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I. INTRODUCTION

Integrated circuit (IC) technology advances human society
by powering numerous applications and infrastructures with
microelectronic chips of a small footprint. Recent advances
in deep learning have shown great promise in transforming
modern IC design workflows [1]–[3]. By formulating each de-
sign stage as a learning problem, machine learning techniques
can significantly shorten IC development cycles compared to
conventional Electronic Design Automation (EDA) tools. For
example, Google [2] and Nvidia [3] have shown that deep
learning methods can improve design efficiency by an order
of 100× at certain stages of the digital IC design flow, such
as floor planning and power estimation. Analog circuit is an
essential type of circuit that bridges our physical world with
the digital information realm [4]–[8]. Yet, unlike digital ICs
that benefit from well-established conventional EDA tools or
emerging efficient learning-based design automation methods,
analog circuits continue to rely on onerous human efforts and
lack effective EDA techniques at all stages [1], [9].

Pre-layout design of analog circuits can be represented
as a parameter-to-specification (P2S) optimization problem.
Given the circuit topology, the goal is to find optimal device
parameters (e.g., width and finger number of transistors) to
meet the desired specifications (e.g., power and bandwidth)
of the circuit. The problem is challenging due to several
factors. First, it involves searching for parameters of diverse
devices in a large design space. The complexity grows ex-
ponentially with an increase in both design parameters and
circuit specifications [4], [5]. Second, the actual interactions
between the device parameters and the circuit specifications
are very complicated [1], [9], depending on multiple variables,
such as the circuit topology, the variations in process, voltage,
and temperature (PVT) and the parasitic effects of post-
layout. There are no exact analytical rules to follow, which
worsens the search process. Conventionally, human designers
use critical domain knowledge, such as circuit topologies and
couplings between circuit specifications, to manually derive
the device parameters. In particular, a human designer exerts
an intense effort to obtain empirical equations between the
device parameters and the circuit specifications based on a
simplified circuit topology. However, despite the simplifica-
tion, tens and even hundreds of iterative fine-tunings are still
required to ensure the design’s accuracy and reliability.

https://github.com/xz-group/RoSE
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During the past several decades, there have been enor-
mous explorations on automating the design of analog cir-
cuit device parameters. These methods generally fall into
two categories, knowledge-based techniques and optimization-
based techniques. Knowledge-based techniques are designer-
centric [10]–[12]. They customize the design steps for spe-
cific circuits based on domain knowledge and embed them
into procedural scripts that mimic the actions of design-
ers. These scripts allow designers to have full control over
the modification and debugging of circuits to guarantee de-
sign reliability. However, design efficiency is significantly
thwarted, because designers, acting as optimization agents,
are required to frequently interact with procedural scripts. In
contrast, optimization-based techniques are algorithm-centric.
They consider each step of analog circuit design as a black-
box optimization problem and use optimization methods,
such as Bayesian optimization [1], Genetic algorithms [13],
and emerging machine learning algorithms [9], [14]–[18] to
address it. These algorithms can be run quickly to complete the
design of an analog circuit with high efficiency. Unfortunately,
due to the absence of knowledge from experienced designers,
the reliability of the design is not guaranteed, e.g., device
parameters are not robust to various non-idealities. These
defects limit the efficiency and reliability of state-of-the-art
analog design automation techniques.

To bridge this gap, we propose a learning framework,
ROSE-Opt, to achieve robust and efficient analog circuit
parameter optmization by synergizing domain knowledge of
analog circuits and learning algorithms. Analog circuit design
strongly relies on domain knowledge, such as circuit topology,
couplings between circuit specifications, and PVT variations;
thus, without adequately considering these key domain knowl-
edge in building learning-based design automation frame-
works, the device parameters discovered by the algorithm are
prone to suffer from inferior reliability issues due to various
non-idealities. Our previous work [19] follows this principle
and has explored the integration of this key domain knowledge
into the design framework. It also exploits a two-level opti-
mization method by integrating Bayesian optimization (BO)
and reinforcement learning (RL) to improve training efficiency.

In this paper, we propose the ROSE-Opt framework which
advances the state-of-the-art method [19]. In particular: 1 We
analyze the failed cases in which our trained RL agent cannot
converge to the optimal device parameters. In these scenarios,
RL agent can still help designers by offering optimized initial
points for manual tuning. 2 We study the ability to consider
device parasitics in parameter optimization. A direct mapping
of an analog circuit schematic with correctly-sized devices
into a physical layout can lead to performance degradation,
mainly due to parasitics from metal wires and electromagnetic
effects. Human experts often require tens of iterations between
a schematic design and a physical layout design to find the
final device parameters to ensure that the performance of post-
layout simulation still satisfies the desired goals. This extended
work demonstrates the promise of ROSE-Opt in addressing
this problem. 3 At the algorithm level, we thoroughly study
the performance of different RL optimization algorithms, such
as Deep Deterministic Policy Gradients (DDPG) with an off-

policy learning mechanism and Proximal Policy Optimization
(PPO) with an on-policy learning mechanism, to provide users
with useful guidance in choosing appropriate RL algorithms
for device sizing.

In summary, we present a comprehensive RL-based design
automation framework to perform the P2S task of analog
circuit design with high robustness and efficiency. We make
these key contributions.

• This paper proposes a comprehensive RL-based de-
sign automation framework, ROSE-Opt, for robust and
efficient optimization of device parameters in analog
circuits. To achieve this goal, our learning framework
sufficiently explores and exploits both domain knowledge
of analog circuit design and the strong optimization
ability of design automation algorithms.

• We perform failure analysis on our method and show
how to leverage the unsuccessful deployment trajectory
to guide the fine-tuning of manual efforts toward design
success. In addition, we study its effectiveness in the sce-
narios of parasitic-aware device parameter optimization.

• At the algorithm level, we thoroughly study the per-
formance of different RL optimization algorithms (i.e.,
DDPG vs. PPO) to provide users with useful insights in
choosing appropriate RL algorithms for device parameter
optimization.

• Experimental evaluations on circuit benchmarks show
that our framework achieves 7.9× ∼ 12× improvement
in sampling efficiency and a significant improvement in
design success rate, robustness, and reliability compared
to the state-of-the-art methods.

The remainder of this paper is organized as follows. Sec-
tion II provides the background context and related work.
The proposed comprehensive RL framework is elaborated
in Section III. The experimental methodology is described
in Section IV. We present the results in Section V before
concluding the paper in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we first review the basics of Bayesian
optimization and reinforcement learning. We then introduce
the key domain knowledge that human experts commonly
consider when addressing the P2S problem. Finally, we discuss
existing design automation methodologies for analog circuits.

A. Bayesian Optimization

Bayesian optimization (BO) proves to be a valuable frame-
work to address challenging black-box optimization problems
that involve costly function evaluations. Fig. 1(a) shows an
example of BO with two iterations (t = 2 and t = 3).
BO’s fundamental concept is to construct an inexpensive
surrogate model, such as a Gaussian Process, by leveraging
actual experimental data. This surrogate model incorporates
prior knowledge or beliefs about the objective function, which
is then used to make informed decisions in the process of
selecting a sequence of function evaluations through the use of
an acquisition function, such as expected improvement (EI). It
also balances exploration and exploitation. Exploration allows
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Fig. 1: (a) An illustration of Bayesian optimization to find the optima. Here,
we use the Gaussian Process (GP) as the surrogate model and show two
iterations. The plots show the mean and confidence intervals estimated with
the GP model of the objective function, f(x), which in practice is unknown.
The plots also show the acquisition (Acq) functions in the lower-shaded
plots. The acquisition is high where the model predicts a high objective
(exploitation) and where the prediction uncertainty is high (exploration). (b) A
simplified illustration of reinforcement learning. It includes five parts: agent,
action, state, reward, and environment.

for a broader exploration of the search space, potentially
discovering better solutions, while exploitation focuses on
exploiting the known promising areas to optimize the current
best solution. Balancing these two aspects is crucial to finding
better solutions and refining the best solution.

Given an arbitrary function f(~x) for maximization, there
are several steps to follow for BO. Step 1: initial sampling.
Here a limited set of sample points is randomly selected. Step
2: initializing the model. These points from Step 1 are used to
calculate a surrogate function. Step 3: iterating. In particular,
the acquisition function is first used to get the next point;
then, the surrogate function is re-evaluated; third, the surrogate
function is verified to see if it remains stable or if the variance
falls below a predetermined threshold, or if f(·) is exhausted,
depending on the specific design objective.

BO is well suited to optimizing hyperparameters of many
classification and regression models. It is also used to automate
the P2S task of analog circuit design [1].

B. Reinforcement Learning

Reinforcement learning (RL) is a machine learning method
related to how intelligent agents take actions in an environment
to maximize cumulative returns based on states. As illustrated
in Fig. 1(b), there are five essential elements in an RL problem:
Agent, Action, State, Reward, and Environment. The ‘Agent’
is the learner and the decision maker who learns experiences
from the training process and makes decisions based on
observations (states) from the environment. The ‘Action’ is a
set of operations that the agent can perform in a state. The
‘State’ is a representation of the current environment (i.e.,
observations) in which the agent is staying. This state can be
observed by the agent and it includes all relevant information
about the environment that the agent needs to know to make
a decision. The ‘Reward’ is a scalar value returned by the
environment after the agent takes an action in a state. It is
used to evaluate and guide the actual learning behavior of the
agent. The ‘Environment’ is the physical world in which the
agent operates.

In each episode, an agent starts from an initial state, then
observes the state ok and takes an action ak based on a

policy. Meanwhile, the environment updates a reward rk+1 for
that particular action and enters a new state ok+1. The agent
iterates through the episode in multiple steps, accumulating the
reward at each step to obtain the final return. With multiple
episodes, the RL agent improves its decision quality and finds
the best policy to maximize the return. Such a policy would be
deployed for practical tasks, i.e., the agent follows the trained
policy to finish a given task.

RL algorithms have been extensively applied to many
problems such as game playing [20], robotics [21], computer
vision [22], and natural language processing [23]. RL has also
been used to automate the design of ICs, such as the placement
of the digital IC chip [24] and the P2S optimization of analog
circuits [17], [18], [25].

C. Key Domain Knowledge of Analog Circuit Design
At the pre-layout stage, there are many considerations to

be taken by human experts to ensure reliable device param-
eters to meet the design goals. These considerations are the
domain knowledge, and we introduce the major ones that are
commonly used by human experts when they tackle the P2S
task, as shown in Fig. 2.

1) Circuit topology: When human experts manually find
the optimal device parameters, they first construct the circuit
small-signal model from the circuit topology, based on which
they obtain empirical equations that connect device parameters
to circuit specifications. With these equations, device param-
eters can be derived by hand.

2) Couplings between circuit specifications: Due to design
trade-offs, circuit specifications often depend on each other.
For example, in the design of operational amplifiers, energy
efficiency often trades off with gain; that is, a higher amplifica-
tion gain requires a larger transconductance, which, however,
demands more power consumption and results in lower energy
efficiency. Therefore, in a conventional manual design process,
human experts use tens and even hundreds of iterative fine-
tunings to find a group of proper device parameters to satisfy
all circuit specifications.

3) PVT variations: To ensure the robustness of analog
circuits in different harsh environments, a key design con-
sideration is to minimize the influence of variations in pro-
cess (P), voltage (V), and temperature (T). Process varia-
tion represents the deviation of the manufactured devices
from their ideal specification due to manufacturing errors.
It includes typical N-type transistor/typical P-type transis-
tor (TT), fast N-type transistor/fast P-type transistor (FF),
slow N-type transistor/slow P-type transistor (SS), slow N-
type transistor/fast P-type transistor (SF), and fast N-type
transistor/slow P-type transistor (FS). Voltage and temperature
variations are due to uncertain ambient changes. Typical devi-
ation on the supply voltage is ±10% from its nominal value
VDD; and typical range of the environmental temperature for
circuits is [−40, 125]◦C. A single PVT corner is a combination
of P, V, and T from their varying ranges. All these variations
are unavoidable and can cause the circuit performance degen-
eration compared to its nominal case, i.e., {TT, VDD, 25◦C}.
Manual experts have to look for robust device parameters to
achieve the design goal in all PVT corners.
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Fig. 2: Illustration of a manual design flow to tackle the P2S task with human
domain knowledge.

4) Parasitic effects of physical layouts: A complete flow
of analog circuit design includes the schematic design and
the physical layout design. The conversion of an analog
circuit schematic, with the correctly-sized components, into a
physical layout can cause performance degradation due to the
parasitic effects of metal wires and electromagnetic couplings.
Experienced human designers often make efforts to adjust the
device parameters to ensure that the post-layout simulation
meets the desired objectives.

D. Existing Design Automation Methodologies

Various design automation techniques have been proposed
for the P2S task of analog circuits in recent years. They gener-
ally fall into two categories: knowledge-based techniques and
optimization-based techniques. Knowledge-based techniques,
such as BAG [10], are designer-centric. They tailor the design
steps for specific circuits with domain knowledge and embed
these steps into the procedural scripts that mimic designer
actions. These scripts provide designers with complete control
over circuit modifications and debugging to ensure design reli-
ability. Yet, these approaches notably affect design efficiency,
as they demand frequent interactions between designers and
procedural scripts, with designers playing the role of opti-
mization agents. On the contrary, optimization-based methods
such as BO [1], Geometric Programming [26], Genetic al-
gorithms [13], and modern machine learning approaches [9],
[14]–[18], [25] are centered on algorithms. They treat each
step in a circuit design as a black-box optimization problem
and can swiftly perform optimization procedures to complete
a circuit’s design with high efficiency. Unfortunately, the lack
of knowledge from seasoned designers means that design
reliability, such as the robustness of device parameters to non-
ideal conditions, is not assured. These limitations significantly
impact the widespread applications of state-of-the-art analog

design automation techniques, as they are unable to achieve
both high design efficiency and reliability.

Essential to advance analog design automation is to ade-
quately incorporate analog design knowledge into optimiza-
tion algorithms to ensure design reliability while not losing
optimization efficiency. Learning-based optimization methods
have recently emerged to show higher design efficiency in
handling the P2S task compared to classical optimization
algorithms such as BO [1], Geometric Programming [26], and
Genetic algorithms [13]. As an example, supervised learning
methods [9], [14]–[16] have been used to learn the complicated
relations between device parameters and circuit specifications.
Once trained, they adopt one-step inference to predict optimal
device parameters for given design goals. Nonetheless, these
supervised learning methods cannot guarantee a high design
success rate and suffer from weak generalization abilities [9],
[14]–[16] due to their inherent approximation errors.

On the other hand, RL methods [17], [18], [25] learn an
optimal policy from the state space of circuit specifications
to the action space of device parameters, which solves a
quasi-dynamic programming problem. They often use multiple
sequential decision steps to find the optimal device parameters
rather than just using one-step prediction, thus achieving a
higher design success rate and better generalization abilities
than supervised learning methods [9], [14]–[16]. However,
none of these learning algorithms has taken into account
sufficient domain knowledge of analog circuit design in the
optimization loop, leading to low design reliability.

In this work, we propose a learning-based framework,
ROSE-Opt, to achieve efficient and reliable parameter opti-
mization of analog circuit devices by harnessing the synergy
between the knowledge of human designers and RL algorithms
(elaborated in Section III). In particular, we leverage the rapid
convergence of BO to identify an optimized starting point,
significantly improving the sampling efficiency of the primary
RL agent during its learning phase.

III. ROSE-OPT: ROBUST AND EFFICIENT DEVICE
OPTIMIZATION WITH KNOWLEDGE-INFUSED LEARNING

In this section, we introduce the proposed ROSE-Opt frame-
work that automates the P2S task. We start with the problem
formulation. Then, an overview of the ROSE-Opt framework
is presented, followed by an elaboration of the BO vanguard.
Finally, we introduce five essential parts of the RL backbone
and show how the key domain knowledge is incorporated into
the framework.

A. Problem Formulation

We target the challenging device sizing problem with a
given circuit under stringent PVT variations and parasitic
effects of physical layout, formulated as

min
s

f(s, g),

s.t. s = F (x), where s ∈ Ri×j , x ∈ SP , g ∈ SG.
(1)

Here, the function f(s, g) represents the difference between
the circuit specifications s and the design goal g. For example,



5

VP

mp1 mp2 mp3

mn1 mn2

mn3mn4 mn5

c1

VGND

Desired 

specifications

Gain

Bandwidth

Phase margin

Power consumption

...

Search width/length of transistors and capacitance to 

meet the desired specifications

Agent

Environmen

t

State Action

Rewar

d

1kS

kS

kR

1+kR

kA

...

...

...

...

Circuit Netlist

Data 

Processor

Circuit

Simulator

FC
Specifications 

Embedding

Graph 

Embedding
FC

Circuit Topology

Data 

Processor

Circuit

Simulator

FC
Specifications 

Embedding

Graph 

Embedding

FC

Reward (ri)

Action (ai)

State 

(si)

Desired specifications

Critic

(Value network)

Actor 

(Policy network)

GNN

Update 

parameters

Current

Specifications

Updated 

netlist

Agent Environment

Given circuit with its topology

Data 

Processor

Circuit

Simulator

Critic

(Value network)

Reward (ri)

Action (ai)

State (si)

Update 

device parameters

Current

Specifications

Updated 

netlist

Agent Environment

Actor

(Policy network)

Q

Netlist of any analog 

circuit with given topology

Data 

Processor

Circuit

Simulator

Critic

(Value network)

Reward (ri)

Action (ai)

State (si)

Update 

device parameters

Current

Specifications

Updated 

netlist

Agent Environment

Actor

(Policy network)

Q

Netlist of any analog circuit 

with a given topology

Data 

Processor

Circuit

Simulator

Critic

(Value network)

Reward (ri)

Action (ai)

State (si)

Update 

device parameters

Current

Specifications

Updated 

netlist

Agent Environment

Actor

(Policy network)

Q

Netlist of any analog 

circuit with a given 

topology 

Data 

Processing 

Module

Circuit

Simulator

Critic

(Value network)

Reward (ri)

Action (ai)

State (si)

Update 

device parameters

Current

Specifications

Updated 

netlist

Agent Environment

Actor

(Policy network)

Q

(Increasing, decreasing, or keeping the parameters)

D
e

si
re

d

S
p

e
ci

fi
ca

ti
o

n
s

Netlist of any analog 

circuit with a given 

topology 

Data 

Processing 

Module

Circuit

Simulator

Critic

(Value network)

Reward (ri)

Action (ai)

State (si)

Update 

device parameters

Current

Specifications

Updated 

netlist

Agent Environment

Actor

(Policy network)

Q

(Increasing, decreasing, or keeping the parameters)

D
e
s
ir

e
d

S
p

e
c
if
ic

a
ti
o
n

s

Action (ak)

State (ok) Environment

Q

Netlist of a given analog circuitActor (Policy network)

FCNN

Circuit topology

Specifications 

Embedding

Graph 

Embedding

Reward (rk)

Circuit-topology GNN

Cadence 

Spectre

APS

Cadence OCEAN

Agent

FC

Critic (Value network)

RL Backbone

40

SS
SFFS FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

VDD

VGND

VB

mp1 mp1

mp2mp2

mn1 mn1

mn2 mn2

Trajectory

Optimized starting point

Unoptimized starting point

BO Vangard

Design Space (SP)

Specification goal

SS40 1.1VC SF 27 1.2VC FS 125 1.3VC

Action (ak)

State (ok)

Environment

Q

Actor (Policy network)

FCNN

Specifications 

embedding

Graph 

embedding

Reward (rk)

Agent

FC

Critic (Value network)

RL Backbone

Trajectory

Optimized starting point

Unoptimized starting point

BO Vangard

Design Space (SP)

Specification goal

Circuit topology

Coupling between 

circuit specifications

PVT variations

Post-layout parasitics

Circuit-topology GNN

A

Circuits

 (e.g., Op-Amp)

SPICE simulation

(Cadence, APS)

SPICE simulation

Domain knowledgeCircuit design

Specification 

vector

Action (ak)

State (ok)

Environment

Q

Actor (Policy network)

FCNN

Specifications 

embedding

Graph 

embedding

Reward (rk)

Agent

FC

Critic (Value network)

RL Backbone

Trajectory

Optimized starting point

Unoptimized starting point

BO Vangard

Design Space (SP)

Specification goal

Circuit topology

Coupling between 

circuit specifications

PVT variations

Post-layout parasitics

Circuit-topology GNN

A

Circuits

 (e.g., Op-Amp)

SPICE simulation

(Cadence, APS)

Domain knowledgeCircuit design

Specification 

vector

PVT variations

Post-layout parasitics

Action (ak)

State (ok)

Environment

Q

Actor (Policy network)

FCNN

Specifications 

embedding

Graph 

embedding

Reward (rk)

Agent

FC

Critic (Value network)

RL backbone

Trajectory

Optimized starting point

Unoptimized starting point

BO vanguard

Design Space (SP)

Specification goal

Circuit topology

Coupling between 

circuit specifications

PVT variations

Post-layout 

parasitics

Circuit-topology GNN

A

Circuits

 (e.g., Op-Amp)

SPICE simulation

(Cadence, APS)

Domain knowledgeCircuit design

Specification 

vector

Fig. 3: Overview of our ROSE-Opt framework for automated design of analog circuits. The RL agent is based on an actor-critic method. The environment
consists of a netlist of an analog circuit with a given topology, a circuit simulator, and a data processor. At each time step k, the agent automatically produces
an action ak to update device parameters with its policy network according to the state ok and then receives the reward rk from the environment. Our policy
network is composed of a circuit topology-based GNN and an FCNN.

for operational amplifiers (Op-Amps), there are four main
circuit specifications, i.e., gain (G), power consumption (P),
phase margin (PM), and bandwidth (BW). F (·) is a circuit
simulator environment to get circuit specifications s based on
a set of device parameters x, e.g., width and finger numbers
of transistors. s is essentially a matrix where i represents the
specification type (e.g., gain) and j represents a PVT corner.
Therefore, s ∈ R4×16, assuming 16 PVT corners for the design
of Op-Amps. The set of device parameters x is restricted by
the design space SP . The design goal g is restricted to a
reasonable sampling space SG that the circuit can achieve.
Our objective is to minimize f(s, g) by efficiently looking
for a group of optimal device parameters so that the circuit
specifications can meet an arbitrarily given group of design
goals under all PVT variations. Considerations of parasitic
effects are discussed in Section V-B as it is considered during
the deployment stage rather than the training stage.

B. Framework Overview

We explore the synergy of BO and RL to achieve robust and
sampling-efficient device parameter optimization. Fig. 3 shows
the overview of the proposed ROSE-Opt framework, which
contains two parts: a BO Vanguard and an RL Backbone.
BO is a well-known optimization algorithm that often achieve
the fastest convergence [1] to an optimum for a given design
goal, compared to other optimization techniques [13], [27].
However, it needs to be restarted from scratch if the given
design goal is changed.

In contrast, well-trained RL agents can reach general design
goals without retraining based on a deployment trajectory from
a starting point. Unfortunately, for robust analog circuit design,
which is a more complex problem, RL methods demand more
data points from time-consuming circuit-level simulations (i.e.,
PVT simulations) to sufficiently explore the design space,
leading to a low sampling efficiency toward the convergence.
With this key insight in mind, we propose to leverage BO as a
vanguard to first coarsely search for an optimized starting point
(i.e., initial device parameters) for our RL agent. On this basis,
the RL agent can then be trained with much fewer interactions
with time-consuming circuit-level simulations, improving the

sampling efficiency. As conceptually shown in the left subset
of Fig. 3 (i.e., BO vanguard), an optimized starting point can
help the RL agent reach design goals with a shorter trajectory
compared to a randomly selected one. Hence, it can guide the
RL agent to converge faster with fewer training data.

The RL backbone has five essential components (Sec-
tion II-B): reward, action space, state space, environment,
and agent. To train an excellent RL agent for a given task,
there are several critical factors to pay attention to. One is
to develop a comprehensive environment that could expose
environmental information about the task to the RL agent as
much as possible. The second is to capture sufficient exposed
observations (states) relevant to the task from the environment
into the learning loop. The third is to design a proper reward
function that is closely related to the optimization goal and
stimulates the learning of the RL agent. With these key factors
in mind, we distribute the domain knowledge presented in
Section II-C across different components of RL.
Comprehensive Environment. First of all, we develop a
thorough circuit design environment for the P2S task, which
includes the full circuit netlist of the given task and commer-
cial simulation/verification tools (e.g., Cadence Spectre) for
simulating circuit specifications (under PVT variations) and
extracting post-layout parasitics.
Sufficient Observations. On the basis of the developed envi-
ronment, we leverage the circuit topology and the simulated
circuit specifications as primary observations. The circuit
topology and couplings between circuit specifications are
incorporated into the learning loop of the RL agent through
a novel policy network by combining a circuit topology-
based graph neural network (GNN) and a fully connected
neural network (FCNN). In particular, the policy network can
effectively capture the essential physical features (e.g., device
parameters and interactions) embedded in a circuit graph with
the GNN and extract the couplings (i.e., design trade-offs)
between circuit specifications with the FCNN, which better
models the relations between the circuit parameters and the
design targets.
Custom Reward Function. PVT variations affect the circuit
specifications, which are directly related to the optimization
goal. We use a custom reward function that takes into account
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PVT variations. By infusing the key domain knowledge into
the ROSE-Opt framework in this manner, an excellent RL
agent can be trained and make good decisions to search for
reliable device parameters that meet the design goals.

For RL training, in each episode, the agent starts from
an initial state o0 with a group of initial device parameters
optimized by BO vanguard and a group of randomly-sampled
desired specifications g from sampling space SG. The end of
an episode is when the design goals are realized or a predefined
maximum step T is reached. At each time step k, the agent
begins by using a neural network to observe a state ok and
take discrete action ak based on the probability distribution
from the output of the neural network. Then, the agent arrives
in a new state ok+1 and receives a reward rk from the
environment. The discrete action ak can simultaneously update
all device parameters for the given circuit. The agent iterates
through the episode with multiple steps and accumulates the
reward at each step until the end of the episode. In the next
episode, the agent randomly samples another design goal g
from the sampling space SG and reset the parameter back to
the starting point o0. Then, repeat the same process again.
Once the policy network is well-trained, we can save the
weight of the neural network for deployment. During the
deployment, since the weight has already been trained, the
agent only uses the actor to take actions based on the state
it observed. The purpose of the deployment part is to show
the generalization capability of our trained policy network to
different specifications without retraining like BO. Therefore,
we are interested to see how many specifications the decision
policy can reach within the predefined maximum step T and
what is the average deployment length for each run.

A key point is that BO is only required once in our
framework if the sampling space SG of the design goals and
the design space SP of each circuit device are defined. The
same optimized starting point o0 is then used by the RL agent
during each training episode and the deployment stage. Note
that in the context of robust device sizing, the designs of both
the BO vanguard and the RL backbone are non-trivial and they
are elaborated in the following.

C. BO Vanguard

We rely on BO to find an optimized initial search point
for our RL agent to improve its sampling efficiency during
training. However, a crucial initial question is how to define
such an optimized starting point. This starting point should not
just speed up the design for a specific set of goals but should
broadly aid in the efficient design of any arbitrary group of
design goals from the entire sampling space SP .

Our idea is that from this starting point, the RL agent should
generally take the least deployment steps to achieve a general
design. Thus, we let the device parameters found by BO that
achieve as closely as possible the arithmetic mean of the
maximum/minimum of each design goal in the entire sampling
space SG, i.e., (PMmax + PMmin)/2, (Gmax +Gmin)/2,
(BWmax+BWmin)/2, and (Pmax+Pmin)/2, be the starting
point of our RL agent. Here, taking a two-stage Op-Amp as
an example, G, B, PM, P are the circuit specifications,

i.e., gain (G), bandwidth (B), phase margin (PM ), and power
consumption (P ).

We use a typical set-up of BO to search for the optimized
starting point, which includes two essential parts: the surrogate
model and the acquisition function [1]. The whole optimization
depends on how accurately the surrogate model estimates the
black-box function. Particularly, we adopt the widely used
Gaussian process model as our surrogate model to predict the
underlying black function with uncertainty. We use a Monte-
Carlo-based Expected Improvement (EI) acquisition function
to balance exploration and exploitation during the optimization
by offering the next sampling point as below:

EI(X) ≈ 1
Z

Z∑
i=1

max
j=1,...,n

{max (ξij − f(s, g)best, 0)} ,

ξi ∼ P(f(X) | D).
(2)

Here, the expectation, EI(X), is computed by approximating
the integrals over the posterior distribution over Z points using
Monte-Carlo sampling. P(f(X) | D) is the posterior distribu-
tion of our function f(s, g) at X where X = (x1, . . . , xn)
from the sampling in our design space SP . D is our data set.
The parameter ξ determines the amount of exploration during
optimization.

D. RL Backbone

The RL backbone has five essential components:
1) Variation-aware reward function: We connect the objec-

tive in Eq. (1) to our reward function so that our RL agent can
be directly optimized considering PVT variations. Particularly,
the reward rk at each time step k is designed by taking PVT
variations into consideration, i.e.,

rk = Mean
( j=M−1∑

j=0

rj
)
; if ∃j ∈ [0, M − 1], rj < 0;

or rk = R, if ∀j ∈ [0, M − 1], rj = 0.

(3)

Here, rj =
∑N−1
i=0 wi × min{(sji − gi)/(s

j
i + gi), 0} is the

sub-reward of the jth corner, calculated based on a weighted
sum of the normalized difference between ith intermediate
circuit specification of the jth corner sji and ith design goal
gi. All types of circuit specifications are equally important,
i.e., wi = 1. M represents the number of PVT corners and
N indicates the number of circuit specifications. In order not
to over-optimize the specification, we set the upper bound of
rj to be 0. Only when the circuit specifications in all PVT
corners meet the design goal, a large stimulated reward of
R = 10 is given to encourage the agent for the successful
design; otherwise, the reward in each time step is the average
of sub-rewards of all PVT corners. Finally, the accumulative
reward for a training episode is Rs,g =

∑T
k=1 rk, where T

is a pre-defined maximum step for an episode. Intermediate
circuit specifications matrix s are obtained from our high-
fidelity simulation environment F (·) based on the updated
device parameters x at each time step. Therefore, our reward
is a direct measurement from the circuit simulator, which can
help train a high-quality RL policy network.
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2) Fine-grained action: Inspired by human designers who
rely on multiple fine-grained tuning steps to find optimal
device parameters, we use a discrete action space to tune
device parameters. For each tunable parameter x of a de-
vice (e.g., the width and finger number of transistors, the
capacitance of capacitors), there are three possible actions:
increasing (x+4x), keeping (x+ 0), or decreasing (x−4x)
the parameter, where “4x” is the smallest unit used to update
the parameter within its bound x ∈ [xmin, xmax]. With the
total parameters of the M device, the output of the policy
network is a matrix of probability distribution M × 3 in any
state where each row corresponds to a parameter. The action
is taken based on the probability distribution.

3) Circuit physics-related state: RL belongs to representa-
tion learning. Capturing adequate state information from the
environment is key to training an excellent RL agent. We
leverage the domain knowledge of analog circuits, i.e., inter-
mediate circuit specifications and circuit topology, as our state,
which covers the most essential observations from a circuit
design environment. In particular, we take care of intermediate
circuit specifications in all PVT corners, in contrast to the
previous work [28] which only considers partial PVT corners.
We create a state vector to represent the intermediate circuit
specifications, which is used as input for the FCNN part in our
policy network. To better use the observations of the circuit
itself, we use a graph G(V, E) to model the circuit according
to its topology, where each node in the set V is a device and
the connections between the devices constitute the edge set E.

Fig. 4 shows the mapping between the circuit topology and a
graph taking a two-stage Op-Amp as an example. For a circuit
with n nodes, the state of the ith node is defined as its node
feature (t, ~p), where t is the binary representation of the type
of node and ~p is the parameter vector of the node. Note that the
parameters of the circuit device reflect the physical information
of the circuit. For transistors, the parameters are the width
(xW) and the finger number (xF). For capacitors, resistors, or
inductors, the parameters are scalar values (e.g., capacitance,
resistance, or inductance) of each device. For example, for a
circuit with five different types of devices, the state of a N
type transistor can be expressed as [0, 0, 1, xW, xF].

4) SPICE simulation environment: In our work, a high-
fidelity circuit design environment with PVT variations and
post-layout parasitics is used. It consists of the netlist of
a given analog circuit, a commercial circuit simulator, e.g.,
Cadence Spectre for CMOS analog circuits or Keysight Ad-
vanced Design System (ADS) for RF power circuits, and a data
processing module (DPM). As shown in Fig. 3, the simulator
obtains intermediate circuit specifications at each time step.
The DPM then deals with the simulated results to return a
reward to the agent using Eq. (3). Meanwhile, it also updates
the device parameters to rewrite the circuit netlist based on
the actions of the agent (i.e., policy network).

Previous methods [28] assume that the circuit simulation
time scales linearly with the number of simulations, i.e., the
simulation time for 16 PVT corners is 16× of the one with a
single PVT corner. We use the Cadence Spectre Accelerated
Parallel Simulator (APS) to accelerate our simulation. At each
time step, we obtain circuit specifications for all PVT corners.
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Fig. 4: Mapping a circuit topology into a graph and illustrating a tailored
GNN-FC-based policy network architecture for the analog circuit design.
Here, we use a two-stage Op-Amp as an example.

Compared to a single PVT corner time, the batch simulation
manner for 16 PVT corners only brings 0.17× time overhead
as compared to a single PVT simulation. In other words,
our circuit environment can achieve a sampling efficiency
of at most 14× when collecting data points during training
compared to previous RL methods. With this co-design loop,
we are able to simultaneously achieve both high sampling
efficiency and robust design by taking advantage of BO, RL,
and the simulation environment.

5) Circuit-aware policy network: We adopt an Actor-Critic
method [29] to design our agent. To capture sufficient obser-
vations from the environment to the learning loop, we propose
a novel multimodal policy network architecture for the Actor,
as shown in Fig. 4. The policy network consists of a GNN
based on the circuit topology and an FCNN, which is termed
a GNN-FC-based policy network. Specifically, the GNN is
used to distill the underlying physics (e.g., device types,
parameters, and interactions) of a circuit graph into a low-
dimensional vector embedding. The FCNN takes the design
goals as inputs to extract their coupled relations, i.e., design
trade-offs. The graph embedding and the FCNN embedding
are then concatenated for further processing by the final FC
layers to update the actions. The value network (Critic) has
the same architecture as the policy network except for the last
layer. It evaluates the quality of the actor’s decision by giving
an estimate of the expected reward, Q, for the execution of
the current policy. In particular, we choose graph attention
network (GAT) [30] as a representative of the GNN to model
the circuit topology. The goal is to learn the embedding of
physical features at the circuit level (e.g., device parameters,
interactions, and types) on a circuit graph G = (V, E).
Our empirical studies show that GAT often performs better
than other GNNs such as the graph convolutional network
(GCN) [31] in the P2S task. This could be attributed to the
multi-head attention mechanism of GAT, which helps to learn
more complex and higher-dimensional interactions between a
circuit node and its neighbors. Note that we customize the
GAT to model circuit topologies and apply them to the P2S
task rather than inventing novel GNN structures. The funda-
mental operations underlying the proposed GAT follow those
of the original publications [30] and therefore are omitted here.

E. Optimization Methods for Policy Training

Combining the GAT and FCNN forms the policy network
πθ(a|s) parameterized by θ = {WGAT,WFC}. Here, WGAT,
WFC are the learnable parameters for the GAT and FCNN.
Our goal is to make the RL agent gain rich circuit design ex-
periences and generate higher-quality decisions by interacting
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TABLE I: Design space, sampling space, and PVT corners for four benchmark circuits.

Circuit types Single-stage Op-Amp Two-stage Op-Amp Folded-cascode Op-Amp Nested Miller compensation Op-Amp
Technology GlobalFoundries 130/65/28 nm

16 PVT conditions Process:{SS, SF, FS, FF} Voltage:{1.1V, 1.3V} Temperature:{−40◦C, 125◦C}
Design space 1024 values 1010 values 1017 values 1039 values
Width (nm) mp1-4:[200, 2000, 10] mp1:[1250, 2250, 10] mp1:[1000, 10000, 200] mp1-3&mn4:[10000, 50000, 1000]

mn1-3:[2000, 10000, 10] mp2: [450, 2450, 20] mp2: [1000, 10000, 200] mp4: [50000, 250000, 10000]
mn1-2:[160, 260, 1] mn1-3:[160, 1000, 20] mn1-3:[2000, 20000, 1000]

Capacitance (pF) CL: 0.12 CL: 1 c:[0.1, 10.0, 0.2] c1:[25.0, 50.0, 0.5]
CL: 1 c2:[1.0, 25.0, 0.5]

CL: 100
Sampling space

Gain (dB) [40, 45] [10, 15] [20, 30] [40, 45]
I (A) [10−5, 10−4] [10−3, 10−2] [10−4,10−3] [10−2,10−1]

PM (◦) [50] [55] [85] [55]
BW (Hz) [5× 105, 1× 106] [105, 4× 105] [4× 106, 6× 106] [1× 106, 2× 106]

with the environment. We can formally define the objective
function of automated design of analog circuits as follows.

J(θ,G) = 1/H ·
∑
g∼G

Eg,s∼πθ
[Rs,g]. (4)

Here, H is the the space size of all desired specifications G and
Rs,g is the episode reward. Given the cumulative reward for
each episode, we use Proximal Policy Optimization (PPO) [32]
to update the parameters of the policy network with a clipped
objective shown below:

LCLIP(θ) = Êk[min(bi(θ), clip(bk(θ), 1− ε, 1 + ε))Âk], (5)

where Êk represents the expected value at time step k; bk is
the probability ratio of the new policy and the old policy, and
Âk is the estimated advantage at time step k.

Previous RL-based methods [17], [18] for P2S tasks mainly
explore Deep Deterministic Policy Gradients (DDPG) to train
RL agents and have also shown promising performance.
However, the lack of a detailed comparison between different
RL algorithms makes it difficult to determine which is better
for P2S tasks. DDPG is an off-policy RL method that uses
two separate policies for exploration and updates, a stochastic
behavior policy for exploration, and a deterministic policy for
the target update. The “deterministic” in DDPG refers to the
fact that the agent computes the action directly instead of
a probability distribution over actions. DDPG is specifically
designed for environments with continuous action spaces and
continuous state spaces, making it an equally valid choice for
continuous control tasks applicable to fields such as robotics
or autonomous driving.

On the other hand, PPO is an on-policy RL method, that
is, it involves collecting a small batch of experiences by
interacting with the environment according to the latest version
of its stochastic policy and using that batch to update its
decision-making policy. The “stochastic” in PPO refers to
the fact that the agent computes the action as a probability
distribution instead of directly over actions. PPO often can
work with both discrete and continuous action spaces, making
it suitable for a wide range of reinforcement learning tasks
in various domains, e.g., training ChatGPT. In particular, we
use RL with discrete action space to build our framework
due to: 1) experienced human designers also use fine-grained
tuning (i.e., adjusting device parameters with several discrete

tuning steps) to tackle the P2S task; 2) the thorough study
in Section V-D shows that PPO with discrete action space
achieves better performance.

IV. EXPERIMENTAL METHODOLOGY

In this section, we present the experimental methodology
for evaluating the proposed framework. First, we introduce the
circuit benchmarks used in our evaluations. Then, baselines
for comparisons are briefly discussed. Finally, we show the
training platform and configurations of our framework.

A. Benchmarks and Performance Metrics for Evaluation

Operational amplifiers (Op-Amps) are commonly used as
circuit benchmarks in prior art [15], [16], [18], [25], [28],
[33] and are also widely used as essential building blocks in
many analog subsystems. Therefore, we take multiple Op-
Amps to evaluate the proposed framework. In particular,
we adopt a single-stage cascode Op-Amp, a two-stage Op-
Amp, a folded-cascode Op-Amp [34], and a three-stage nested
Miller compensation Op-Amp with feedforward transconduc-
tance stage [35] (NMCF) in our benchmark. These circuits
have diverse topologies and design complexities. The detailed
schematics of these circuits were shown in previous work [15],
[16], [18], [25], [28], [33] and are thereby omitted here. The
design space for the device parameters, the sampling space
for the circuit specifications, and the PVT corners are listed
in Table I. There are 4× 2× 2 = 16 extreme PVT conditions,
including 4 process variations, 2 voltage variations, and 2
temperature variations.

With the circuit benchmark, we examine mainly the sam-
pling efficiency, design success rate, and design efficiency of
our framework. We show the sampling efficiency of ROSE-Opt
by using a control experiment, that is, to train the RL agent
with/without the BO vanguard. The sampling efficiency is
defined as the number of SPICE simulations saved to achieve
the same training quality (i.e., training reward) compared to
the control group.

To allow a reasonable comparison between different de-
sign automation methods, we also propose a figure-of-merit
(FoM) defined as the ratio between the design success rate
(Nsuccess) and the design efficiency (Nstep · Tsim): FoM =
Nsuccess/(Nstep · Tsim). Here, Nsuccess is the design success rate
of policy deployment by giving 200 groups of design goals



9

randomly sampled from the specification space. Nstep is the
average number of required deployment steps (i.e., the number
of circuit-level simulations) to achieve a group of design goals
sampled from the specification space. Tsim is the simulation
time for each simulation run at the circuit level. Note that
the training time for learning-based methods is not included
here, as it can be amortized during the deployment phase once
the models are trained well (similar to the inference stage in
supervised learning) .

B. Training Platform, Configurations, and Baselines

Our framework is built on Python. We build the circuit
graph using the Deep Graph Library [36] and use Ray [37], a
well-developed hyperparameter tuning package, to train RL
agents. We implement all the methods with PyTorch and
BoTorch [38]. All experiments were carried out on a 16-core
Intel CPU. We train separate RL agents for each circuit. For
experiments that involve the BO vanguard to optimize the
initial starting point, we only assign 50 simulations in each
BO run for minimal sampling overhead. Note that we only
need to run BO once at the beginning since we can reuse the
starting point optimized by BO vanguard in each RL training
episode and deployment stage. To achieve a more reliable
and reproducible experiment result, we decided to run our
BO vanguard 50 times and choose the starting point with a
mean reward to minimize the variation caused by the initial
random sampling. To provide detailed comparisons of the
performance of different RL algorithms, we choose PPO [32]
and DDPG [39] as two representatives of the study and also
use their default configurations to train policy networks.

Although various previous methods have been proposed to
target the P2S tasks, such as BO [1], Genetic Algorithm [40],
and RL methods [18], [25], they do not consider PVT varia-
tions and post-layout parasitics in the optimization process of
device parameters. Thus, we compare it with the most recent
work, RobustAnalog [28], which solves the P2S task by taking
into account the effect of partial variations in PVT. Despite
several major differences between RobustAnalog and ROSE-
Opt, we care most about the efficacy of RobustAnalog in ro-
bust design, as it uses task pruning with reduced PVT corners
for RL training, while our RL Backbone considers all PVT
corners. We follow this strategy to implement RobustAnalog
by modifying our RL backbone.

V. EXPERIMENTAL EVALUATIONS

In this section, we show evaluation results and compare
the performance of our proposed framework to prior meth-
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Fig. 5: An example to show comparison of the sampling efficiency by using
the RL Backbone with or without pre-optimization of BO.

ods. First, we show our framework’s sampling efficiency
and robustness against PVT variations. Second, we show our
framework’s capability to achieve reliable device sizing by
taking into account post-layout parasitics. Third, we show how
the trained RL agent of our framework assists human designers
in finding optimized device parameters, even if it fails in
deployment in some cases. Fourth, we present the performance
of different RL algorithms in training RL agents for the P2S
task. Finally, we summarize the comparisons between our
work and the prior art.

A. Sampling Efficiency and Robustness

1) Efficient sampling with BO Vanguard: We first show
that the BO vanguard can improve sampling efficiency to
train our RL backbone. Fig. 5 illustrates the example training
curves of our RL backbone to design two types of Op-Amps
with two different starting points, one is from BO searching
(labeled as “BO Vanguard”) and the other is a randomly
selected value from the device parameter design space SP ,
e.g., median value (labeled as “Random pick”). It shows that
the RL agent without an optimized starting point often needs
more circuit-level simulations to achieve the same reward as
the one with an optimized starting point from BO (e.g., in
this case, 3.5× for Folded-cascode Op-Amp and 2.3× for
three-stage nested Miller compensation Op-Amp). Therefore,
by optimizing the starting point, the RL agent converges
faster with fewer sampling data (that is, fewer circuit-level
simulation runs).

2) Robust design with the RL Backbone: We then show
the robust design enabled by our RL backbone against PVT
variations by deploying our RL agent in an environment taking
full account of PVT variations. Policy deployment applies
a trained policy to automatically find the device parameters
for given design goals. The left column of Fig. 6 shows
the deployment trajectories under several representative PVT
corners by taking the phase margin of the Folded-cascode
Op-Amp as an example, where each color represents a PVT
corner. It can be seen that although each trajectory under
a specific PVT corner is smooth, the worst corner can be
quickly replaced by another corner due to the competition
between different corners. Here, the worst case indicates the
corner where the circuit specification deviates the most from
the design goal. This phenomenon shows that device sizing
with PVT variations is much more complex compared to the
nominal case. Notably, by incorporating PVT variations into
our method, our RL agent is able to achieve a robust design by
finding optimal device parameters that can satisfy the design
goal in all PVT corners.

For further verification, we conduct a control experiment.
We first find a group of optimal device parameters by deploy-
ing our trained RL agent at the nominal corner environment.
We then verify the circuit specifications under all other PVT
corners using the found device parameters. The right column
of Fig. 6 shows that the optimal device parameters obtained
from a single PVT corner often do not satisfy all corners.
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TABLE II: Comparison of device parameters before and after physical design with design goals of gain = 45 dB, bandwidth = 800 kHz, phase margin = 50◦,
and power = 15 µW.

Device mp1 mp2 mp3 mp4 mn1 mn2 mn3 Gain BW PM Power
Schematic design 1.02 µm 1.02 µm 1.02 µm 1.02 µm 6.2 µm 4.94 µm 6.2 µm 47.3 dB 862 kHz 52◦ 12 µW

Layout design 1.02 µm 1.02 µm 1.02 µm 1.02 µm 5.26 µm 5.26 µm 5.26 µm 46.91 dB 897 kHz 53.52◦ 12 µW

Competing with each other

Failed at 
other corners

85

Folded-cascode Op-Amp

85

Fig. 6: Left: illustration of the competing phenomenon between PVT corners.
Right: failed design by using the deployment with a single PVT corner at the
nominal case. The dashed horizontal line is the design goal.

B. Parasitic-Aware Device Parameter Optimization

We continue to study how to apply ROSE-Opt to optimize
parasitic-aware device parameters. Without considering the
parasitic effect of physical layouts at the pre-layout design
stage, the obtained device parameters are not able to guar-
antee the circuit specifications after the schematic is directly
transferred into a physical design. In practice, there are often
tens of iterations between schematic design and physical
design performed by human designers to fine-tune the device
parameters to ensure that the circuit under design meets the
design goals.

Several previous works have explored learning-based meth-
ods to address this parasitic-aware optimization problem. An
early RL-based method [25] aims to tackle it by deploying
the trained RL agent in a parasitic-aware environment. In
particular, this method uses the BAG tool [10] to automatically
generate a physical layout for the circuit based on the device
parameters at each deployment step and exploits the reward
from post-layout simulation to guide the search process for the
trained RL agent. This process continues until the agent meets
the target when parasitics are considered or it has reached the
maximumly-allocated deployment steps. Another work [41] at-
tempts to tackle the problem by combining supervised learning
and BO. The idea is to train a graph neural network to predict
the parasitics of an analog circuit with its device parameters
and then back-annotate the parasitics to the circuit schematic.
With this processing step, BO is applied to search for optimal
device parameters through the parasitic-aware schematic.

These previous efforts have shown good performance in
finding reliable device parameters to meet design goals after
post-layout simulation. However, the physical design of analog
circuits is quite flexible. Even for the same circuit, different
human designers can construct different physical layouts. The
BAG tool is limited to generating a few fixed layouts for some
typical circuits. Training a GNN to predict parasitics requires
a huge amount of data and suffers from approximation error.
Therefore, the previous methods do not apply to general cases.

We explore another method to solve the same problem
with much higher flexibility. Our method relies on two key
observations from the human design loop. First, human experts

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

VP

mp1 mp2 mp3

mn1 mn2

mn3mn4 mn5

c1

VGND

Desired 

specifications

Gain

Bandwidth

Phase margin

Power consumption

...

Search width/length of transistors and capacitance to 

meet the desired specifications

Desired 

specifications

Gain

Bandwidth

Phase margin

Power consumption

...

Search for optimal device parameters to meet the desired specifications

Any analog circuit

with a given topology

Transistors

Capacitors

Resistors

Inductors

...

Any analog circuit

with a given topology

Width and finger number of transistors

Capacitance of capacitors

Resistance of resistors

Desired 

Specifications

Satisfied?

Desired 

specifications

Gain

Bandwidth

Phase margin

Power consumption

...

Searching for optimal device parameters to meet the desired specifications

Any analog circuit

with a given topology

Transistors

Capacitors

Resistors

Inductors

...

mp1 mp2 mp3

mn1 mn2

mn3 mn5

c1
mp1 mp2 mp3

mn1 mn2

mn3 mn5

c1

m oGain g r= 

1

m

Power f
g

 
=  

 

…

m oGain g r= 

1

m

Power f
g

 
=  

 

…

gmVin roVin gmVin roVin… gmVin roVin…

Robust and realizable device parameter optimization  

Circuit topology

Coupling between circuit 

specifications

Process, voltage, and 

temperature variations

Post-layout parasitics

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

SS 1.1V40 C−SS 1.1V40 C−

SF 1.2V27 CSF 1.2V27 C

FS 1.3V125 CFS 1.3V125 C

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

SS 1.1V40 C−

SF 1.2V27 C

FS 1.3V125 C

mp1 mp2 mp3

mn1 mn2

mn3 mn5

c1
mp1 mp2 mp3

mn1 mn2

mn3 mn5

c1

m oGain g r= 

1

m

Power f
g

 
=  

 

…

m oGain g r= 

1

m

Power f
g

 
=  

 

…

gmVin roVin gmVin roVin… gmVin roVin…

ParasiticsParasitics Physical layoutParasitics Physical layout

Robust and realizable device 

parameter optimization  

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

SS 1.1V40 C−SS 1.1V40 C−

SF 1.2V27 CSF 1.2V27 C

FS 1.3V125 CFS 1.3V125 C

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

SS 1.1V40 C−

SF 1.2V27 C

FS 1.3V125 C

ParasiticsParasitics Physical layoutParasitics Physical layoutParasitics Physical layout

Circuit topology

Coupling between circuit 

specifications

Process, voltage, and 

temperature variations

Post-layout parasitics

Circuit topology

Coupling between circuit 

specifications

Process, voltage, and 

temperature variations

Post-layout parasitics

mp1 mp2 mp3

mn1 mn2

mn3 mn5

c1
mp1 mp2 mp3

mn1 mn2

mn3 mn5

c1

m oGain g r= 

1

m

Power f
g

 
=  

 

…

m oGain g r= 

1

m

Power f
g

 
=  

 

…

gmVin roVin gmVin roVin… gmVin roVin…

Tackling P2S task with domain knowledge  

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

SS 1.1V40 C−SS 1.1V40 C−

SF 1.2V27 CSF 1.2V27 C

FS 1.3V125 CFS 1.3V125 C

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

SS 1.1V40 C−

SF 1.2V27 C

FS 1.3V125 C

Circuit topology
Coupling between circuit 

specifications

Process, voltage, and 

temperature variations
Post-layout parasitics

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

SS 1.1V40 C−SS 1.1V40 C−

SF 1.2V27 CSF 1.2V27 C

FS 1.3V125 CFS 1.3V125 C

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

SS 1.1V40 C−

SF 1.2V27 C

FS 1.3V125 C

mp1 mp2 mp3

mn1 mn2

mn3 mn5

c1
mp1 mp2 mp3

mn1 mn2

mn3 mn5

c1

m oGain g r= 

1

m

Power f
g

 
=  

 

…

m oGain g r= 

1

m

Power f
g

 
=  

 

…

gmVin roVin gmVin roVin… gmVin roVin…

Robust and realizable device 

parameter optimization  

ParasiticsParasitics Physical layoutParasitics Physical layoutParasitics Physical layout

Circuit topology

Coupling between circuit 

specifications

Process, voltage, and 

temperature variations

Post-layout parasitics

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

SS 1.1V40 C−SS 1.1V40 C−

SF 1.2V27 CSF 1.2V27 C

FS 1.3V125 CFS 1.3V125 C

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

SS 1.1V40 C−

SF 1.2V27 C

FS 1.3V125 C

mp1 mp2 mp3

mn1 mn2

mn3 mn4

c1
mp1 mp2 mp3

mn1 mn2

mn3 mn4

c1

m oGain g r= 

1

m

Power f
g

 
=  

 

…

m oGain g r= 

1

m

Power f
g

 
=  

 

…

gmVin roVin gmVin roVin… gmVin roVin…

ParasiticsParasitics Physical layoutParasitics Physical layout

Robust and realizable device 

parameter optimization  

Circuit topology

Coupling between circuit 

specifications

Process, voltage, and 

temperature variations

Post-layout parasitics

ParasiticsParasitics Physical layoutParasitics Physical layoutParasitics Physical layout

m oGain g r= 

1

m

Power f
g

 
=  

 

…

m oGain g r= 

1

m

Power f
g

 
=  

 

…

gmVin roVin gmVin roVin… gmVin roVin…

Tackling P2S task with domain knowledge  

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

SS 1.1V40 C−SS 1.1V40 C−

SF 1.2V27 CSF 1.2V27 C

FS 1.3V125 CFS 1.3V125 C

Circuit topology

Coupling between circuit 

specifications

Process, voltage, and 

temperature variations

Post-layout parasitics

Physical layout

Circuit topology

Coupling between 

circuit specifications

Process, voltage, and 

temperature variations

Post-layout parasitics

mp1 mp2 mp3

mn1 mn2

mn3 mn5

c1
mp1 mp2 mp3

mn1 mn2

mn3 mn5

c1

m oGain g r= 

1

m

Power f
g

 
=  

 

…

m oGain g r= 

1

m

Power f
g

 
=  

 

…

gmVin roVin gmVin roVin… gmVin roVin…

Tackling P2S task with domain knowledge  

Circuit topology

Coupling between 

circuit specifications

Process, voltage, and 

temperature variations

Post-layout parasitics

−40

SS
SFFS

FF

1.1

1.3

125

T
 v

a
ria

tio
n

...

SS 1.1V40 C−SS 1.1V40 C−

SF 1.2V27 CSF 1.2V27 C

FS 1.3V125 CFS 1.3V125 C

Physical layoutPhysical layout

gmVin roVin…

Tackling the P2S task with domain knowledge  

Circuit topology

Coupling between 

circuit specifications

PVT variations

Post-layout 

parasitics

Physical layout

...

SS 1.1V40 C−SS 1.1V40 C−

SF 1.2V27 CSF 1.2V27 C

FS 1.3V125 CFS 1.3V125 C

m oGain g r= 

1

m

Power f
g

 
=  

 

…

m oGain g r= 

1

m

Power f
g

 
=  

 

…

mp1 mp2 mp3

mn1 mn2

mn3 mn5

c1
mp1 mp2 mp3

mn1 mn2

mn3 mn5

c1

Parasitics

mn2

mn3

(a)

VO

mp1 mp3

mn1

mn2

mn3

mp2 mp4

mp1 mp3

mn1

mn2

mn3

mp2 mp4

(b)

VIn

RL deployment to find a set of optimal 

device parameters at schematic level

Manually construct the physical layout for 

the circuit based on the sizing

Compare post-layout circuit specifications 

with the design goals

Discount the reward function in Eq. (3) 

with post-layout circuit specifications

RL to find new set of optimal device 

parameters based on the one in step 1

RL to find new set of optimal device 

parameters based on the one in step 1

Meet?

RL deployment to find a set of optimal 

device parameters at the schematic level

Manually construct the physical layout for 

the circuit based on the sizing

Compare post-layout circuit specifications 

with the design goals

Discount the reward function in Eq. (3) 

with post-layout circuit specifications

RL to find new set of optimal device 

parameters based on the one in step 1

Meet?

Start

End

No

RL deployment to find a set of optimal 

device parameters at the schematic level

Manually construct the physical layout for 

the circuit based on the sizing

Compare post-layout circuit specifications 

with the design goals

Discount the reward function in Eq. (3) 

with post-layout circuit specifications

Meet?

Start

End

Yes

1

2

3

4

No

RL deployment to find a set of optimal 

device parameters at the schematic level

Manually construct the physical layout for 

the circuit based on the sizing

Compare post-layout circuit specifications 

with the design goals

Discount the reward function in Eq. (3) 

with post-layout circuit specifications

Meet?

Start

End

Yes

1

2

3

4

No

RL deployment to find a set of optimal 

device parameters at the schematic level

Manually construct the physical layout for 

the circuit based on the sizing

Compare post-layout circuit specifications 

with the design goals

Adjust discount factor based on ratio of 

pre- and post- layout specs

Meet?

Start

End

Yes

1

2

3

4

No

RL deployment to find a set of optimal 

device parameters at the schematic level

Manually construct the physical layout for 

the circuit based on the sizing

Compare post-layout circuit specifications 

with the design goals

Adjust discount factor based on ratio of 

pre- and post- layout specs

Meet?

Start

End

Yes

1

2

3

4

No

(c)

0st

1st 0 1st st=

0ist st= 0x

0st x=

prex

0 prex x=

Fig. 7: Single-stage Op-Amp used for parasitic-aware sizing. The figure shows
(a) its schematic, (b) its physical layout, and (c) the flow to use ROSE-Opt
for the parasitic-aware sizing.

often construct an initial physical layout of the circuit with
an initial set of device parameters and fine-tune the device
parameters by following the same placement of the device
as the one used in the initial physical layout. Second, circuit
specifications from the post-layout simulation of this initial
physical layout are often degraded compared to the desired
goals but are not far from them. Therefore, the optimal final
device parameters to meet the design goals also fall in the
neighborhood of the initial set of device parameters.

With these key observations in mind, our method can apply
to parasitic-aware device parameter optimization by following
the essential steps shown in Fig. 7(c). We begin by initializing
all discount factors to 1. These discount factors are explained
in 4 . The other steps are as follows:
1 Deploy the trained RL agent to find the set of optimal

device parameters that satisfy the design goals in the pre-
layout stage and perform simulations to obtain the circuit
specifications with this set of device parameters; the ith spec-
ification of the jth corner is marked as sji,pre.
2 Construct a physical layout with the device parameters

found in Step 1 .
3 Extract the circuit specifications (i.e., sji,post) of this physical

layout by performing a post-layout simulation and compare
them with the design goals; if satisfied, the design is success-
ful; otherwise, jump to Step 4 .
4 Adjust the discount factor based on the ratio between pre-

and post- layout specifications, e.g., if sji,pre ≥ sji,post, α
j
i =

sji,post/s
j
i,pre.
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TABLE III: Detailed device parameters during the policy deployment for the two-stage Op-Amp.

Device parameters Width of
mp1 (µm)

Width of
mn1 (µm)

Width of
mp3 (µm)

Width of
mn3 (µm)

Width of
mn4 (µm)

Width of
mn5 (µm)

Capacitance of
c1 (pF) Reward

Step 26 11 35 79 18 6 46 4.4 −0.085
Step 27 11 35 81 17 5 45 4.4 −0.105
Step 28 10 34 83 16 4 47 4.3 −0.057
Step 29 10 34 85 15 4 49 4.5 −0.071
Step 30 10 33 85 14 3 48 4.5 −0.088

Manual tuning 10 35 83 17 4 47 3.6 10
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Fig. 8: Failed policy deployment in the two-stage Op-Amp example. The
highest reward appears in the 28th step. After slight manual adjustment from
that step, a set of optimal device parameters can often be easily obtained as
shown in Table III.

After the first iteration, we repeat the flow using the set of
device parameters xpre found in Step 1 as the new starting
point st of the trained RL agent for another deployment and
the intermediate circuit specification in 1 will be discounted
by the discount factor as αji ·s

j
i,pre, until the optimal final device

parameters that satisfy the design goals in the pre-layout stage
are found. Our experiments show that usually it takes no more
than two rounds to reach a set of device parameters with which
the circuit specifications of a physical layout can also meet
the design goal. Table II shows optimized device parameters
with/without consideration of parasitic effects, and Fig. 7(b)
shows the final physical layout corresponding to the reliable
device parameters for the circuit shown in Fig. 7(a).

C. Analysis of Failed Deployment Cases

Our trained RL agent achieves a high design success rate
with policy deployment (i.e., >90% across different circuits
as reported by our prior work [19]). Despite great promise,
we analyze a few failed cases where our trained policy cannot
converge to the optimal device parameters. We find that for
these failed cases, some circuit specifications are able to reach
the design goals, while the others converge to a neighborhood
of the desired ones at some deployment steps, but after which
they deviate a bit from the goals.

Fig. 8 shows such a failed policy deployment in the two-
stage Op-Amp example, where the desired circuit specifica-
tions given are gain (G = 360), bandwidth (B = 2.0 ·107 Hz),
phase margin (PM = 56◦), power consumption (P = 6.93 ·

10−3 W). It is observe that around the 28th step, the bandwidth,
phase margin, and power consumption are satisfied, but the
gain is still lower than the design goal. We examine the
detailed device parameters1 around the 28th step as shown in
Table III. It shows that the reward achieves the highest value
in the 28th step. We then select the device parameter values
reached at this step and proceed with a slight manual tuning
starting from these values. With less than five manual tuning
iterations, a set of optimal device design parameters can often
be easily obtained. The last row of Table III shows the device
parameters obtained after slight manual adjustment.

D. Comparisons between Different RL Algorithms

Different RL algorithms have shown different performance
in solving practical problems. PPO and DDPG are two primary
RL algorithms used in current RL-based methods [17], [18],
[25] for P2S tasks. Here, we perform detailed experiments
to compare the performance of DDPG and PPO in tackling
the P2S task by using the design of a two-stage Op-Amp as
an example. Fig. 9 illustrates our evaluation results, where
we train RL agents with PPO using both “discrete” and
“continuous” actions, as well as DDPG with “continuous”
action. Each curve in Fig. 9 is based on 6 random seeds.
Note that for other types of Op-Amps, we also observe similar
results.

1) PPO-continuous vs. DDPG-continuous: Compared to
DDPG-continuous, we find that PPO-continuous has a lower
sampling efficiency during the training process. This is be-
cause PPO-continuous adopts an on-policy learning mecha-
nism that samples actions according to its latest stochastic
policy. The on-policy characteristic introduces variance, since
each estimate of an expectation over a finite set of samples
may vary, which necessitates a large number of samples for
accurate mean calculations, thereby leading to low sampling
efficiency. In contrast, DDPG-continuous utilizes an off-policy
learning mechanism, which involves a replay buffer to store
transitions from the previous policy and relies on the current
policy only to replenish the buffer, improving the sampling
efficiency. The lower sampling efficiency of PPO-continuous
also impacts the training quality of the policy. As shown
in Fig. 9, with the same number of samples, the episode
length (deployment accuracy) of the trained policy with PPO-
continuous (green line) is longer (lower) than that of the one
with DDPG-continuous (red line).

1Note that here we do not show the finger numbers of transistors, because
they generally remain unchanged around the 28th step.
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Fig. 9: Comparisons between DDPG and PPO when applied to train RL agents. (a) Mean episode reward, (b) mean episode length, and (c) deployment
accuracy. Each curve in the figure is based on 6 random seeds.

2) PPO-discrete vs. DDPG-continuous: With the setting
of discrete action space, PPO-discrete demonstrates superior
sampling efficiency and more consistent results compared to
its continuous counterpart and DDPG-continuous. In a discrete
environment, the action choices of an RL agent at each
step are simplified to adjust the parameter upward/downward
with a small increment/decrement, or to maintain its current
value. This simplicity makes the training process smoother
and improves the quality of the policy to find the optimal
device parameters during the deployment process, as shown in
Fig. 9 (blue line). In a complex continuous environment where
the agent has a plethora of parameter choices, the off-policy
mechanism of DDPG-continuous could suffer from biases,
where some of the updates are based on prior (potentially
incorrect) expectation estimates. This leads to irreversible
incorrect estimates in the end and causes training instability
due to its inherent low-variance but high-bias nature. As shown
in Fig. 9 (red line), there is a sudden change with respect to
the mean episode reward/length and deployment accuracy.

However, there is a caveat to using PPO-discrete: the
discrete environment constrains the policy’s design efficiency.
Its mean episode length is influenced by the granularity of the
step in the discrete space and the distance between the initial
state and the target solution. Thus, a longer episode length
(i.e., more design steps) is required to find the optimal device
parameters. In a continuous environment, the action at each
step corresponds to the normalized device parameters in the
design space, thereby demanding fewer design steps.

3) BO-PPO-discrete vs. PPO-discrete: To address the issue
of low design efficiency of PPO-discrete, we introduce BO to
optimize the starting point of PPO-discrete, thus positioning
the initial state closer to the solution space. As illustrated in
Fig. 9 (yellow line), this strategy could optimize the starting
point, allowing PPO-discrete to reach the desired specifications
without too much meaningless exploration, accelerating the
trajectory formulation towards the solution. Ultimately, this
integration of BO with PPO-discrete, termed BO-PPO discrete,
demonstrates superior performance in both design accuracy
and sampling efficiency, and achieves commendable results in
design efficiency. This novel approach showcases the potential
of combining classical optimization techniques to improve
the effectiveness of RL in complex analog circuit design.
As optimization techniques continue to evolve, the combined
strengths of different optimization methods, such as BO and
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Fig. 10: Comparisons between our proposed framework ROSE-Opt, our RL
Backbone, and the RobustAnalog by taking the design of Nested Miller
compensation Op-Amp as an example. Right column: episode length. Right
column: deployment accuracy.

RL, underscore the importance of hybrid strategies in complex
optimization scenarios of analog circuit parameters.

4) Training Reward Is Not Always A Good Metric for
Comparing Different RL Policies: One last thing to note
is that DDPG-continuous is able to achieve a much larger
episode reward compared to PPO-discrete during the training
process but suffers from worse design accuracy during the
deployment process. This discrepancy is due to the nature of
the episode reward function, which accumulates intermediate
rewards throughout the search process for each episode. PPO-
discrete leverages fine-grained action to search for optimal
device parameters through multiple steps. Due to this fine-
grained mechanism, the improvement of intermediate rewards
in an episode is slow, resulting in a smaller episode return.
On the contrary, DDPG-continuous adopts continuous action,
allowing it to find a suboptimal solution earlier in the search
process and even within a single step, thereby leading to a
larger accumulated reward. However, since it suffers from
biases as discussed above, DDPG-continuous does not achieve
a high design success rate in the deployment stage. This
finding shows that leveraging the training reward as a metric
to compare design automation methods based on different RL
algorithms, as done in many previous work [17], [18], could
be misleading. We recommend employing deployment accu-
racy and design efficiency as metrics for fair and reasonable
comparisons across various methods.

E. Comparison and Summarization

Finally, we compare our proposed ROSE-Opt framework
with a recent work, RobustAnalog [28], which also targets the
optimization of variation-sensitive device parameters. Fig. 10
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TABLE IV: Summary of Comparison with Existing Optimization Methods.

Methods PVT Optimized starting Sampling efficiency for policy training FoM for policy deployment
incorporation point folded-cascode NMCF folded-cascode NMCF

RobustAnaloga [28] Partial No 1× 1× 1.14 0.625
BO Vangarda Full N/Ac N/Ac N/Ac 0.34 0.1

RL Backbonea Full No 2× 2.5× 1.42 1.26
ROSE-Opta Full Yes 12× 7.9× 20.51 6.87

Bayesian Optimizationb [1] No N/Ac N/Ac N/Ac 0 0
RL baselineb [17] No No Fail Fail 0 0

a RobustAnalog, BO Vanguard, RL Backbone, and RoSE consider PVT variations corners during training/optimization.
b Representatives of the prior arts [1], [13], [15]–[18], [25], [25], [27], [33] that ignore the variations of PVT in training/optimization. They are implemented by

our BO and RL without considering PVT variations.
c BO methods do not need pre-optimized starting points and training, thus some metrics are not applicable here.

shows the results of the two frameworks, as well as our
RL Backbone. Both ROSE-Opt and RL Backbone use full
PVT corner incorporation, while RobustAnalog uses K-means
clustering to select partial PVT corners during training. More-
over, ROSE-Opt uses an optimized starting point using BO,
while both RL Backbone and RobustAnalog use the same
randomly selected starting point. Compared to RL Backbone,
RobustAnalog is less competitive by only taking partial PVT
variations in the learning framework. K-means clustering has
trouble clustering data where clusters have different sizes and
densities. In practice, we cannot assume the cluster’s shape
and density based on the specifications we get from different
PVT corners. Our experiment result shows that this uncertainty
causes sampling efficiency issues because the RL algorithm
needs more training steps to repeat the clustering whenever
the device parameters reach the design goal under partial PVT
corners but fail at the full PVT corners setup. On the other
hand, RL Backbone’s device parameters are always evaluated
under full PVT corners without having this uncertainty issue.
Beyond that, our ROSE-Opt framework achieves the best
sampling efficiency, design efficiency, and design success rate
by considering all PVT variations in the learning loop and
adopting the two-level optimization method at the same time.

We summarize the features of ROSE-Opt together with
previous comparisons in Table IV. Here, more works are
compared against, such as directly applying prior arts [1],
[13], [15]–[18], [25], [27], [33] which ignore PVT variations to
perform device sizing in an environment with PVT variations.
In particular, we use BO [1] and RL [25] as representatives
of the prior arts, that is, optimization-based methods [1],
[13], [27] and learning-based methods [15]–[18], [25], [33].
Additionally, we use the FoM defined previously to evaluate
the overall performance of a design automation method in
robust device sizing. Without considering PVT variations, the
previous methods [1], [13], [15], [16], [18], [25], [27], [33]
fail in robust design with zero design accuracy. The com-
parisons show that with BO as pre-optimization, our ROSE-
Opt framework can significantly improve sampling efficiency,
design efficiency, and design accuracy for the PVT-aware
design. Note that BO is performed only once at the very
beginning, thereby incurring minimal overhead. In summary,
our proposed ROSE-Opt framework that takes advantage of
the complementary benefits of key domain knowledge and
optimization algorithms (i.e., combining BO and RL) can
achieve the best FoM for the challenging reliable device sizing
problem.

VI. CONCLUSION

We propose a RL-based framework to automate the P2S task
for analog circuit design. The key property of our framework
is to incorporate domain knowledge of practical analog circuit
design (e.g., the underlying physical topology of a given
circuit, the trade-offs between specifications, PVT variations,
and parasitic effects of physical layout) into the learning loop.
We show that such a framework is superior in designing
various analog circuits with higher accuracy, efficiency, and
reliability. We expect that our method would assist human
designers to accelerate the analog chip design with artificial
agents that master massive circuitry optimization experiences
via learning.
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