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Abstract— Designing robotic agents to perform open vocab-
ulary tasks has been the long-standing goal in robotics and
AI. Recently, Large Language Models (LLMs) have achieved
impressive results in creating robotic agents for performing
open vocabulary tasks. However, planning for these tasks in
the presence of uncertainties is challenging as it requires
“chain-of-thought” reasoning, aggregating information from the
environment, updating state estimates, and generating actions
based on the updated state estimates. In this paper, we present
an interactive planning technique for partially observable tasks
using LLMs. In the proposed method, an LLM is used to
collect missing information from the environment using a robot,
and infer the state of the underlying problem from collected
observations while guiding the robot to perform the required
actions. We also use a fine-tuned Llama 2 model via self-instruct
and compare its performance against a pre-trained LLM like
GPT-4. Results are demonstrated on several tasks in simulation
as well as real-world environments.

I. INTRODUCTION

Designing robots that have the physical intelligence to
perform open vocabulary tasks is extremely challenging.
This requires that robots be able to interpret tasks from an
open set of instructions and execute them robustly while
performing the required reasoning. One can argue that this
could be the most challenging problem facing artificial
intelligence (AI). However, designing such agents can truly
revolutionize the way robots would be integrated into our
future society. Recently, large language models (LLMs) [1]–
[3] have been shown to be very impressive at solving tasks
of different complexities [4]–[8]. Large language models
can help understand the tasks and decompose them into a
sequence of actions, reward functions, or goals for policy
given appropriate prompts and training data. Motivated by
these developments, we present a problem of interactive
planning in uncertain environments where a robot may not
have complete information to perform the task. In these tasks,
the robot needs to interact with its environment and collect
additional information to complete the task.

Partial observability and uncertainty are the norm, rather
than the exception, in the real world. For example, consider
task T2 shown in Figure 1, where a robot needs to understand
how it can gather information to identify the empty cup and
then throw it in the bin. Unlike the tasks with complete
information, it would be challenging to design a sequence of
skills or a suitable reward function that can solve this task.
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Fig. 1. An example task where the uncertainty is present in the content
of the cups. For task T1, the robot is asked to throw the cup on the left
into the bin. An LLM agent can generate feasible action sequences for the
robot to perform the task. When asked to throw the empty cup, the agent
cannot reason which cup is empty based on current information. It needs
to interact with the cups and use feedback from observations (e.g., force
sensor reading) to identify the empty cup.

This problem can be formulated as a Partially Observable
Markov Decision Process (POMDP)[9]. However, solving
POMDPs could be computationally intractable. It requires
reasoning in the belief state of the problem and does not
scale well with the dimensionality of the problem. Prior
work on using LLMs for robotic tasks has demonstrated
good reasoning capability of LLMs as well as mapping of
the reasoning to robot actions [5], [10], [11]. Inspired by
these advancements, we believe that we can leverage the
reasoning and “chain-of-thoughts”(CoT) capability of LLMs
to solve partially observable tasks while interacting with the
environment. What makes this challenging for current LLMs
is the requirement to understand real robot observations from
different modalities and use them for task planning.

Most of the prior works using LLMs in robotics focused
on step-wise scene and task understanding making full use
of the current available modalities to infer the optimal action
and/or reward [5], [6], [10], [11]. In this work, we focus on
performing interactive planning under cases of partial ob-
servability. This requires planning to aggregate information
from the environment, reasoning about the correct state of the
system, and updating the state estimates based on the sensor
observations collected by the robot. Furthermore, we also
try to understand how well a fine-tuned smaller model like
Llama2-7B [3] performs in comparison with a pre-trained
LLM like GPT-4. The smaller models are generally desirable



for practical reasons but it could be challenging to distill
the reasoning capability of models like GPT-4 for complex
robotic tasks discussed in this paper. To understand this, we
propose an instruction data generation pipeline following the
self-instruction [12] scheme to understand the limitations of
smaller models and potential ways to overcome them.

In summary, our work makes the following contributions:
• We introduce the Large Language Model for Par-

tially Observable Task Planning(LLM-POP) framework
to interactively plan for tasks with uncertainties. We
demonstrate the framework in simulation and real-world
environments.

• We compare the performance of pre-trained LLMs with
fine-tuned smaller models in the proposed framework.

II. RELATED WORK

LLMs for embodied AI tasks: The recent strides in the
field of LLMs have renovated the robotics community in
various task domains, especially on task planning [4], [7],
[13]–[15], where the robot is asked to reason about language
instructions to generate robot actions, reward functions for
online controllers [6], and code [8], [16]. Previous works also
combine LLMs with Task and Motion Planning (TAMP) to
make use of the traditional motion planning algorithms [17]–
[19]. To solve robotics tasks in larger and more complex
settings, researchers have utilized LLMs to process multi-
modal information, [5], [11], [20], [21], enable multi-robot
[22] and human-robot collaboration [23]. A series of works
use feedback in the planning process [5], [10], [23]–[26]
to improve the LLM-generated plans, and use the natural
language provided by the user to correct robot behaviors.
Other works model the uncertainties in tasks [27], [28]
and gather reasoning by involving human knowledge in the
decision loop. In our problem setting, we focus on the partial
observation environment setting where initial information is
insufficient for task solving, and the robot actively seeks task-
relevant information via sensory feedback.
LLMs for Data Synthesis and instruction tuning: Recent
open-sourced models like LLaMa [29][3], Alpaca [30], and
Gorrila [31], explore how pre-trained models can be im-
proved for general and specific tasks [32]–[35]. Researchers
have proposed strategies to prompt LLMs to perform high-
quality synthetic data by in-context learning[36], task decom-
position[24], [37], as well as methods to improve fine-tuning
performance [38], [39], and pre-train model for specific tasks
like coding [40]. Our research incorporates these methods to
get synthetic data for instruction-tuning but focuses on tasks
that require reasoning, but with limited labeled data.

III. INTERACTIVE LLM PLANNING WITH
UNCERTAINTIES

The objective of the proposed framework is to perform
long-horizon robotic tasks in the presence of various kinds of
uncertainties using LLMs. These tasks require a closed-loop,
interactive planning where the robot should be able to collect
useful observations from the environment and then make
optimal decisions. An example of such a task is illustrated in

Figure 1 where the robot’s task is to throw the empty cup into
the bin. However there exists uncertainty in the contents of
the cups, and therefore this information needs to be obtained
by sensorimotor operations and provided as the feedback to
the LLM. For clarity of presentation, this section delves into
the formulation of the underlying problem using the notion
of POMDPs. We then elaborate on the pivotal role of LLMs
in the interactive planning framework.

A. Problem Formulation

1) Partial Observation setting: A POMDP is an extension
of a traditional MDP that tackles decision-making scenarios
where the agent lacks complete state information. A POMDP
is defined by a tuple (S,A,P,R,Ω,O), with Ω as the obser-
vation set and O as the observation function. At each time
step, the environment is in state s ∈ S. The agent takes action
a ∈ A and causes the environment to transit to s′ accordingly
to the transition function P(s′|s,a). At the same time step, the
agent gets an observation o∈Ω which depends on the current
state of the environment O(o|s′).Unlike the policy function in
MDP π(a|s), which maps the underlying states to the actions,
POMDP’s policy π(a|b) is a mapping from the belief states b
to the actions. The belief state b is a probabilistic estimation
of the full state s. The updated belief state b′ after observing
o is described by: b′(s′) =C ·O(o|s′)∑s∈S P(s′|s,a) where C
is a normalizing constant.

We also want the proposed framework to be generalizable
to a variety of tasks. For different tasks τ , the information
required to make decisions can differ. This adds additional
complexity since now the LLM has to reason about a
generalizable state space S. In the open-vocabulary robotics
task scenarios, the robot observations are determined by on-
board sensors. Not all information about the environment is
relevant to the task; some of them can be directly extracted
from observations, while some are unknown and require
exploration. Thus, we end up getting task-dependent belief
state bτ , and the task-related states sτ for task τ . Both
finding the necessary state abstraction for different tasks and
finding the optimal policy π under the task-specific MDP is
important in this task-dependent POMDP setting.

2) Action space of robots: For long-horizon tasks, using
a pre-trained set of parameterized skills as action space is a
common choice. In this paper, we use a set of parameterized
skills like {pick, place, reach, reset}. All these skills can
be performed using robot observations and thus we do not
consider partial observability during robot skills execution. It
is noted that we do not consider continuous sensory feedback
during skill execution– however, that could be incorporated
by training skills using RL.

3) Uncertainties in Tasks: The uncertainty in decision-
making in the tasks we test mainly arises from two aspects:
Environmental Uncertainty: These uncertainties arise in
the POMDP settings due to the agent’s lack of complete en-
vironmental knowledge. For example, physical properties of
the objects that cannot be directly observed. The uncertainties
in the belief bτ can be reduced with certain observations. This
is a major challenge we target to solve in this paper.



Skill Execution Uncertainty: Even with a well-defined
plan, the actual execution of actions on robots might not
always lead to the expected outcome. This can be mainly
attributed to the difference between the transition functions
P, Preal of the designed and real system as well as unexpected
disturbances during execution.

With the challenges explained above, we propose a frame-
work where LLMs are used as policy as well as for state
abstraction for the underlying POMDP.

B. Language-based Planners

Based on the problems described in the previous section,
we propose to use a LLM to play a multifaceted role in the
interactive planning process:

1) LLM for State Abstraction: Given the environment
description and sensor observations, LLM needs to analyze
the available information and abstract the sufficient statistics
(or the appropriate state) to solve the task. Furthermore,
it needs to reason about what is uncertain based on the
current observations. It needs to update its belief based on
the observations when prompted with historical information.

2) LLM as Policy: Given the observation and action
space, LLM needs to plan actions that gather environmental
information to mitigate the uncertainty and update the agent’s
belief state. The LLM-based policy is also expected to
generate the optimal plan to maximize the reward based on
the task description with minimal steps. Also, since we use
open-loop parameterized skills for the robot, the LLM is also
used to provide feedback to the robot in cases of failure in
execution of these skills. This feedback needs to be provided
in a way that is still executable by the robot.

We use LLM to reason about these problems during task
execution. It is noted that actions in the POMDP setting
is conditioned on new observations and updated beliefs.
There are a few additional challenges when using LLM
as closed-loop policy for tasks with uncertainties that we
consider in the paper. To update the belief state of the
task, the LLM must understand the robot observations from
different modalities (pose detections, force sensors, etc.).
These data formats might be new to the LLM model and
thus, must be properly included in the prompt template
to the LLM. Furthermore, the skills available to the robot
are parameterized by continuous position and orientation
coordinates which might be challenging to reason about
while performing robotic tasks. Similarly, the output of the
language model needs to be executable by the robot; the
response should be written in a template that the downstream
controller can understand. In the next section, we will discuss
how we use the LLMs to solve the interactive planning task.

IV. LLM-POP: INTERACTIVE PLANNING FRAMEWORK

The proposed framework (LLM-POP) for interactive plan-
ning is illustrated in Figure 2. As introduced in the problem
formulation, the language-based policy in our framework has
multiple tasks to do in the planning loop. At each step, the
input to the language model contains the task description
from a user, the current observation from the robot, and the
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Fig. 2. An example showing how the framework works during solving the
task “Pick up the heavier block”. The LLM planner outputs an executable
action sequence to the robot. The robot executes the action, and the
observation description and action pair are added into the history buffer. The
LLM evaluator analyzes the historical information and outputs the updated
information to the planner as intermediate info to generate a new plan.

historical action and observation sequence from previous
steps. The model output includes an executable sequence of
actions and the corresponding text explanation. The robot
will execute the actions provided by the policy output and
return the observations for a next-round query of the LLM.
The language model must finish the reasoning task and out-
put the policies in the designed format. The task description
is the only user-provided input during the planning process.
In the following sections, we show how we use a pre-trained
LLM (GPT-4) as well as a fine-tuned smaller model to serve
as the planner.

A. Prompt structure for GPT-4

Using powerful LLMs like GPT-4 as interactive planners
relies on its strong chain-of-thought reasoning and in-context
learning capability. Therefore, the prompt (input of a single
round LLM query) to the LLM requires careful design
to ensure it can generalize to robotics tasks and avoid
hallucination (generating actions in wrong formats or not
executable for the robot) in responses.

As shown in Figure 3, the prompt template for the planner
consists of the following parts:

• Environment description, action options, output rules:
Background information that help understand the task
settings. This information is preset by the user and is
constant throughout planning for different tasks.

• Task description: texts describing tasks from users.
• Example outputs: in-context examples for planning.
• Current observation and historical information: text-

format descriptions of current observation and historic
information. If the observation is poses and force, use
vectors with explanations.

The explanation in output, together with the action se-
quence, will be included in historical information. This helps
the LLM to understand the past actions it has performed
and avoid reasoning about it again. Note that the LLM
planner needs to specify the parameters in the actions based
on its own understanding of the environment, task, and
the action space description. For manipulation tasks, this
includes location and orientation for the target pose.



[Environment*]
A Franka robot is placed in front of a table with cubes on
top...
[Task Description*]
Move the heavier blocks to the corner of the table.
[Action Options]
1) PICK <object> 
2) PLACE <location>
3) RESET
[Output Examples**]
EXPLAIN To check the weight of blocks, we need to first...
PICK blockA\n PLACE [0.1 0.2 0.05 0 0 0 1]
[History and Current Observation*]
Round 1: block A at... force reading... after action PICK...
Current: block A at ..., force reading...
[Output Instructions and Rules**]
Think step by step...
Remember to follow the format of output:...

* same for evaluator ** adjust for evaluator

Fig. 3. Prompt template for GPT planner and evaluator. The task description
is taken from user input, the others are pre-defined according to the
environment and robot. Output rules will be adjusted for the evaluator.

As shown in Figure 2, along with the LLM planner, we
also designed an LLM evaluator using a similar prompt
structure. The evaluator also takes in the background in-
formation, task description, and history observations after
executing past actions. It evaluates the task execution status
and appends it to next-round prompting. As described in
Section III-B, the evaluator here will explicitly ask the LLM
to finish the “state abstraction” (analyze what’s the missing
information), “belief update” in policy (analyze informa-
tion from historical observations), and “correct execution
errors”(identify failures from the history). It’s possible to
put all the requirements into the LLM planner, asking it to
analyze the feedback and then do the planning, which means
an evaluator isn’t necessary for the framework, especially
with stronger LLMs. For current version GPT-4, we find the
decomposition improving the reasoning results.

B. Fine-tuning a smaller model as planner

Fine-tuning a language model, rather than directly query-
ing a GPT-4, not only enables offline deployment but also
holds distinct advantages in the context of interactive plan-
ning. One prominent reason is the incorporation of multi-
modality in the data. Our system doesn’t solely rely on text
descriptions but also utilizes the robot’s observations. While
these observations can theoretically be converted into text
form, they constitute a novel data type that GPT-4 has not
been trained on, thereby resulting in limited zero-shot gener-
alizability. For example, in experiments using GPT-4, if poses
in robot observations and action parameters are in different
frames of reference, the LLM will have trouble transforming
them. A second reason is the requirement of large contexts
in the input. A direct query to GPT would necessitate the
inclusion of environment settings and generation constraints
at each instance, which is inefficient and cost-intensive.

The difficulty of fine-tuning a smaller pre-trained LLM
model mainly comes from two sides: 1) Lack of data for
complex tasks. Most robotics data in the wild[41]–[43] has
no partial observable tasks involved, and force-torque sensor
data is usually not included since they are noisy and vary
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CoT
Question
Candidates

Fig. 4. The training procedure of the fine-tuned LLMs as an interactive
planner as described in Sec IV-B. During inference, questions come from
the pre-defined CoT question set, inputs come from robot observation.

across robots. 2) Smaller models are worse at reasoning
tasks, CoT is fundamentally tied with larger models [44].

In order to get the required data to fine-tune a model as
a planner in interactive planning under partial observation,
we follow the procedure shown in Figure 4, using self-
instruct[12] to generate an instruction dataset and fine-tune
a LLaMA2-7B[29] model. The full pipeline includes:
Task Generation: The description of the environment, robot,
potential uncertainties, action options, and example tasks are
provided to GPT-4 to generate a number of tasks that are
feasible to solve. We encourage GPT-4 to make the task set
diverse in difficulty.
Instruction Generation: The generated tasks are used to
generate pairs of instructions and responses, following the
self-instruct paradigm. The instruction includes task de-
scriptions and questions, the input encompasses the robot’s
observations. The output generated by the model includes the
same verbal explanations and actions as GPT-4 planners. We
add format instructions to guarantee the “response” format.
CoT question designs: Finishing the state abstraction, belief
update, and action planning in one query is hard for smaller
models. Therefore, we create CoT questions[45] to ask if
missing information exists, how to collect information, and
how to solve the task with fill information. The planner will
choose questions to ask based on binary options in response.
Integrating collected robot observations: For the pre-
trained actions, we collect success trajectories of the robot
finish the actions and use them as in-context reference
examples in the Instruction Generation process.
Fine-tuning: For the fine-tuning process, we adopted the
LLaMA-adapter [39]. This approach allows us to enhance
the model’s performance by leveraging a specifically curated
dataset and fine-tuning it to our unique task generation and
interactive planning scenario.

V. EXPERIMENTS

The experiments aim to validate the proposed interactive
planner and to answer the following three questions:

1) Is the proposed framework able to solve complex tasks
with uncertainties?

2) Does the proposed method apply to sim and real robots
with different observation and action spaces?
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Fig. 5. An example rollout of LLM-POP solving T4:Stack the lighter block on the heavier one. In the first step, the planner figured out the plan to
determine which block was lighter by picking up and placing both blocks down. In the second step, it figured out the heavier block. The Evaluator output
is not shown here due to the space limit. In the next round(not shown in the figure), the evaluator recognized the completion of the task.

3) Can the fine-tuned LLM also solve partial observable
tasks? What are the gaps between GPT-4?

A. Experimental setup

Environment: LLM-POP is evaluated on a set of manipu-
lation tasks in a tabletop block rearrangement environment.
A robot arm with a parallel gripper is equipped with a pre-
trained skill set of {Pick, Place, Reach, Reset}. Each scenario
is initialized with identical-size blocks with randomized
positions and orientations on the table.
Uncertainties: We introduce two uncertainties in this envi-
ronment 1) mass: Density(mass) of the blocks is randomized.
2) fix: blocks are randomized to be fixed/movable on the
table. We design a task set containing tasks at different
difficulty levels (horizon length to solve the task) under un-
certainty assumptions to evaluate the planner’s performance.
Observations: The robot observations include the pose of
the robot end effector, the pose of the blocks on the table,
gripper opening positions, and force-torque (F/T) readings.
Pre-trained skills and parameters: pick(object): Pick up
the specified object on the table. place(pose): Move the end
effector to desired pose and open the gripper. reach(pose):
Move the end effector to desired pose. reset(): Reset the arm
and gripper to the initial pose. where object is a text name
string, pose is the position and orientation.
Evaluation metrics: How to evaluate the task success rate is
non-trivial since the desired outcome of the tasks in Table I
(e.g., the lighter block is on top of the heavier block) could
also be achieved through an incomplete decision-making
process (e.g., stack a block on top of the other one that
by chance respects the right weight relationship.) For this
reason, even the LLM evaluator proposed in Section IV-A
cannot confidently determine the success of the tasks, and
we eventually relied on a manual check of each experiment.

For each task in the evaluation task set, we evaluate
the success rate of finishing the task under ten random
initializations on the positions and the uncertainties of blocks
(5 for real robot settings since it’s harder to randomize the
uncertainties). Table I includes our evaluation tasks. Default
LLM-POP uses GPT-4 for the planner and evaluator.

TABLE I
UNCERTAINTY AND TASK DESCRIPTION TABLE

Type Task Descriptions
/ 1. Stack one block onto another.
/ 2. Move the blocks to the corners of the table.
mass 3. Pick up the heavier block.
mass 4. Stack the lighter block on the heavier.
fix 5. Pick up the movable block and put it at the table corner.
fix 6. Find the movable block and put it on the fixed block.

B. Simulation: Block manipulation with Pre-trained LLM

We first evaluate our approach for solving the tasks in
Table I in a simulated robotic system in IsaacGym[46]. We
use the FrankaCubeStack task as a template environment,
but change the blocks to the same size with random densities
for mass uncertainty and randomly fix the block on the table
for fix uncertainty. The action parameters for place include
3D target position and quaternion of the end effector. This
is different from the block orientation quaternions in the
observation, and explicitly including this (compared to using
observation-action examples) in the prompt is essential for
the LLM planner to get the correct action parameters and
understand the observations.

We use two ablations: 1. GPT-3.5 as planner. 2. Remove
the evaluator which explicitly asks for state abstraction and
belief updates1. Evaluation results are shown in Table II.

TABLE II
PLANNER SUCCESS RATE ON EVALUATION TASK SET

Model T1 T2 T3 T4 T5 T6
GPT-3.5(w/o E) 5/10 7/10 0/10 0/10 0/10 0/10
GPT-3.5 6/10 6/10 0/10 0/10 0/10 0/10
LLM-POP(w/o E) 10/10 10/10 9/10 4/10 6/10 4/10
LLM-POP 10/10 10/10 10/10 8/10 7/10 8/10
LLM-POP* 5/5 5/5 5/5 4/5 5/5 4/5
FT-Vanilla 4/10 2/10 0/10 0/10 0/10 0/10
FT-CoT 10/10 10/10 4/10 3/10 8/10 6/10

(w/o E): No evaluator. * Real-world experiment. FT: Fine-tuned Llama2

Compared to the GPT-4-based planner, GPT-3.5 is also
able to reason correct action sequences for stacking tasks,
but can not always reason about the geometric (position and
orientation) parameters. It can understand what’s the missing

1To avoid the uncertainty from GPT versions, we use gpt-4-0314 for all
GPT-4 and gpt-3.5-turbo-16k-0613 for GPT-3.5 usage.



information for tasks with uncertainty, but fails to generate
multi-step plans to collect and update the information.

We observe a performance improvement for the GPT-
4 based planner, especially on longer-horizon tasks with
uncertainty when the evaluator is added to the pipeline. An
example is shown in Figure 5. The LLM is asked explicitly
what is missing and how such information can be ana-
lyzed from historical observations. This enforces the LLM
to perform “state abstraction” and “belief update” before
planning. In experiments, the GPT-4 planner without the
evaluator sometimes makes the wrong plan by repeating the
same collecting actions even if it already collected sufficient
information. As the history of observations grows longer,
the chance that LLM makes wrong reasoning also increases.
This is partially due to the long-text handling challenge for
the current GPT-4 version, and decomposing the reasoning
tasks into an evaluator helps improve the stability.

C. Hardware: Real robot Block Manipulation with GPT

We implement the same version of our method on a
MELFA Assista robot arm with a WSG 32 two-finger
gripper. We put AprilTags [47] on the sides of the blocks to
get the pose estimate of blocks. We use blocks with different
materials and added weight for uncertainty in mass. We use
the force-torque (F/T) sensor mounted on the robot’s wrist
to get force readings. The action parameters for position
controls on the real robot are in Euler angles, and the angles
for the gripper and blocks are in different frames. For safety,
we set the task to fail if action parameters get out of safety
bounds or a collision happens. Results are in Table II.

The LLM-POP framework (GPT-4) achieves better per-
formance in the real robot compared to the simulation
domain. This is mostly because of the very accurate position
controller implemented on the real robot, leading to fewer
execution errors. The stiffness controller and F/T sensor used
on the real robot allow us to recover accurate force readings
with no noise compared to the “sensor” in the simulator,
which is affected by robot movement and gravity. These
experiments show that the proposed framework can solve
tasks with varying levels of difficulties and uncertainties
reliably in simulated as well as real systems.

D. Simulation: Block manipulation with fine-tuned model

Using the self-instruction method introduced in IV-B, we
generate an Alpaca [30]-like dataset and use it to finetune
a Llama2-7B [3] model for reasoning. We test it on the
same IsaacGym environment. Results are also shown in
Table II. FT-Vanilla uses directly generated instruction pairs,
while FT-CoT uses CoT decomposition instruction pairs. The
biggest challenge during data generation for both is the corre-
spondence between imagined observation generated by GPT-
4 and the ground truth. For example, after picking up the
block, the gripper position in the generated data is sometimes
not close to the block position (and thus incorrect). This
increases the difficulty for fine-tuned models to do correct
reasoning based on observations. In the experiments, the fine-
tuned model is able to reason about the missing information

based on the task description and generate plans to collect
the information. The results show that the fine-tuned model
benefits from the CoT decomposition of instructions, and
failures mostly come from wrong reasoning (wrong “heavy”
block based on history). The current gap between the fine-
tuned model and GPT-4 lies in the ability to analyze the
historical information for updating the information and the
ability to avoid and adjust wrong action parameters since
it’s not included in the current data synthesis procedure. A
potential improvement is to add an auxiliary task of “observa-
tion understanding” in training and use diverse environment
settings to improve the reasoning capability. We leave this
to our future research.

E. Common Failures in Sim and Real Experiments
1) Execution failures: This appears more in the simulation

environment when the place action sets a target pose with
less tolerance between objects and the robot moves at high
speed (The control gains in the simulator are not fine-tuned
for various block weights). LLM planners can also generate
actions that cause collisions since there’s no online collision
avoidance in skills.

To explicitly test if the evaluator can help in correcting
execution errors, we did an ablation on stacking(T1) by
adding offsets (1cm) on the grasping position of the block.
The initial target placing position will fail because of this
offset. With the evaluator included, which asks the LLM
to analyze failure action based on history and propose
correcting suggestions, the planner outputs a better target
position (higher) in the next round. This shows that having
an evaluator can actually help to correct execution errors.
Detailed analysis is deferred to a longer draft of the paper.

2) Belief update failures: Incorrect plan for collecting
information (e.g., trying to reach above the block to measure
its weight); wrong analysis results from the observations
(e.g., not comparing weight using the force sensor z-axis
value but using noise in other axes). In the LLM-POP with
GPT-4 case, most failures come from the wrong analysis.

VI. DISCUSSION

In this work, we proposed an interactive planning frame-
work LLM-POP using LLM to solve tasks under partial
observation. The framework is verified in simulated as
well as real robot systems on various partially observable
tasks. Task distribution that the current framework can solve
strongly depends on the diversity and robustness of the pre-
trained skills. Current skills are open-loop actions based on
initial observation. If the pre-trained skills are closed-loop
policies with collision avoidance and online adjustment, the
framework would be able to solve more challenging tasks.

Overall, the gap between fine-tuned model and GPT-4 is
clear, especially in reasoning for complex tasks. Our goal
is not to replace the GPT-4 but to propose a method for
generating self-instruct data for robotic tasks with limited
demonstration data. We verify its usage as an interactive
planner and leave the task of involving more modalities in
the observation like image [48], [49] and solving complex
environments like HomerRobot [50] to our future research.
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