Single-pixel imaging is an efficient image acquisition process where light from a target scene is passed through a spatial light modulator and then projected onto a single photodiode with a high temporal acquisition rate. The scene reconstruction is achieved using computational methods that leverage prior assumptions on the scene structure. In this paper, we propose to model the structure of a dynamic spatio-temporal scene using a reduced-order model that is learned from training data examples. Specifically, by combining single-pixel imaging methods with a reduced-order model prior implemented as a neural ordinary differential equation, image sequence reconstruction can be accomplished with significantly reduced data requirements while maintaining performance levels on par with leading methods. We demonstrate superior reconstruction at low sampling rates for simulated trajectories governed by Burgers’ equation and turbulent plumes emulating gas leaks.

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2024
SINGLE-PIXEL IMAGING OF DYNAMIC FLOWS USING NEURAL ODE REGULARIZATION

Aleksei Sholokhov1, Joshua Rapp2, Saleh Nabi3, Steven L. Brunton1, J. Nathan Kutz1, Hassan Mansour2

1 University of Washington, Seattle, WA, USA
2 Mitsubishi Electric Research Laboratories, Cambridge, MA, USA
3 Schneider Electric, Andover, MA USA

ABSTRACT

Single-pixel imaging is an efficient image acquisition process where light from a target scene is passed through a spatial light modulator and then projected onto a single photodiode with a high temporal acquisition rate. The scene reconstruction is achieved using computational methods that leverage prior assumptions on the scene structure. In this paper, we propose to model the structure of a dynamic spatio-temporal scene using a reduced-order model that is learned from training data examples. Specifically, by combining single-pixel imaging methods with a reduced-order model prior implemented as a neural ordinary differential equation, image sequence reconstruction can be accomplished with significantly reduced data requirements while maintaining performance levels on par with leading methods. We demonstrate superior reconstruction at low sampling rates for simulated trajectories governed by Burgers’ equation and turbulent plumes emulating gas leaks.

Index Terms— Single-pixel imaging, high-dimensional dynamical systems, reduced-order model, neural ODE

1. INTRODUCTION

Low-cost cameras with high pixel counts have enabled digital imaging to become ubiquitous. However, traditional pixel arrays are often too slow or too expensive for imaging applications that require high acquisition speed or detection at wavelengths outside of the visible spectrum. On the other hand, imaging systems that raster scan the illumination or detection pixel-by-pixel enable image formation from a cost-effective single-pixel detector, but the scanning process may likewise be too slow to capture dynamic scenes. For example, methane gas-leak monitoring requires mid-infrared (MIR) wavelengths sensors. Unfortunately, MIR array detectors come with a significant cost, and capturing scene dynamics requires high-frame-rate acquisition1. In such scenarios, a candidate solution is single-pixel imaging (SPI), a technique that uses a single detector element and time-varying spatial light modulation to capture multiplexed measurements of light intensity2.

SPI acquisition is often combined with prior information on the structure of the scene content along with computational reconstruction techniques to recover a full image despite using fewer modulation patterns than the target pixel resolution. Initial approaches to single pixel imaging often assumed sparsity of the scene in the Fourier or wavelet basis or in the spatial gradient domain (i.e., total variation)2,3. Recent approaches have adopted deep learning (DL) architectures for SPI reconstruction and showed that using deep neural networks can dramatically reduce the sampling ratio and offer near-real-time performance4,5,6,7. However, these methods still require a relatively large number of single-pixel samples per frame (SPF) to ensure satisfactory reconstruction of a full video sequence.

In this work, we aim to enable high quality reconstruction of videos from a small number of samples per frame by learning priors on dynamics that can act as a regularization across the entire sequence of frames. We call our method SPI-NODE because we combine SPI acquisition with a reconstruction algorithm that uses a neural ordinary differential equation (Neural ODE, or NODE) as regularization. We first pre-train a reduced-order model (ROM) to identify a low-dimensional latent space representation of a gas flow and calculate the system’s evolution within the latent space using Neural ODEs8,9. Next, we efficiently solve an ODE-regularized inverse problem using the adjoint-sensitivity method to obtain the necessary derivatives following the technique proposed in8. The reconstruction procedure minimizes the measurement mismatch between the samples recorded by the SPI detector and the synthesized measurements obtained by sampling the reconstructed trajectory using the compressive measurement operator. We demonstrate through numerical validation using simulated and real flows that our approach is capable of reconstructing dynamic flows at a sampling rate that is approximately two orders of magnitude lower than that achieved by competitive SPI algorithms.

This paper is organized as follows, in Section 2 we describe related work in the area of single pixel imaging and reduced-order modeling of dynamical flows. Section 3 introduces the signal acquisition model along with the proposed network architecture that will allow us to train suitable ROMs, and present the recovery algorithm with our proposed regularizer. In Section 4, we evaluate our approach using one synthetic dataset and one experimental dataset and demonstrate its superiority over state of the art methods. Finally, we conclude the paper in Section 5.

2. RELATED WORK

Our work lies at the intersection of single pixel imaging and reduced-order modeling using neural ODEs. SPI evolved from early observations of the benefits of using multiplexed illumination instead of raster scanning10 and the possibility of combining multiplexing with a single pixel detector to form an image11. However, SPI development was largely motivated by compressive sensing theory12,13 and efficient reconstruction algorithms2. Recent works have focused on creating more sophisticated reconstruction techniques that are agnostic to the sampling patterns by improving the efficiency of image recovery using classical3,14 as well as learned priors4,5,7 for image recovery. In the ensuing years, many im-

This work was conducted while Aleksei Sholokhov and Saleh Nabi were with MERL.
implementations of SPI have been explored with different hardware architectures, reconstruction algorithms, and imaging applications [15 [16] [17].

A Neural ODE model [8] is a differentiable ODE solver. It utilizes the adjoint sensitivity method [18] to back-propagate the gradients through the solution. The emergence of GPU-compatible implementations of differentiable ODE solvers such as torchdiffeq [8] and Diffrax [19] caused a broad adoption of Neural ODE models in many applications, including for system identification [20], classification [21], medical imaging [22], reduced-order modelling [23], and modelling air flow [24] and fluids [23], to name a few. Neural ODEs have demonstrated superior ability to model highly non-linear dynamics compared to linear models especially when the dimensionality of the space over which the dynamics evolve is small.

3. PROBLEM FORMULATION

3.1. Acquisition System

Let \(x(t) \in \mathcal{X} \subseteq \mathbb{R}^n \), \(t \in [0, T] \) denote temporal snapshots of a high-dimensional spatio-temporal system indexed in time by \(t \), e.g. the desired video recording of a scene that we wish to observe. In many applications we cannot record \(x(t) \) at full resolution in real-time due, for example, to a prohibitive cost of the required hardware or lack of high-dimensional sensors. Instead, we collect measurements from \(p \) detectors, where each detector provides a linear combination of the light emitted by \(x(t) \) at time \(t \):

\[
y(t) = Ax(t), \quad A \in \mathbb{R}^{p \times n}, \quad t \in [0, T]. \tag{1}
\]

In particular, we consider a single pixel camera setup where for every time instance \(t \), a vector of \(p \) acquisitions \(y(t) \in \mathbb{R}^p \) are obtained by a high sampling rate photo-detector using the projection matrix \(A \). The rows of the matrix \(A \) correspond to a binary mask pattern that can be optically encoded, for example, using a digital micromirror device (DMD) [26]. A DMD is a type of spatial light modulator commonly used for SPI consisting of an array of individually addressable mirrors with two possible angle settings. Each micromirror corresponds to a mask element, which can be turned “on” or “off” by switching the mirror angle. Fig. 1 illustrates a single pixel imaging setup where a gas plume is imaged using a DMD array and a single-pixel MIR photo-detector.

Multiple techniques attempt to reconstruct \(x(t) \) directly by inverting equation (1) under mild regularity priors; examples include differential ghost imaging [27], total variation regularization [15], and Fourier-domain regularized inversion [28]. Alternatively, one can recover \(x(t) \) by recovering its representation \(z(t) \in \mathcal{Z} \subseteq \mathbb{R}^m \) on a low-dimensional manifold \(m \ll n \). Specifically, given an invertible mapping \(\psi(z) : \mathcal{Z} \rightarrow \mathcal{X} \), we replace the problem of solving for a vector \(x \) in high-dimensional space using \(p \) linear observations with solving for a low-dimensional vector \(z \) from \(p \) non-linear observations:

\[
y(t) = A\psi(z(t)). \tag{2}
\]

We call the space \(\mathcal{X} \) an observable space, \(\mathcal{Z} \) a latent space, and the mapping \(\psi(z) \) a decoder. Often a suitable \(\psi(z) \) is not known in advance, in which case an approximation \(\hat{\psi}_\theta(z) \) is trained using a dataset of full-resolution images \(\{x_1, \ldots, x_N\} \), where \(\theta \) denotes the parameters of the model, e.g. the weights of an autoencoder network. However, if \(y(t) \) is insufficient for a unique reconstruction of \(x(t) \) then it will remain insufficient for reconstructing \(z(t) \). In order to reduce the sufficient number of measurements that can uniquely reconstruct \(x(t) \), and by proxy \(z(t) \), additional structural sparsity or priors may be introduced, such as joint training of the sampling matrices and the decoder [7]. In this work we take a different route and supplement the encoder \(\psi(z) \) with prior knowledge of the dynamics of \(z(t) \) on the manifold over time.

3.2. Reduced-Order Model with Non-Linear Latent Dynamics

Let \(x(t) \) be modelled as an autonomous dynamical system on a finite space \(\mathcal{X} \subseteq \mathbb{R}^n \):

\[
\frac{dx}{dt} = f(x(t)). \tag{3}
\]

Considering the high dimensionality of \(x(t) \), it is often expensive to directly use the relationship (3) for predicting the behaviour of the system even when \(f(x) \) is known. However, many physical systems tend to evolve on a lower-dimensional manifold \(\mathcal{Z} \). In that space, the dynamics evolve according to a (generally unknown) function \(h(z) \):

\[
\frac{dz}{dt} = h(z(t)). \tag{4}
\]

Thus, one can predict the dynamics of the system \(x \) at a future time \(T \) by projecting the initial condition \(x(0) \) into the latent space, performing an integration there, and mapping the resulting trajectory back to the observable space:

\[
\begin{align*}
z(0) &= \psi^{-1}(x(0)) \\
z(T) &= z(0) + \int_0^T h(z(t))dt \\
x(T) &= \psi(z(T)).
\end{align*} \tag{5}
\]

When \(m \ll n \) we refer to the triplet \((\psi, \psi^{-1}, h) \) as a Reduced-Order Model (ROM) of \(f \). It is often the case that for a given system \(f \) there exists no reduced-order representation \((\psi, \psi^{-1}, h) \) such that the relation (5) holds exactly. In this case, we seek an approximation ROM \((\psi_\theta, \phi_\theta, h_\theta)\) that minimizes the difference between the data \(x(t) \) and the prediction \(\hat{x}(t) \) over a chosen class of models \((\psi_\theta, \phi_\theta, h_\theta)\) parameterized by \(\theta \). We model \(\psi, \psi^{-1} \) with a neural network autoencoder \(\psi_\theta, \phi_\theta \) and \(h \) is modeled by a fully connected network \(h_\theta \). The exact constitution of the networks \(\psi_\theta, \phi_\theta \), and \(h_\theta \) are problem-dependent and discussed more closely in the related sections.
We define a training loss \mathcal{L} as a sum of the reconstruction and prediction losses. The former ensures that ϕ_θ and ψ_θ are inverse mappings of each other, whereas the latter matches the model’s predictions to the available data. Formally, for a given set of trajectories X_i, $i \in \{1, \ldots, N\}$, where each trajectory $X_i \in \mathbb{R}^{n \times K}$ is a set of K snapshots $X_i(t_j) \in \mathbb{R}^n$ of the system, for K time-steps, t_j, $j \in \{0, \ldots, K - 1\}$, the loss function $\mathcal{L}^\text{pred}_{\theta}$ is defined as:

$$
\mathcal{L}(\theta) = \sum_{i=1}^{N} \left[\sum_{j=0}^{K-1} \| X_i(t_j) - \psi_\theta(\phi_\theta(X_i(t_j))) \|^2 + \right. \\
+ \sum_{j=1}^{K-1} \left\| \psi_\theta \left(\phi_\theta(X_i(t_0)) + \int_{t_0}^{t_j} h(z(t)) dt \right) - X_i(t_j) \right\|^2 \right].
$$

To obtain a ROM (ψ_θ, ϕ_θ, h_θ), we minimize the loss above with respect to the network parameters θ. We note that each trajectory X_i may be captured over its own time-frame and use a distinct, possibly non-uniform, step-size, in which case the loss function should be modified accordingly. To simplify the notation, without loss of generality, in the rest of the paper, we assume that all trajectories were recorded over the same time-frame with an equal and uniform step-size Δt.

3.3. Recovery Algorithm

We use the approximate ROM (ψ_θ, ϕ_θ, h_θ) above to regularize the latent-space dynamics of the single-pixel imaging reconstructions. Specifically, we obtain the reconstruction $x^* = \psi(z^*)$ by minimizing the following loss with respect to $Z = \{z_0, \ldots, z_{K-1}\} \in \mathbb{R}^{n \times K}$:

$$
\mathcal{L}^\text{recon}_{\theta}(z) = \sum_{j=0}^{K-1} \| y_j - A \psi_\theta(z_j) \|^2 + \\
+ \lambda \left\| z_0 + \int_{t_0}^{t_j} h_\theta(z) dz - z_j \right\|^2_2,
$$

where the parameter λ controls the degree to which the compressing sensing algorithm relies on the latent dynamics h_θ during the signal reconstruction phase. We minimize the loss (7) using a gradient-based automatic differentiation.

4. EXPERIMENTS

4.1. Burgers’ Equation

We first study the performance of our framework on flows governed by Burgers’ equation with $[-\pi, \pi]$-periodic boundary conditions:

$$
\begin{align*}
&u_t + uu_x = \nu u_{xx}, \\
&u(-\pi, t) = u(\pi, t), \quad \forall t \in [0, T],
\end{align*}
$$

where u_t, u_x, and u_{xx} represent partial derivatives in time, the first, and second spatial derivatives, respectively.

ROM Training. To obtain a training dataset for the ROM we replicate the experimental setup from [29, Section 3], generating 1024 trajectories on a discretized spatial domain $[-\pi, \pi]$ with 128 grid-points. To generate a diverse set of initial conditions we sum the first 10 harmonic terms with random coefficients:

$$
u(x, 0) = \frac{1}{10} \sum_{k=1}^{10} a_k \cos((k+1)x),
$$

where $a_k, b_k \sim \mathcal{N}(0, 1)$. We solve Equation (8) for $t \in [0, 2]$ with $\Delta t = 0.1$ using a spectral solver resulting in trajectories of length $K = 201$ time-steps each.

Architecture. We define ϕ_θ and ψ_θ to be fully-connected neural networks. Both functions had 3 hidden layers 512 neurons each, with ReLU activations after all but the output layers. We set the observable space dimension $n = 128$ and the latent space dimension $m = 16$. The network h_θ is a fully-connected network with 3 layers 256 neurons wide each with ReLU activation after each hidden layer except for the output layers.

SPI Recovery. For the recovery phase, we generate 128 trajectories with “bump” initial conditions—a smooth approximation of a bump with two opposing steeply-curved sigmoids:

$$
u(x, 0) = \frac{1}{1 + \exp(-k(x - a))} - \frac{1}{1 + \exp(-k(x - b))},
$$

where $a < b$ are sampled uniformly in $[-\pi, \pi]$ and $k = 20$. We choose this shape to ensure that the training and sensing trajectories are sufficiently different to prevent memorization effects. Every row in the sensing matrix A_1 is a 128 binary $\{0, 1\}$ vector with 64 non-zero components sampled uniformly.

Performance Evaluation. We compare our SPI-NODE regularization approach with four alternatives: an autoencoder-enhanced variation of differential ghost imaging [DGI+Conv, Decoder, 27], Total Variation regularization (TVR, 15), Fourier-domain regularized inversion (FDRI, 28), and an approach which uses an autoencoder (AE, 31). We treat the Burgers’ trajectories as 2D-images in the spatial and temporal domains and measure reconstruction accuracy with three commonly-used metrics: the normalized mean-squared error (MSE), the peak signal-to-noise ratio (PSNR), and the structural similarity index measure (SSIM) [32]. The reconstruction performance is evaluated as a function of the samples-per-frame (SPF) rate, i.e., the number of SPI measurements divided by the number of grid points $n = 128$ in every frame that is recovered.

Results. An example Burgers’ trajectory that was recovered from 1% samples per frame SPI measurements is shown in Fig. 2. The results in the figure demonstrate that benchmark methods, which reconstruct each snapshot separately, fail to recover the trajectory because of the extremely low SPF rate. On the other hand, SPI-NODE reconstructs the trajectory as a whole, and since the reduced-order model serves as a strong prior for the dynamics across time, the trajectory is recovered with much lower error. Quantitative SPI recovery results, presented in Fig. 3, show the median PSNR, MSE, and SSIM over different numbers of samples per frame taken. We observe that SPI-NODE regularization achieves $\approx 25\%$ higher PSNR and up to $\approx 33\%$ times higher SSIM relative to FDRI when the SPF rate is low. It also achieves $\approx 70\%$ better PSNR and 2× higher SSIM relative to the autoencoder-based algorithm, which highlights the importance of modeling the temporal dynamics as in SPI-NODE.

4.2. Application to Real Data: Reconstruction of a Gas Plume

In this section we use our technique to reconstruct videos of gas leaks using observations from a simulated single-pixel camera from
a real-world dataset: ScalarFlow [33]. The physical problem at hand is an ascending turbulent plume in an environment of larger density. The dataset consists of 3D reconstructions of density and velocity of 104 smoke plumes, each 150 frames long. Similar to the Burger’s equation setting, the ROM consists of an encoder \(\phi(u) \), a decoder \(\psi(z) \), and latent dynamics operator \(h(z) \). However, in this setting, the pair \(\phi(u) \) and \(\psi(z) \) are represented by a convolutional autoencoder to capture spatial patterns, and the function \(h(z) \) is represented by a fully-connected network. We assemble our dataset by taking the front views (2D) of the reconstructions and compressing their resolution to \(320 \times 192 \) pixels. We then split the trajectories into non-overlapping sets: train (92), dev (5), test (5), and reconstruction (2) respectively. We use the first three sets to train, fine-tune, and select a final ROM, respectively. After obtaining the ROM, we use the fourth set of data for SPI reconstruction. For our simulated SPI experiments, we sample 2 to 128 single-pixel observations per frame which corresponds to SPF rates ranging from \(3 \times 10^{-3}\% \) to 0.2\%.

The results are presented on Figure 4(a) the average MSE and SSIM are displayed on Figure 4(b). We see that SPI-NODE consistently outperforms FDRI by both metrics within the given ranges of SPF rates. For example, on Figure 4(a) we see that FDRI reconstructs a blurry image with 32 samples per frame available (SPF rate of 0.05\%), whereas our method is able to reconstruct considerably more accurate image.

5. CONCLUSION

In this paper, we introduced a ROM-based regularization that can be used for single-pixel imaging of scenes with spatio-temporal dynamics governed by an ODE. By training a reduced-order model with a neural ODE, we learn an efficient representation of spatio-temporal flows that can act as a strong prior for SPI reconstruction. SPI-NODE is a good fit for settings when large amounts of clean and representative data are available for training, and when the application in question necessitates a low sample-per-frame ratio (e.g., \(< 1\% \)). In such settings, our method leverages the ROM to compensate for severely under-sampled measurements with a strong data-driven prior and yields superior recovery quality. Our approach to SPI regularization has promise for applications such as gas leak monitoring that are limited by the cost of mid-infrared pixel arrays and the slow speed of raster-scanned methods.

6. ACKNOWLEDGEMENTS

AS, SLB, and JNK acknowledge support from the National Science Foundation AI Institute in Dynamic Systems (grant number 2112085). JNK further acknowledges support from the Air Force Office of Scientific Research (FA9550-19-1-0011). JR and HM are supported only by MERL.
7. REFERENCES

