tasks [13],
[12]. We train an in-hand pose estimation model that can
predict the relative pose of the peg w.r.t. the local gripper
frame. The model takes two tactile images obtained from
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Fig. 6: Example tactile images when grasping a peg, which
is inputted to the in-hand pose estimation model to estimate
the grasp error and correct it before insertion.

the tactile sensors attached to the two fingers I left, Iright

(see Fig. 6), and estimates the pose transformation in the
local gripper frame.

To train the model, we collect tactile images of the peg
in the grasp by introducing displacement from a uniform
distribution of dx ∼ U(−10, 10) [mm] in the local gripper
frame. We then train a ResNet18 [28] model with regression
loss to predict the displacement in the local gripper frame.
Since the hole position is known in the local gripper frame,
we can perform insertion once the peg is localized in the
local gripper frame.

E. Gear Insertion

After peg insertion, the robot needs to insert the gears to
assemble the gear box. Similar to the peg insertion problem,
grasping the gears using vision-based localization introduces
grasp uncertainty, and thus the robot needs to localize the
gear in the local grasp (or gripper) frame. Even though the
tactile sensors provide us with very high-resolution object
features, tactile images do not provide enough information
for in-hand localization of gears. This is because the gear
teeth are identical and do not have any additional features to
estimate the pose of the gear due to their limited field of view.
Consequently, we make use of the force observations up on
contact formation between the gear and the peg to localize
the gear w.r.t. the peg. This is similar to the method presented
earlier in [21]. Although one can train such a policy using
tactile sensors (similar to [14]), we make use of six-axis
force observations from the F / T sensor mounted on the
robot wrist.



Fig. 7: This figure shows the misalignment between the
gears during meshing and the controller designed to align
the gear teeth by using a suitable compliance control input
u = u(f, rd). This compliance controller is used to rotate
the smaller gear while creating relative movement between
the gears so that eventually the teeth align.

To train the gear insertion policy, we collect data by
introducing known error between the gear center and the
peg. We then measure the six-axis force observations up on
contact formation between the peg and the gear with known
pose error. The sensor can return measurements at 280 Hz. To
collect training data, we add the known pose error between
the gear and the peg, such as dx ∼ {−4, 4} [mm]. The robot
then makes contact with the peg, and we collect data for
T = 3 seconds for each insertion attempt. After collecting
the raw signals, we compute the moving average over 70
time steps, since the raw F/T signals are noisy.

F. Gear Meshing

The tolerances of the parts are such that simply inserting
the gears does not result in alignment of the gear teeth
(see Fig. 7). Consequently, the robot has to perform fine
manipulation so that the gear teeth could be meshed. We
first investigated a force-feedback strategy to understand the
alignment of the gear teeth. However, we observed that there
was no reliable trend between the observed force signature
and teeth alignment. Thus, we propose an open-loop com-
pliant gear meshing method. In particular, we designed a
compliant force controller u = u(f, rd) where f is the
meshing force and rd is the radial distance from the gear
center at which the force is applied, as shown in Fig. 7. This
compliant controller has the task of rotating the small gear
while minimally disturbing the large gear. Note that the large
gear will still rotate due to friction between the two gears.
However, the compliant controller simply needs to create
relative movement between the two gears. Due to the relative
movement between the gears, the gear teeth eventually align.

V. RESULTS

We perform rigorous experiments to understand and ad-
dress the following questions.

• What is the success rate of the individual system com-
ponents? What are some of the observed failure cases?

• What is the success rate and performance of the overall
system?

TABLE I: Vision Pose Estimation. Validation results for
both detection and instance segmentation. APb and APm
denotes detection and instance segmentation results.

APb APb@0.5 APb@0.75 APm APm@0.5 APm@0.75

93.32 99.50 99.08 93.37 99.50 99.08

Fig. 8: Vision Pose Estimation. Qualitative results from the
vision system. CAD model overlayed on point cloud for pose
visualization.

In the rest of the paper, we present experiments to address
these questions. We skip detailed analysis of compliance
controller for peg manipulation and gear meshing for brevity
and will be presented in an extended version of the paper.

A. Vision Pose Estimation

We report detection and instance segmentation results for
validation (Table I). We use COCO evaluation metrics AP
(averaged over IoU thresholds). Figure 8 shows a sample
of qualitative results from the vision system. The efficacy
of vision-based pose estimation is assessed on downstream
tasks. Our findings indicate consistent success in effectively
grasping and singulating assembly parts from vision across
diverse test scenarios. The final precision required for in-
sertion tasks was compensated by tactile and F/T sensor
feedback, which is presented next.

B. Part Singulation

To evaluate the performance of part singulation, we com-
pare the random shooting method with different numbers of
samples, NRS ∈ {1, 10, 100, 1000}. We set the maximum
number of interactions to 10, and use this value if the
algorithm fails to singulate, that is, the target object moves
outside the manipulation surface. Table. II shows the success
rate, number of interactions, and elapsed time to complete
the singulation. As expected, the success rate and the number
of interactions improve as the number of samples increases
and converge with NRS = 100. Since NRS = 1000 takes
approximately 9.3 times longer than NRS = 100 with similar
performance, we use NRS = 100 for real experiments.

The model-based planner for singulation was implemented
on the real system using a compliance controller designed



TABLE II: Part singulation. Success rate, number of inter-
actions, and elapsed time required to singulate objects with
different number of samples NRS in simulation and the real
system. The results are averaged over 100 runs on different
initial conditions.

Simulation Real
Number of samples NRS 1 10 100 1000 100

Success rate 0.19 0.80 1.00 1.00 1.00
Number of interactions 8.78 4.12 1.94 1.94 3.26

Elapsed time [secs] 0.05 0.21 1.38 12.87 -

Fig. 9: Part singulation. The histogram shows the distribu-
tion of singulation attempts and slip frequency between the
object and the manipulator over 100 real-system trials.

for sliding. We tested the execution on real systems for 100
initial conditions with a 100% success rate. The number of
interactions required for singulation is presented in Fig. 9.
We also observed slipping between the manipulator and
objects during sliding, as shown in the histogram.

C. In-hand Pose Estimation

Next, we evaluate the performance of the in-hand pose
estimation. We compare our method with a different number
of training data (10, 100, 1000) to a pick-and-place policy,
where the robot does not correct the grasping error and tries
to insert the peg directly into the hole. To test the methods,
we randomly added an error in grasp on the X-axis from a
uniform distribution dx ∼ U(−10, 10) [mm].

The results in Table. III demonstrate that the baseline pick-
and-place policy fails to insert the peg because the tolerance
of the target hole is very tight (1 mm). On the contrary, our
method with sufficient training data (more than 100) achieves
a submillimeter precision in estimation, and enables the robot
to insert the peg successfully. Data collection time for 100
data requires approximately 20 minutes.

D. Gear Insertion

Figure 10 shows the variation of the force data against
the relative error between the peg and gear position during
insertion. This data is then used to train a supervised gear
insertion policy that can predict the expected error based
on the force readings. We use LSTM [35] with two layers,
each having 256 units, to capture patterns in time-series data.
The supervised gear insertion predicts the direction of error
between the peg and the gear in an iterative fashion. This
supervised policy was tested for 100 times where it was able
to achieve a success rate of 95% for gear insertion.

TABLE III: In-hand pose estimation. success rate and
average error of baseline and our method with different
number of training data (10, 100, 1000).

Baseline Ours
10 100 1000

Success rate 3/20 10/20 20/20 20/20
Average error [mm] N/A 1.52 0.43 0.18

Fig. 10: Gear insertion. Force observations up on contact
formation between the large gear and peg. We use these to
learn the dependence between the alignment and the expected
force readings. The horizontal axis is the error in X-axis.

Fig. 11: End-to-End evaluation. Elapsed time for each
operation averaged over 20 runs.

E. End-to-End Evaluation

We have tested the entire system under 225 different
initial conditions (randomized by a diverse set of audience),
and have been able to achieve a success rate of 99.11 %
(223/225). In one of the failure cases, the robot could not
singulate the parts. The other failure case was when the robot
could not mesh the gear after 5 attempts. Fig. 11 shows the
average elapsed time for each operation over 20 different
runs. The majority of time is dedicated to manipulating the
peg, demanding delicate adjustments and re-grasping (see
supplementary video). Misalignment related to gear grasping
necessitate intervention from the gear insertion policy trained
on force signals. This tendency is evident in the duration
of gear insertion. Notably, the timing results encompass the
manipulator arm’s movement time.



VI. CONCLUSION AND DISCUSSION

Creating autonomous assembly agents can have a huge
impact on the manufacturing industry. However, designing
such agents presents myriads of challenges to achieve oper-
ational flexibility and robustness. In order to understand some
of the challenges associated with autonomous assembly,
we presented an autonomous robotic assembly system. The
proposed assembly system can perform singulation and pose
manipulation of assembly parts followed by high-precision
assembly using vision as well as tactile feedback. The
proposed system is extensively tested with various different
initial configurations of the assembly parts to demonstrate
the robustness of the proposed system.

We discovered several different failure cases during the
development of the assembly system, which gave us useful
insights. Since the singulation planning used a random shoot-
ing method, oftentimes it resulted in sub-optimal plans. The
in-hand manipulation of the peg would fail after continued
use of the Gelsight sensors. This was mainly because the
gel pads of the sensors would become smooth, resulting in
a reduction of the friction coefficient causing an undesirable
slip of the peg during the in-hand manipulation. Similarly, the
gear meshing was very susceptible to the amount of force
applied during the meshing operation, requiring very fine
manipulation. In the future, it would be desirable to have
the capability of detecting these failures automatically and
to have failure recovery modules.

Although we demonstrate the effectiveness of the proposed
system with familiar components, there’s a crucial need for
robots to handle unfamiliar parts. Achieving this entails en-
abling robots to swiftly perceive and construct object models
through interactive perception. This process mirrors how
humans intuitively form object models during interactions.
Nevertheless, comprehensively understanding the creation of
object models tailored for object manipulation remains an
area ripe for exploration.
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