
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

LATE AUDIO-VISUAL FUSION FOR IN-THE-WILD
SPEAKER DIARIZATION

Pan, Zexu; Wichern, Gordon; Germain, François G; Subramanian, Aswin; Le Roux, Jonathan

TR2024-029 March 19, 2024

Abstract
Speaker diarization has been well studied for constrained scenarios but little explored for
in-the-wild videos, which have more speakers, shorter utterances, and inconsistent on-screen
speakers. We address this gap by proposing an audio-visual diarization model which combines
audio-only and visual-centric sub-systems via late fusion. For audio, we improve the attractor-
based end-to-end system EEND-EDA with an attention mechanism and a speaker recognition
loss to handle the larger speaker number and retain the speaker identity across recordings.
The visual-centric sub-system leverages facial attributes and lip-audio synchrony for identity
and speech activity estimation of on-screen speakers. Both sub-systems surpass the state of
the art (SOTA) by a wide margin, with the fused audio- visual system achieving a new SOTA
on the AVA-AVD benchmark.

Hands-free Speech Communication and Microphone Arrays (HSCMA) 2024

c© 2024 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





LATE AUDIO-VISUAL FUSION FOR IN-THE-WILD SPEAKER DIARIZATION

Zexu Pan, Gordon Wichern, François G. Germain, Aswin Subramanian, Jonathan Le Roux

Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

ABSTRACT

Speaker diarization has been well studied for constrained sce-
narios but little explored for in-the-wild videos, which have more
speakers, shorter utterances, and inconsistent on-screen speakers.
We address this gap by proposing an audio-visual diarization model
which combines audio-only and visual-centric sub-systems via late
fusion. For audio, we improve the attractor-based end-to-end system
EEND-EDA with an attention mechanism and a speaker recogni-
tion loss to handle the larger speaker number and retain the speaker
identity across recordings. The visual-centric sub-system leverages
facial attributes and lip-audio synchrony for identity and speech ac-
tivity estimation of on-screen speakers. Both sub-systems surpass
the state of the art (SOTA) by a wide margin, with the fused audio-
visual system achieving a new SOTA on the AVA-AVD benchmark.

Index Terms— Speaker diarization, EEND-EDA, attention at-
tractors, speaker recognition, audio-visual

1. INTRODUCTION

There is a long history of research looking to extract the rich in-
formation contained in speech signals, e.g., speaker localization,
speech recognition, and emotion recognition [1–3]. However, these
algorithms have often been optimized only for the case of isolated
speech, making an effective preprocessing algorithm to find “who
spoke when,” i.e., speaker diarization [4], highly desirable. Classical
audio-only diarization algorithms [4, 5] have typically followed a
multi-stage cascaded approach with voice activity detection (VAD),
frame segmentation, speaker embedding extraction, and clustering,
with each stage optimized independently. With such an approach,
errors tend to accumulate, resulting in sub-optimal performance.
Recently, end-to-end (E2E) algorithms, such as the E2E neural di-
arization (EEND) with an encoder-decoder based attractor (EDA),
named EEND-EDA [6, 7], have gained increasing attention due to
their ability to flexibly handle an unknown number of speakers. Per-
mutation invariant training (PIT) [8,9] is used to address the speaker
order ambiguity between network outputs and ground-truth labels.

As does human speech perception often rely on various sensory
stimuli, such as observing lip movements [10] or body gestures [11],
audio-visual diarization algorithms leverage such synergies between
speech signals and visual features. The WST model [12] enrolls
speakers based on audio-visual correspondence in a cascaded di-
arization system. E2E methods [13, 14] fuse audio and visual repre-
sentations, training similarly to audio-only EEND [15].

Both audio-only and audio-visual diarization models have
demonstrated remarkable performance in constrained meetings
or conversation scenarios [17], where there are rarely more than
10 people and no off-screen speakers. However, they are largely
untested for in-the-wild recordings such as those of the recent AVA-
AVD dataset [16], where a 5-minute movie clip can contain up to 20
speakers, with much shorter typical utterances (cf. the statistics in
Fig. 1). Such conditions especially test the robustness of PIT with its

Fig. 1: Histograms of the number of speakers (left) and the utterance length
in seconds (right) of the audio recordings in the AVA-AVD dataset (plots
reproduced from [16]).

factorial complexity with the number of speakers, and the capacity
of the EDA module to decode representative attractors. Recordings
also contain various background noises, sound effects, and music,
off-screen utterances/speakers, and irrelevant speakers.

The recent AVR-Net [16] and DyViSE [18] target in-the-wild
videos by enhancing the speaker embedding extraction stage through
audio-visual early fusion in the cascaded diarization framework. Al-
ternatively, we advocate for late fusion, allowing the visual signals
to explicitly play at least two important roles that could help diariza-
tion: the synchronization between the lip movements and the speech
signals provides strong hints about the speech activity [19], and the
facial attributes provide robust evidence about speaker identity [20].

In this work, we build an audio-visual speaker diarization system
targeting in-the-wild videos. We propose a model named AV-EEND-
EDA++, depicted in Fig. 2. It comprises an audio-only sub-system,
EEND-EDA++, shown in Fig. 3, and a visual-centric sub-system, V-
AHC, shown in the top part of Fig. 2. We build EEND-EDA++ upon
EEND-EDA, proposing an attention-based EDA module to enhance
the network’s capacity when decoding a large number of speaker at-
tractors, and to jointly train the speaker attractors on speaker recog-
nition to enhance the discriminative power of the attractor represen-
tation. V-AHC explicitly leverages visual signals to perform on-
screen face tracks diarization. It uses an active-speaker detection
technique [19] to enhance the on-screen speaker activity and speaker
change detection, followed by agglomerative hierarchical clustering
(AHC) based on face recognition results [21] for speaker cluster-
ing. The two sub-systems are combined with a permutation-invariant
late-fusion technique based on speaker activity probability.

Experimental results show that EEND-EDA++ better preserves
speaker identity across recordings thanks to the speaker recognition
loss. Both our proposed EEND-EDA++ and V-AHC outperform ex-
isting audio-visual diarization algorithms on the AVA-AVD bench-
mark [16], with our AV-EEND-EDA++ achieving the new SOTA in
terms of diarization and Jaccard error rate.

2. PROPOSED AV-EEND-EDA++
2.1. Audio-only EEND-EDA++
Related work: EEND-EDA [6] is an E2E diarization model
which encodes audio features into audio embeddings et ∈RD ,
t∈ [1, . . . , T ], using Transformer encoders (SA-EEND) without



Face detection
tracking

TalkNet

FaceNet AHC

Face tracks Face
embeddings

Face activities

Clustered face
embeddings

In-the-wild video

Permutation-invariant
score-level late fusion

Visual-centric sub-system (V-AHC)

EEND-EDA++

Fig. 2: Our proposed audio-visual speaker diarization model named AV-EEND-EDA++. The blue path is the audio-only sub-system named EEND-EDA++,
while the red path is the visual-centric clustering-based sub-system named V-AHC. The diarization results of the EEND-EDA++ and V-AHC sub-systems are
fused with a permutation-invariant score-level late fusion. The figure is best viewed in color.

Embeddings

Attractors

Linear + Softmax

Attention EDA with joint speaker recognition 

5123 18 513 0

Sigmoid

Context vector

SA-EEND

LSTM encoder

Audio features

LSTM decoder

Diarization 
results of 

Diarization 
labels of

Fig. 3: Our proposed EEND-EDA++. We introduce an attention mechanism
in EDA and train the attractors on speaker recognition. The symbol ⊙ is the
inner product. Novelties are marked in red.

positional encoding, where D is the embedding dimension and T
the number of audio frames. In the EDA module, an LSTM encoder
encodes the time-shuffled et, and from its last hidden and cell states,
an LSTM decoder estimates a flexible number of speaker attractors
as ∈RD , s∈ [1, . . . , S], controlled by a stop flag. Speaker activity
at time t for each speaker is obtained by taking the inner product of
each attractor with the audio embedding et and applying a sigmoid.
Attention EDA: We propose using an attention LSTM decoder, such
that the estimation of attractor as is conditioned on a distinct context
vector zs instead of the zero vector in EEND-EDA, with zs com-
puted as a weighted sum of the EDA encoder outputs he

t :

zs =

T∑
t=1

ws,th
e
t , (1)

ws,t =
exp(f(as−1, c

d
s−1, h

e
t ))∑T

τ=1 exp(f(as−1, cds−1, h
e
τ ))

, (2)

where f(·) is a linear layer with hyperbolic tangent (tanh) activation.
We denote this method EEND-EDA+Att. We use SA-EEND with
positional encoding, and do not shuffle et before passing them to the
EDA LSTM encoder, contrary to what EEND-EDA did.
Objective functions for speaker recognition: The EEND-EDA at-
tractors are trained via binary classification, in which the attractors
iteratively predict whether there are remaining speakers or not. The
attractors are thus not trained to encode speaker identity that remains
valid across recordings. Since each speaker’s activity is conditioned
on its attractor, it is expected that an attractor better correlated with
speaker identity will benefit the diarization task. Inspired by speaker
extraction approaches in which the extraction is conditioned on an
attractor that is jointly trained to recognize the speaker [22–24], we
also train the attractors using a speaker recognition loss, such that
the attractors explicitly represent speaker information. We refer to

this approach as EEND-EDA+Spk.
We employ a softmax layer to transform each attractor as into

a probability distribution p̂s over the speakers in the dataset. Dur-
ing training, we define the ground-truth speaker class labels ps, for
s∈ [1, . . . , S], using the actual number of speakers S in a record-
ing, where ps(j), for j ∈ [1, . . . , J ], is a binary label indicating if
the s-th speaker in the recording is the j-th speaker in the speaker
dataset, and J denotes the total number of speakers in the training
set. We introduce an additional class representing “Not a speaker,”
corresponding to j = 0, and use it as a stop flag, such that the net-
work learns to stop decoding attractors at inference time whenever
an attractor falls into this class. The speaker classification objective
function for the first S attractors is defined as:

Lspk-PIT
CE = argmin

π∈PS

−
S∑

s=1

J∑
j=0

pπ(s)(j) log p̂s(j), (3)

where PS denotes the set of permutations over {1, . . . , S}. We use
PIT to find the optimum permutation order between the estimated
attractors and the speaker labels, relying on Sinkhorn’s algorithm
(SinkPIT) [25] to avoid the factorial complexity in the number of
speakers. At the same time, the S+1-th attractor is trained to fall into
the “Not a speaker” class with:

Lstop
CE = −

J∑
j=0

pS+1(j) log p̂S+1(j) = − log p̂S+1(0). (4)

Overall objective function: Our final audio-only sub-system
EEND-EDA++ is shown in Fig. 3 and combines EEND-EDA+Att
and EEND-EDA+Spk. The overall objective function is:

Lall = LDia-PIT
BCE + β(Lspk-PIT

CE + αLstop
CE ), (5)

where

LDia-PIT
BCE =argmin

π∈PS

−
S∑

s=1

T∑
t=1

(γy
π(s)
t log(ŷt)+(1−y

π(s)
t )log(1− ŷt))

(6)
is the objective of the diarization task, with yt and ŷt respectively de-
noting the ground-truth and estimated speaker activity probabilities
at frame t. We again use the SinkPIT algorithm here. Different loss
terms are balanced using scalar weights α and β. We also impose a
scalar weight γ on the positive class (speaker active) to account for
class imbalance when there are many speakers involved.

2.2. Proposed visual-centric V-AHC
Diarization in in-the-wild videos has unique challenges including
speakers who are partially or completely off-screen and irrelevant
on-screen speakers. However, visual signals such as face record-
ings are robust to acoustic noises, providing a strong cue about
speaker identity and the places of articulation that discriminate
between speech and non-speech signals. We aim to leverage the
available visual signals, specifically the detected face tracks, to per-



form an on-screen speaker diarization. Our proposed visual-centric
clustering-based model named V-AHC is illustrated in the upper
half of Fig. 2, in the red dotted box.
Speech activity extraction: For each face track, we perform
audio-visual active speaker detection using a pre-trained TalkNet
model [19], that leverages the synchronization between the lip
movements and the audio signals to determine the frame-level
speech activity of the face. The use of audio signals is vital as there
could be a talking face without audible speech sometimes.
Speaker identity extraction: To determine the identity of the
speaker for a face track, we utilize deep face recognition models
that have demonstrated remarkable performance in practical appli-
cations. Specifically, we randomly sample up to 50 images from the
face track and average their embeddings extracted from a pre-trained
FaceNet model [21].
Agglomerative hierarchical clustering: To identify speaker clus-
ters, we use agglomerative hierarchical clustering (AHC) [26] on all
face tracks. The distances between face tracks are computed as the
negative cosine similarity of their face embeddings averaged over 50
random frames. The diarization result for each speaker cluster is de-
termined by combining the speech activities obtained with TalkNet
for the respective face tracks. In cases where no face is detected for
some segment, we set the corresponding speech activity to zero.

2.3. Permutation-invariant late fusion
The audio-only sub-system performs diarization on the entire record-
ing, but is negatively impacted by acoustic noise. In contrast, the
visual-centric sub-system is resilient to acoustic noise but will miss
speech activities from off-screen speakers. To exploit the benefits of
both models, we propose a score-level late-fusion strategy combin-
ing them by comparing their speech activity probabilities, as detailed
next. As such, we aim to capitalize on their complementary strengths
and enhance the overall diarization performance.

To determine the one-to-one correspondence between the au-
dio and visual results, we first silence-pad the less-speaker modality
to have the same speaker number as the other one, and then com-
pare every audio diarization result ŷs with every visual diarization
result ỹs′ and calculate the matching score to be the summation
of the audio scores ŷs

t for all t where visual scores ỹs′
t show ac-

tive speech. The best correspondence is determined by the highest
matching score over all permutations:

argmax
π∈Pmax(S,S′)

S∑
s=1

T∑
t=1

ŷs
t 1[ỹπ(s)

t = 1], (7)

where we consider ỹs′
t = 0 if s′ > S′. For the best pairs, we re-

place the audio score ŷs
t with the visual score ỹ

π(s)
t when the latter

shows active speech, because we found the visual score to be more
reliable. In some cases where we know the speaker overlapping ratio
is small in the training data distribution, like AVA-AVD, we employ
a post-processing technique that mutes the other speakers at those
time frames where the visual score shows one speaker is active.

3. EXPERIMENTAL SETUP
3.1. Datasets
In-the-wild dataset AVA-AVD: The AVA-AVD dataset [16] is one
of the few publicly available in-the-wild audio-visual diarization
datasets. It was built upon the AVA-Active Speaker dataset [27],
which consists of multilingual movies depicting diverse daily activ-
ities, in order to foster the development of diarization methods for
challenging conditions. The train, validation, and test sets consist of
243, 54, and 54 videos respectively, 5 minutes each.

Simulated proxy dataset VoxCeleb2-AVD: Since AVA-AVD is
small, prior works [16] pre-train the models on a large simulated
dataset. We use the VoxCeleb2 dataset [28] to simulate a pre-training
dataset for the audio-only models, which we name VoxCeleb2-AVD.
We simulate 2×105, 500, and 500 recordings for the train, valida-
tion, and test sets respectively, and each is 5 minutes long. The
test set has distinct speakers from train and validation sets. We
simulate VoxCeleb2-AVD close to AVA-AVD, following the distri-
butions shown in Fig. 1. We also randomly sample music and noise
clips from the MUSAN dataset [29] and the Freesound Dataset 50k
(FSD50K) [30], and add them to each audio recording. We follow
the cocktail fork [31] protocol in setting the energy levels between
speech, noise, and music in VoxCeleb2-AVD.

3.2. Implementation details
We train the audio-only sub-system on 5-minute recordings, and the
processing of input audio features and the audio-only sub-system
model settings follows EEND-EDA [6]. We set the scalar weights as
α=0.01 and β=0.1× 0.92Epoch, where Epoch is the epoch num-
ber, as we empirically found that the speaker recognition loss is im-
portant during initial training iterations, but less beneficial as the
model converges for diarization. We set γ=5. The model is trained
using the Adam optimizer with the learning rate schedule as in [6]
and 10 000 warm-up steps. The training of EEND-EDA++ requires
the speaker identity labels in the dataset, and while VoxCeleb2 has
such labels, AVA-AVD does not. Since the VoxCeleb2 training set
has 5994 speakers, we can hope to find speakers with similar voice
characteristics as speakers in AVA-AVD. We thus map every speaker
of AVA into its closest speaker in the VoxCeleb2 training set, based
on the L2 distance between their speaker embedding representations
extracted using RawNet3 [32], as proxy for the speaker label.

3.3. Baselines
We present the results of 4 speaker diarization baselines on AVA-
AVD. WST [12] is an audio-visual system that uses audio-visual
correlation to help first enroll the speakers and then diarize. VBx [4]
is a recent audio-only cascaded system using Bayesian clustering,
with 2 variants, VBx-ResNet34 and VBx-ResNet101. AVR-Net [16]
is an audio-visual cascaded system built upon VBx-ResNet34 and
TalkNet. DyViSE [18] is an audio-visual cascaded system, which
denoises audio with visual information in a latent space and inte-
grates facial features to obtain identity discriminative embeddings.

4. RESULTS
4.1. Audio-only models
Results on VoxCeleb2-AVD: In Table 1, we present the results of
the baseline EEND-EDA and our proposed EEND-EDA++ trained
and evaluated on the simulated VoxCeleb2-AVD dataset. EEND-
EDA++ achieves the best diarization error rate (DER) and Jaccard
error rate (JER). We also present two ablation studies of EEND-
EDA++ on that same VoxCeleb2-AVD. EEND-EDA+Spk, trained
with our speaker recognition loss but without the attention mecha-
nism, performs badly in terms of DER and JER due to higher MS.
This is probably because the vanilla EDA has limited capacity in
producing representative speaker attractors, thus the speaker loss
adversely affects the model training. EEND-EDA+Att, which has
the attention mechanism in EDA but is not trained with our speaker
recognition loss, outperforms EEND-EDA in DER, but is not better
than EEND-EDA++ except for the MS submetric.
Results on AVA-AVD: In Table 2, we compare EEND-EDA++ with
baselines on the AVA-AVD benchmark. The results of systems 1-4
are taken from [16]. The previous SOTA is system 3, which reports
a DER of 70.9%. Without pre-training, EEND-EDA in system 6



Table 1: Results on the VoxCeleb2-AVD dataset. We report DER [%], which
is the sum of missed speech (MS), false alarm (FA), and speaker error (SE).
We also report JER [%]. The lower the better for all metrics. All systems
(Sys.) in this paper use a collar of 0.25 s [33].

Sys. Model MS FA SE DER JER

7 EEND-EDA [6] 17.4 9.1 18.9 45.4 66.7
9 EEND-EDA++ 15.8 6.7 18.2 40.8 62.8

15 EEND-EDA+Spk 25.1 6.4 17.6 49.1 71.2
16 EEND-EDA+Att 14.6 8.6 20.8 43.9 66.6

Table 2: Results on the AVA-AVD benchmark. M indicates the modality
used, either audio (A) or audio-visual (AV). PT indicates if the model is pre-
trained, either on a VoxCeleb2-based dataset (Sys. 1-5) as in [16], on our
VoxCeleb2-AVD (Sys. 7-11 and 13-14), or on the AVA and some face recog-
nition datasets (Sys. 12). FT indicates if the model is fine-tuned on AVA-
AVD. *System 11 uses the ground-truth speaker number at inference.

Sys. Model M PT FT MS FA SE DER JER

1 WST [12] AV

✓ ✓

11.6 40.6 36.1 88.4 -
2 VBx-ResNet34 [4] A 8.7 44.6 35.3 88.5 -
3 VBx-ResNet101 [4] A 8.7 44.6 17.6 70.9 -
4 AVR-Net [16] AV 8.7 44.6 20.1 73.3 -
5 DyViSE [18] AV 11.1 24.2 35.9 71.2 -

6 EEND-EDA [6]
A

✗ ✓ 46.6 27.3 22.6 96.4 94.7
7 EEND-EDA ✓ ✗ 24.2 2.8 24.4 51.4 83.5
8 EEND-EDA ✓ ✓ 28.5 5.3 15.1 48.9 78.5

9 EEND-EDA++
A ✓

✗ 22.8 6.8 20.8 50.4 80.5
10 EEND-EDA++ ✓ 25.0 5.6 17.0 47.6 76.4
11 EEND-EDA++* ✓ 23.2 7.8 16.7 47.7 74.3

12 V-AHC
AV ✓ ✓

56.2 0.9 9.2 66.3 78.4
13 AV-EEND-EDA++ 18.5 7.2 20.4 46.1 68.8
14 AV-EEND-EDA++† 20.0 4.7 20.4 45.1 76.0

performs badly with a DER of 96.4%. Systems 7-10 are pre-trained
on our VoxCeleb2-AVD, and they all outperform the baselines by a
wide margin in terms of DER, with our EEND-EDA++ achieving the
best DER of 47.6% and JER of 76.4%. It is worth mentioning that
EEND-EDA++ is an audio-only sub-system, but still outperforms
the audio-visual baselines by a wide margin.
Results on AVA-AVD with oracle speaker counting: For EEND-
EDA++, systems 11 and 10 are the same, except that the former uses
the ground-truth number of speakers at inference. Both get similar
DER, but system 10 is lagging behind system 11 by 2% in terms of
JER. We observe informally that system 10 typically underestimates
the speaker number. Nevertheless, system 10 still achieves the best
DER and JER among non-oracle systems 1-10.
Visualization: In Figs. 4 and 5, we show the t-SNE plots of embed-
dings et within an example video in the VoxCeleb2-AVD and the
AVA-AVD datasets. Yellow represents the non-speech region, while
each of the other colors represents a speaker. For both datasets, the
embedding clusters of our system 9 are separated further apart than
the baseline system 7, showing that our speaker-recognition objec-
tive pushes the embeddings from different speakers away from each
other. In Fig. 6, we show the t-SNE plot of attractors across differ-
ent videos from the VoxCeleb2-AVD dataset. We randomly selected
3 speakers not seen during training, and if these speakers appear in
a video, we match the attractors to the speaker labels by comput-
ing the best permutation between the estimated diarization streams
and ground-truth diarization streams. We then plot the attractors that
were matched to the three speakers, with one color per speaker. We
see that our system 9 has more obvious clusters for the attractors
than baseline system 7, which means that the speaker identities are
better matched across videos. Note we cannot show attractor plots
for AVA-AVD as it does not have ground-truth speaker labels.

Fig. 4: et t-SNE plot of a
VoxCeleb2-AVD video.

Fig. 5: et t-SNE plot of
an AVA-AVD video.

Fig. 6: as t-SNE plot of
VoxCeleb2-AVD videos.

4.2. Visual-centric model
In Table 2, our proposed visual-centric on-screen speaker diarization
sub-system V-AHC achieves a DER of 66.3%, which surpasses the
baseline systems 1 to 5. V-AHC has a very high MS of 56.2%, which
shows that the off-screen speakers are indeed a frequent feature in
the AVA-AVD dataset. However, V-AHC has very low FA of 0.9%,
showing the strength of the visual signals when present.

4.3. Audio-visual models
We fuse the visual-centric sub-system V-AHC with the audio-only
sub-system 10, resulting in the audio-visual system 13. System 13
outperforms system 10 with a reduction of 1.5% in DER and 7.6%
in JER. Compared to its audio sub-system counterpart, the MS de-
creases significantly, but the FA and SE increase. This may be be-
cause the final number of speakers is set as the maximum of the
audio and visual sub-systems. The number of output streams thus
increases, which decreases MS but introduces more FA and SE.

We also present system 14, in which instead of fusing the full-
length recording-level visual diarization results to the audio diariza-
tion results as described in Section 2.3, we fuse each face activities
output from TalkNet (face-track-level) to one of the audio diarization
streams, with the same score-level decisions. System 14 outperforms
system 10 with an absolute reduction of 2.5% in DER and 0.4% in
JER. Compared to its audio sub-system counterpart, MS and FA de-
crease, but SE increases. This is because the final number of output
speakers is the same as the audio sub-system, so the visual signal
generally helps the MS and FA. However, the fusion without con-
sidering visual speaker identity causes SE to increase. Although the
improvements in DER are here better compared to recording-level
audio-visual fusion, the JER here only improves marginally. Over-
all recording-level fusion is preferred as the improvement on JER
is large which indicates per-speaker diarization evaluation improves
a lot, showing the importance of utilizing the identity information
from the visual signals using FaceNet and the AHC algorithm.

5. CONCLUSION

We studied the speaker diarization problem for in-the-wild videos.
We proposed a late audio-visual fusion model, AV-EEND-EDA++,
that comprises an audio-only sub-system, EEND-EDA++, and a
visual-centric sub-system, V-AHC. For audio-only sub-systems, we
show that the speaker identity is better preserved in our EEND-
EDA++ with our speaker recognition loss. Our proposed sub-
systems and the fused audio-visual model outperform SOTA on the
AVA-AVD benchmark.
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